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SUMMARY

We consider the identification problem that arises in the age-period-cohort models as well as in the
extended chain-ladder model. We propose a canonical parameterization based on the accelerations of the
trends in the three factors. This parameterization is exactly identified and eases interpretation, estimation
and forecasting. The canonical parameterization is applied to a class of index sets which have trapezoidal
shapes, including various Lexis diagrams and the insurance-reserving triangles.
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1. INTRODUCTION

The age-period-cohort model used in epidemiology and demography describes the logarithm of mortality
in an additive form, involving three interlinked time scales,

µi j = αi + β j + γi+ j−1 + δ, (1)

where i is the cohort, j is the age and i + j − 1 is the period. The indices i and j vary bivariately in
an index set I ∈ N 2. The parameters of the model, αi , β j , γi+ j−1 and δ, describe the trends of the three
factors in the model. It has long been appreciated that this parameterization is not identified. Holford
(1983) therefore used generalized inverses when solving maximum-likelihood equations, remarking that
the choice of generalized inverse can have a large effect on the parameter estimates. A similar solution
has implicitly been used in the insurance literature; see Zehnwirth (1994). Clayton & Schifflers (1987)
suggested that the ratios of the relative risks are identifiable. On a logarithmic scale, they are the second
differences, which will be the key element in this paper. Carstensen (2007) represented the variation of the
parameterization of (1) by adding and subtracting linear trends from αi , β j , γi+ j−1 and δ, which relates
to a group-theoretic description of the identification suggested here. He also pointed out that an ideal
parameterization should be simple in both estimation and computation.
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In this paper, we revisit the identification problem. We propose a canonical parameterization which
includes the identifiable second differences suggested by Clayton & Schifflers (1987), and prove that it has
a one-to-one correspondence with µi j , for all (i, j) ∈ I . It will be shown that the interpretation of such a
parameterization is straightforward, and that its design matrix can easily be deduced. Initially, we consider
the simple case in which the indices i and j vary in a square. The canonical parameter ξ is then given by
the second differences of αi , β j and γi+ j−1 and the three corner points µ11, µ21 and µ12. We then proceed
to show that the three corner points can be replaced by three other points. Finally, this is extended to more
general index sets.

As examples, we shall consider the three leading cases of the age-period-cohort model related to the
Lexis diagram as discussed by Keiding (1990). In the terminology of Keiding, the first principal set of
dead is data from certain cohorts that die within a given age range. This is where the indices vary in an
age–cohort rectangle. The other two cases are where the indices vary in an age–cohort trapezoid. The
second principal set of dead studies the deaths of certain cohorts in a given period, as in a longitudinal
study. The third principal set of dead studies the death within a certain period and within a given age range,
as in a repeated cross-sectional study.

We shall also consider the extended chain-ladder model used for reserving in non-life insurance. The
issue in reserving is that claims relating to a given accident year may be reported many years after the
accident. Thus, the available data in any given calendar year k are a simplex of size k with claims indexed
by their accident year and by their reporting or development year. The accident year and the development
year add up to the calendar year plus 1. This simplex is referred to as a run-off triangle. The classical
chain-ladder model, discussed for instance by England & Verrall (2002), involves only two time scales
relating to the accident and the development year. An extended chain-ladder model parameterized using
three time scales as in (1) has been introduced by Zehnwirth (1994) and Barnett & Zehnwirth (2000).

2. IDENTIFICATION FOR SQUARE INDEX SETS

Consider a simple square index set given by Definition 1. In this section, we propose a canonical
parameterization for model (1) for this situation.

DEFINITION 1. The set I is a square index set if, for some k ∈ N, I = {(i, j): i, j = 1, . . . , k}.
For a square index set, the parameters of (1) are

θ = (α1, . . . , αk, β1, . . . , βk, γ1, . . . , γ2k−1, δ) ∈ R
4k .

Now let µ = {µi j : (i, j) ∈ I }, as given by (1). The map from θ to µ is surjective, but not injective. As
pointed out by Carstensen (2007), linear trends in αi , β j and γi+ j−1 can be added without changing the
value of µi j . This can be phrased as θ being overparameterized.

Clayton & Schifflers (1987) worked with a multiplicative formulation of (1) and suggested that ratios of
ratios of the parameters would be invariant. In the linear set-up (1), the linear trends can correspondingly
be removed from αi , β j and γi+ j−1 by taking second differences, such as �2αi = αi − 2αi−1 + αi−2.
To generate a canonical parameterization ξ , we rewrite (1) in terms of these second differences, and
three initial points. This can be done by introducing the telescopic sums αi = α1 + ∑i

t=2 �αt and �αt =
�α2 + ∑t

s=3 �2αs , so that

αi = α1 + (i − 1)�α2 +
i∑

t=3

t∑
s=3

�2αs .

Substitute this expression for αi and similar expressions for β j and γi+ j−1 into (1). Writing �α2 + �γ2 =
µ21 − µ11 and �β2 + �γ2 = µ12 − µ11, we obtain

µi j = µ11 + (i − 1)(µ21 − µ11) + ( j − 1)(µ12 − µ11) + ai j , (2)
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for all i, j ∈ I , where

ai j =
i∑

t=3

t∑
s=3

�2αs +
j∑

t=3

t∑
s=3

�2βs +
i+ j−1∑

t=3

t∑
s=3

�2γs .

The expression for ai j can be simplified further by exchanging the double sums; for instance,∑i
t=3

∑t
s=3 �2αs equals

∑i
s=3(i − s + 1)�2αs , and thus

ai j =
i∑

s=3

(i − s + 1)�2αs +
j∑

s=3

( j − s + 1)�2βs +
i+ j−1∑

s=3

(i + j − s)�2γs . (3)

Based on formula (2), we define a parameter vector ξ ∈ R
4k−4 as

ξ = (
µ11, µ21, µ12,�

2α3, . . . , �
2αk,�

2β3, . . . ,�
2βk,�

2γ3, . . . ,�
2γ2k−1

)
. (4)

Theorem 1 below shows that ξ gives a unique parameterization of µ. We therefore call it a canonical
parameter.

For estimation, a design matrix for the canonical parameter ξ can be deduced from (2). In the case of a
square index set, I , of dimension k = 3, the design matrix is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ11

µ12

µ21

µ22

µ13

µ31

µ23

µ32

µ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0
1 0 2 0 1 1 0 0
1 2 0 1 0 1 0 0
1 1 2 0 1 2 1 0
1 2 1 1 0 2 1 0
1 2 2 1 1 3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ11

µ21 − µ11

µ12 − µ11

�2α3

�2β3

�2γ3

�2γ4

�2γ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 1 shows that ξ is unique in general. The uniqueness of ξ implies that the design matrix has full
column rank; this can be checked by inspection when k = 3. The proof is provided in the Appendix.

THEOREM 1. Let µ = {µi j : (i, j) ∈ I }, where I is a square index set, and µi j satisfies (1). The param-
eterization ξ given by (4) satisfies that

(i) ξ is a function of θ , and
(ii) µ is a function of ξ , because of (2).

The parameterization of µ by ξ is exactly identified in that ξ † � ξ ‡ implies µ(ξ †) � µ(ξ ‡).

The result could also be cast in terms of group-theoretic arguments. As in Carstensen (2007), we define
the group g by

g :

⎛
⎜⎜⎝

αi

β j

γi+ j−1

δ

⎞
⎟⎟⎠ �→

⎧⎪⎪⎨
⎪⎪⎩

αi + a + (i − 1)d
β j + b + ( j − 1)d

γi+ j−1 + c − (i + j − 2)d
δ − a − b − c

⎫⎪⎪⎬
⎪⎪⎭

, (5)

where a, b, c and d are arbitrary constants. The parameter µ is a function of θ , which is invariant to g;
that is, µ(θ ) = µ{g(θ )}. Based on invariance arguments such as those in Cox & Hinkley (1974, § 5·3),
Theorem 1 shows that ξ is a maximal invariant function of θ under g.

The assigned parameter θ can be constructed from ξ using (5). For instance, if we choose α1 = β1 =
γ1 = γ2 = 0, then θ can be computed from ξ as

αi = (i − 1)(µ21 − µ11) +
i∑

t=3

t∑
s=3

�2αs,
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β j = ( j − 1)(µ12 − µ11) +
j∑

t=3

t∑
s=3

�2βs,

γi+ j−1 =
i+ j−1∑

t=3

t∑
s=3

�2γs,

δ = µ11.

Formula (2) shows that these components add up to µi j . If other values for α1, β1, γ1 and γ2 are desired,
corresponding linear trends can be added as set out in (5) by choosing appropriate values of levels a, b
and c and slope d.

Since we can choose a, b, c and d arbitrarily, interpretation of the original parameters αi , β j and γi+ j−1

is difficult. The visual impression of the parameters αi , β j and γi+ j−1 will depend on the choice of a, b, c
and d. For instance, if we vary d, a plot of the αi -parameters can appear to be increasing or decreasing.
Correspondingly the level, and hence the sign, of the first differences �αi is arbitrary. However, the second
differences �2αi , �2β j and �2γi+ j−1 do have a unique interpretation. The interpretation of such second
differences, or accelerations, is standard in time-series analysis. Likewise, any forecasting can be done
more safely on the second differences rather than the levels. In applications, it would therefore be helpful
to make graphs of the second differences.

In some applications the components αi , β j , γi+ j−1 and δ themselves are unimportant, whereas the
original parameters µi j are of main interest. Plots of the parameters µi j will be meaningful as µi j is a
function of ξ via (2) and (3), and it is therefore identified. An example is when the objective of interest is
to forecast how many children there will be in different grades in the school system in the year 2010. In
that case, let i be cohort and j be age, and plot µi j as a function of either age or cohort such that the period
is i + j − 1 = 2010. Other examples could be how mortality of people of age 80 varies with either the
period or the cohort, or how mortality of people born in 1930 varies with either period or age. Similarly,
in insurance the intrinsic issue is to predict outstanding claims relating to a given accident year rather than
to forecast the calendar parameters γk , say.

3. THE ROLE OF INITIAL POINTS

The choice of canonical parameterization is not unique. Any bijective mapping of ξ would also identify
µ exactly. In particular, the three initial points in ξ given by (4) can be replaced by another set of three
points without changing the content of Theorem 1.

The argument for changing the initial points is based on a manipulation of equation (2). It is convenient
to introduce the matrix notation

Y =
⎛
⎝

µi1 j1
µi2 j2
µi3 j3

⎞
⎠ , X =

⎛
⎝

µ11

µ21 − µ11

µ12 − µ11

⎞
⎠ , A =

⎛
⎝

ai1 j1
ai2 j2
ai3 j3

⎞
⎠ , B =

⎛
⎝

bi1 j1
bi2 j2
bi3 j3

⎞
⎠ ,

with ai j as in formula (3) and bi j = (1, i − 1, j − 1). With this notation, it holds from (2) that

Y = B X + A, (6)

which can be solved for X when B is invertible. We find that B is invertible when det(B) = i2 j3 − i3 j2 +
i3 j1 − i1 j3 + i1 j2 − i2 j1 is different from zero. As a consequence, X can be replaced by Y , which gives a
new canonical parameter,

ξ = (
µi1 j1 , µi2 j2 , µi3 j3 ,�

2α3, . . . ,�
2αk,�

2β3, . . . ,�
2βk,�

2γ3, . . . ,�
2γ2k−1

)
. (7)

The following corollary to Theorem 1 holds.

COROLLARY 1. Suppose µi j satisfies (1) on a square index set I and consider the parameter ξ given by
(7). If the matrix B is invertible, then the conclusions of Theorem 1 remain true.

 at U
niversity of W

ashington on M
arch 13, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/
http://biomet.oxfordjournals.org/


Miscellanea 983

A design matrix can be constructed from ξ as given by (7). This is done by combining (6) and (2). This
shows that, for all (i, j) ∈ I , it holds that

µi j = bi j X + ai j = bi j B−1Y + (
ai j − bi j B−1 A

)
, (8)

which is a linear function of ξ as defined in (7). The inverse of the matrix B is given by

B−1 = 1

det(B)

⎛
⎜⎜⎝

{(i2 − 1)( j3 − j2)
−(i3 − i2)( j2 − 1)}

{(i1 − 1)( j1 − j3)
−(i1 − i3)( j1 − 1)}

{(i1 − 1)( j2 − j1)
−(i2 − i1)( j1 − 1)}

j2 − j3 j3 − j1 j1 − j2
i3 − i2 i1 − i3 i2 − i1

⎞
⎟⎟⎠ .

4. IDENTIFICATION FOR GENERAL INDEX SETS

In many situations, the parameterization (1) has an index set which is not a square as considered in § 2.
For instance, I can be a parallelogram in a Lexis diagram, or a simplex in an insurance run-off triangle.
More generally, I could be any irregular shape, with one or more missing points. It is therefore useful to
construct a canonical parameterization for (1) with a non-square index set.

A convenient generalization of the square index sets is index sets of rectangular shapes, where the period
i + j − 1 can be constrained to a certain interval. We will call such index sets generalized trapezoids and
give a precise definition below. With such index sets it is immediately clear how to define a canonical
parameterization from knowing the dimensions of the generalized trapezoid. The generalized trapezoid
covers the most important situations encountered in practice, namely the three types of Lexis diagram and
the insurance run-off triangle.

DEFINITION 2. The index set I is a generalized trapezoid if, for some l, k, m ∈ N, h ∈ N0, and h +
m � l + k − 1, then

I = {(i, j): i = 1, . . . , k, j = 1, . . . , l, i + j − 1 = h + 1, . . . , h + m}.
In the following, we illustrate with diagrams some applications of the general trapezoid. Figure 1(a)–(c)

shows examples of the three types of Lexis diagram discussed by Keiding (1990). The first principal set
of dead gives a rectangular index set, whereas the second and third principal sets of dead are trapezoids.
Figure 1(d) gives an example of an insurance run-off triangle as discussed by Zehnwirth (1994) and Barnett
& Zehnwirth (2000).

For every generalized trapezoid I , we define the canonical parameter ξ from the dimensions l, k, m and
h by restricting the three time scales; that is,

ξ = (
µi1, j1 , µi2, j2 , µi3, j3 ,�

2α3, . . . ,�
2αk,�

2β3, . . . , �
2βl,�

2γh+3, . . . ,�
2γh+m

)
, (9)

where (i1, j1), (i2, j2), (i3, j3) ∈ I and satisfy det(B) � 0. The following corollary to Theorem 1 then holds.

COROLLARY 2. Suppose µi j satisfies (1) on a generalized trapezoid index set I and consider the
parameter ξ given by (9). If the matrix B is invertible, then Theorem 1 remains true.

Corollary 2 is proved by analyzing formula (8) and showing that the terms �2γ3, . . . ,�
2γh+2 are not

needed. To see this, we isolate the �2γ terms in ai j of (8), that is
∑i+ j−1

s=3 (i + j − s)�2γs = ∑i+ j
s=3(i +

j − s)�2γs . It is then seen that �2γs with index s < h + 3 is weighted by

ws = (i + j − s) − bi j B−1(i1 + j1 − s, i2 + j2 − s, i3 + j3 − s)′.

The last vector can easily be written in terms of the matrix B, giving

ws = (i + j − s) − (1, i − 1, j − 1)B−1 B(2 − s, 1, 1)′ = 0.

A design matrix can be constructed from ξ as given by (9). As in § 3, this is done di-
rectly from formula (8). The design matrix has a number of zero elements; for instance, we can
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Fig. 1. Panels (a)–(c) show Lexis diagrams for first, second and
third, respectively, principal sets of dead. Panel (d) shows an

insurance run-off triangle.

show that �2γh+3, . . . ,�
2γh+p, with p � 3, has weight zero if i1 + j1 − 1, i2 + j2 − 1, i3 + j3 − 1

and also i + j − 1 are all larger than h + p, following a procedure similar to the proof of
Corollary 2.

Corollary 2 gives a sufficient condition only for the type of index set in which ξ in (9) is a canonical
parameterization. Figure 2(a) shows an example of an index set which is not a generalized trapezoid.
Figure 2(b) shows an extended index set which is a generalized trapezoid. Corollary 2 gives a canonical
parameter ξ for the latter set. This parameter ξ is also a canonical parameter for the original set. To see
this, we decompose ξ into elements ξ6 say, related to the 3 × 3 simplex and the second differences �2β4,
�2γ4 and �2γ5. It turns out that there is a bijective mapping from those three elements to µ14, µ24 and
µ33, which can be formulated as

⎛
⎝

µ14

µ24

µ33

⎞
⎠ =

⎛
⎝

1 1 0
1 2 1
0 2 1

⎞
⎠

⎛
⎝

�2β4

�2γ4

�2γ5

⎞
⎠ + f (ξ6),

where f (·) contains some functions of ξ6. The design matrix here has rank three. However, if any one of
the three points µ14, µ24 and µ33 is missing, ξ would be overparameterized.

In Fig. 2(c), a canonical parameter for a general index set was found by extending the set to a generalized
trapezoid. However, this strategy will not work in general, as shown by Figs. 2(c) and (d). In Fig. 2(c),
the index set has four points. By adding the point µ22, we obtain a generalized trapezoid with canonical
parameter ξ of dimension five, which overparameterizes the original set. In the second, the same occurs
when µ21 is added.

5. DISCUSSION

While the canonical parameter is indeed unique, its interpretations are in terms of accelerations, which
can be somewhat complicated to communicate. The level parameters αi , β j and γi+ j−1 are not unique,
and their plots can be visually misleading as they evolve around arbitrarily chosen linear trends. In some
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Fig. 2. Panel (a) shows an index set which is not a generalized
trapezoid. This set is extended to a generalized trapezoid in
panel (b). The sets in panels (a) and (b) have the same canonical
parameter. Panels (c) and (d) show examples of sets which are
not generalized trapezoids and for which the associated gener-
alized trapezoid has a canonical parameter of larger dimension

than the set itself.

applications, one could instead communicate plots of the original parameter µi j for a fixed value of i , j or
i + j − 1.

Another sufficient condition for the permissible index sets can be based on a recursive argument. First,
find a set Ik ⊂ I , which is a generalized trapezoid with canonical parameter ξk . Then add a point (i, j) ∈
I \ Ik to Ik if it introduces at most one double difference that is not in ξk . Thus, Ik+1 = {Ik

⋃
(i, j)} ⊆ I

is exactly identified by ξk+1. Figure 2(a) shows a set that cannot be obtained by this one-step recursive
scheme, but by adding three points, (1, 4), (2, 4) and (3, 3), to the identifiable 3 × 3 simplex.
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APPENDIX

Proof of Theorem 1

Theorem 1 is proven by induction using formula (2).
As a preliminary step, consider the first two diagonals, i.e. the initial three elements. If one of µ

†
11 � µ

‡
11,

µ
†
12 � µ

‡
12 or µ

†
21 � µ

‡
21 holds, then the statement is true.

Then, to initialize the argument, consider the third diagonal. If µ
†
11 = µ

‡
11, µ

†
12 = µ

‡
12 and µ

†
21 = µ

‡
21,

but �2γ
†
3 � �2γ

‡
3 , then µ

†
22 � µ

‡
22 by formula (2).

If µ
†
11 = µ

‡
11, µ

†
21 = µ

‡
21, µ

†
12 = µ

‡
12 and �2γ

†
3 = �2γ

‡
3 , but �2β

†
3 � �2β

‡
3 or �2α

†
3 � �2α

‡
3 , then

µ
†
1,3 � µ

‡
1,3 or µ

†
3,1 � µ

‡
3,1 by formula (2).
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For the induction step, consider the diagonal (r + 1), where r + 1 = 4, . . . , 2k − 1. Assume that µ
†
11 =

µ
‡
11, µ

†
12 = µ

‡
12 and µ

†
21 = µ

‡
21, and, for s = 3, . . . , r , that �2γ †

s = �2γ ‡
s , �2β†

s = �2β‡
s and �2α†

s =
�2α‡

s but �2γ
†
r+1 � �2γ

‡
r+1. Then µ

†
2,r � µ

‡
2,r by formula (2).

We then can show that µ
†
11 = µ

‡
11, µ†

12 = µ
‡
12 and µ

†
21 = µ

‡
21, for s = 3, . . . , r , �2γ †

s = �2γ ‡
s , �2β†

s =
�2β‡

s , �2α†
s = �2α‡

s , �2γ
†
r+1 = �2γ

‡
r+1, but �2β

†
r+1 � �2β

‡
r+1 or �2α

†
r+1 � �2α

‡
r+1. Then we have

µ
†
1,r+1 � µ

‡
1,r+1 or µ

†
r+1,1 � µ

‡
r+1,1 by formula (2).
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