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BIOMETRICS 39, 311-324 
June 1983 

The Estimation of Age, Period and 
Cohort Effects for Vital Rates 

Theodore R. Holford 
Department of Epidemiology and Public Health, School of Medicine, Yale University, 

New Haven, Connecticut 06510, U.S.A. 

SUMMARY 

In models for vital rates which include effects due to age, period and cohort, there is aliasing due to a 
linear dependence among these three factors. This dependence arises both when age and period intervals 
are equal and when they are not. One solution to the dependence is to set an arbitrary constraint on the 
parameters. Estimable functions of the parameters are invariant to the particular constraint applied. 
For evenly spaced intervals, deviations from linearity are estimable but only a linear function of the 
three slopes is estimable. When age and period intervals have different widths, further aliasing occurs. 
It is assumed that the number of deaths in the numerator of the rate equation has a Poisson distribution. 
The calculations are illustrated with data on mortality from prostate cancer among nonwhites in the 
U.S. 

1. Introduction 
Time trends of incidence and mortality rates for a particular disease often provide an 
epidemiologist with important clues for disease etiology. Three time factors which are often 
considered in such an investigation are: (i) age; (ii) date of diagnosis, which we call 'period'; 
and (iii) date of birth, or 'cohort'. Various combinations of these three factors may be 
considered, and sometimes one combination provides a particularly clear summary of the 
data. 

Frost (1939) considered the implications of these three factors on mortality rates from 
tuberculosis in Massachusetts. Using a graphical approach, he found that the age and cohort 
factors provided a consistent pattern in the trends, which was not apparent for the age and 
period factors. This approach was described further by Case (1956) but the technique 
remained a graphical one and the contributions of factors were determined visually. 

While a plot provides an excellent first step in the analysis of such data, it does not provide 
a simple summary of the results. Model fitting can yield useful summaries of the data in 
terms of parameters in the model. However, a number of authors including Sacher (1960), 
Barrett (1973, 1978) and Fienberg and Mason (1979) have pointed out that arbitrary 
constraints must be applied when considering all three factors simultaneously. We shall 
discuss estimable functions of the parameters which are invariant as to the particular 
constraint applied. 

Other examples of age-period-cohort analysis are found in sociology. Fienberg and Mason 
(1979), for example, considered the proportion of individuals finishing high school in the 
U.S. We shall use data on mortality from prostate cancer in the U.S. from 1935 to 1969 to 
illustrate the calculations. 

2. Equally Spaced Age and Period Intervals 
The data to be considered are a set of age-specific rates given for several periods of time. It 
is assumed in this section that the interval widths for age and period are equal, thus if periods 
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are divided into five-year intervals, so is age. Age groups are represented by i (= 1, . . . , I) and 
periods by j (= 1, . .. , J). The birth cohort is defined by the age of a subject and the date of 
occurrence of the event of interest. Because age and period are expressed as intervals, the 
birth cohorts are intervals as well, but may be longer and may overlap to some extent. For 
example, if we have five-year age and period intervals, then individuals aged 50-54 who died 
during the period 1960-1964 were born sometime during the years 1905-1914. Similarly, 
individuals aged 55-59 belong to the 1910-1919 cohort which overlaps the previous cohort. 
We shall refer to a particular cohort by the index k (= 1, . . . , K), and this is related to age and 
period indices by 

k =j+I-i. (2.1) 

The rates for Age i, Period j and Cohort k are A ik = mijk/ Tijk, where mijk is the expected 
number for the numerator of our rate, and Tik represents the person-years experience which 
is known. In practice, we often use the midperiod population which in most practical 
applications can be regarded as proportional to person-years experience. The observed 
number of events is represented by nijk and we shall regard these observed numbers as arising 
from a Poisson distribution (Armitage, 1966) with mean mijk. 

In the model that we shall use, it is assumed that each factor has an additive effect on the 
log rate, 

log XAk = p + ai + a j + yk, (2.2) 

where the age effects are represented by ai, the period effects by ,7j, and the cohort effects by 
Yk. We shall apply the usual constraints >i ai = >i ,r1 = Sk Yk = 0. Sacher (1960), Barrett 
(1973, 1978) and Fienberg and Mason (1979) have pointed out that yet another constraint is 
necessary due to the linear relationship between i, j and k given in (2.1). Hence, if both age 
and cohort effects are in the model, the number of degrees of freedom for testing Ho: 7j = 0 
for all is J - 2, instead of the usual J - 1. Similar changes occur for tests of the age and 
cohort effects. 

Because of the interdependency that occurs when age, period and cohort effects are 
considered simultaneously, a generalized inverse must be used in solving the set of normal 
equations that provide maximum likelihood estimators. The particular generalized inverse 
does not influence the significance test for parameters, but the arbitrary selection of the 
inverse can have a large effect on the parameters themselves. One solution is to choose a 
model with only two of the effects incorporated, for example, an age-period model or an 
age-cohort model (Baltes, 1968). Day and Charney (1981) have described a modification of 
this approach, which calls for simultaneous consideration of data from several sources when 
selecting a best subset model. 

Simultaneous estimation of age, period and cohort effects has been described by Barrett 
(1973, 1978) and Fienberg and Mason (1979). These methods introduce an arbitrary restriction 
on the parameters, in that two of the effects are equated. Ideally the investigator should have 
a valid reason for this restriction, but it necessarily must be derived from outside the data, 
which may not be possible. In the remainder of this section we shall consider estimable 
functions of the effects, which are invariant with respect to the particular generalized inverse 
selected. Hence, these functions will not depend on the particular constraint used. 

2.1 Parameterization for Time Effects 

One method of characterizing the effects of an interval variable like time is to describe the 
trend in two components: linear trend and curvature or deviations from linearity. To illustrate, 
let us consider the factor 'age' represented by the effects ai (Miai = 0). The linear trend can 
be described by the contrast 

atL =C>L Cii (2.3) 
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Table 1 
Design matrix for equally spaced age and period intervals I = J = 3 

i j k AC PC Cc AL PL CL 

1 1 3 1 1 -2 0 6 -1 -1 0 
2 4 1 -2 -1 -2 -4 -1 0 1 
3 5 1 1 2 1 1 -1 1 2 

2 1 2 -2 1 -1 2 -4 0 -1 -1 
2 3 -2 -2 -2 0 6 0 0 0 
3 4 -2 1 -1 -2 -4 0 1 1 

3 1 1 1 1 2 -1 1 1 -1 -2 
2 2 1 -2 -1 2 -4 1 0 -1 
3 3 1 1 -2 0 6 1 1 0 

where ci = i - II- I and C = c ) l. The curvature component is given by the age effects 
with the linear trend removed. 

5i = ai - ciaL. (2.4) 

In order to parameterize these two components we partition the age columns of the design 
matrix into these components. For linear age we use AL(i) = ci, and for curvature we use 
A c(i) (1 = 1, . . ., I - 2), where the A0c are orthogonal to the AL, i.e. EiAL(i)Acl(i) = 0. The 
curvature components may be found by using second- and higher-order orthogonal poly- 
nomials or by the methods given in the Appendix. In all cases, the curvature parameters are 
given by 

Ji = E Aci(i)aci, 

where adc represents the parameter associated with Column Acl(.) of the design matrix. 
Clearly the &i have the linear trend removed since ZiAL (i)&i = 0. In a similar manner we 
partition the columns for period effects by using PL and Pc and for cohort effects by using CL 
and Cc; this yields the parameters rL, rc, YL and yc, respectively. 

Using this parameterization we form the overall design matrix for the data, 

X = (1 AcPcCcALPLCL), (2.5) 

where the row contains the regressor variables for the appropriate combination of i, j and k. 
Parameters corresponding to this design matrix are = (p, av', T, yI , LL, rYL). The 
matrix in (2.5) is not of full column rank because, from (2.1), we see that 

CL = PL - AL. (2.6) 

Hence, the solution must employ generalized inverses. 
As an example, consider the simple case where there are three age and period groups 

(I = J = 3), giving K = 5. If we use orthogonal polynomials of degree greater than one 
(Fisher and Yates, 1963) to represent the curvature component then the design matrix is that 
given in Table 1. 

2.2 Estimable Functions of Parameters 

Using the definition given by Searle (1971, ?5.4), we say that the linear function, q'fl, of our 
parameters is estimable if q'fl = t log X for any t, where log X is our vector of log rates. The 
property of particular interest here is the invariance of estimable functions to the particular 
parameterization used. It we use least squares, estimable functions are also best linear 
unbiased estimates (BLUEs) but if we use maximum likelihood estimators for Poisson 
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random variables this property is not relevant. In order to test for estimability, it is sufficient 
to see if q'H = q, where H = G X'X, and where G is a generalized inverse of X'X (Searle, 
1971, p. 185). 

For our design matrix (2.5) we have identified the linear dependency among the last three 
columns; hence, we form the partition, X = (X1. CL). The upper left-hand portion of 

X1 X1: X1 CL 
X'X=_ I__ 

C X1 CL CL 
has a simple inverse; hence, we may use the generalized inverse 

(XI X1)-l1O 
G=_[____T_ 

0 0 

which gives 

trc L(x1i 

1X CL 

The upper right-hand portion of H has the same form as the parameter estimates that can be 
used to predict CL from X1. Using the linear dependency in (2.6), 
we find 

H= 1 0 (2.7) 

To test whether the linear trend with age is estimable we use q' = (0 ... 0 1 0 0) and 
q'H = (O ... 0 1 0 1) + q'. Hence, linear trend with age is not an estimable function; similarly 
we can show that linear trends with period and cohort are not estimable, as demonstrated by 
Fienberg and Mason (1979). On the other hand, aL + 'TL is estimable, and in general any 
function of the three linear components which has the form di aL + d2 'TL + (d2- dl )yL with 
arbitrary di and d2 is estimable. For curvature components, any linear function given by 
(q *', 0 0 O)fl with arbitrary q * is estimable. 

2.3 Example 

To illustrate the calculations we consider data on prostate cancer mortality among nonwhites 
in the U.S. from 1935 to 1969; these data have also been discussed by Ernster, Selvin and 
Winkelstein (1978). For comparison, in the figures we show results of similar analyses of 
whites. The data presented in Table 2 give the number of prostate cancer deaths (National 
Center for Health Statistics, 1937-1973) and the estimated midperiod population for the 
period 1935-1960 (Grove and Hetzel, 1968) and for 1960-1969 (Bureau of the Census, 1974). 
A simple summary of these data is provided by the direct adjusted rates, shown in Fig. 1, 
which use the total male population for 1950 as the standard. Of some concern is the steady 
increase in deaths for nonwhites which contrasts with a modest decline for whites over the 
same period. 
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Table 2 
Number of prostate cancer deaths and midperiod population for nonwhites in the U.S. by age and period 

Period 
Age 

1935- 1940- 1945- 1950- 1955- 1960- 1965- 

Prostate cancer deaths 
50- 177 271 312 382 321 305 308 
55- 262 350 552 620 714 649 738 
60- 360 479 644 949 932 1292 1327 
65- 409 544 812 1150 1668 1958 2153 
70- 328 509 763 1097 1593 2039 2433 
75- 222 359 584 845 1192 1638 2068 
80- 108 178 285 475 742 992 1374 

Midperiod population (X 103) 
50- 301 317 353 395 426 473 498 
55- 212 248 279 301 358 411 443 
60- 159 194 222 222 258 304 341 
65- 132 144 169 210 230 264 297 
70- 76 94 110 125 149 180 197 
75- 37 47 59 71 91 108 118 
80- 19 22 32 39 44 56 66 

The cohort intervals for the data in Table 2 are 1850-1860, 1855-1865, 1860-1870, ... . 
1910-1920, which shall be referred to by their midpoints, 1855, 1860, 1865, ..., 1915. 

A summary of the results of fitting models to these data is given by the likelihood-ratio 
statistic, G2, in Table 3. Because age is well-recognized as an important factor in cancer we 
do not consider models that exclude the age effect but, in principle, the need for age could 
also be evaluated. All of the chi square values given in Table 3 are significant at the .001 
level; this is partly due to the large numbers of deaths which enable us to detect even small 
departures from the model. The proportion of the lack of fit that is not explained by age is 
high for the age-period-cohort and age-cohort models, as shown by RA. In fact, when we 
compare the observed and fitted rates (Fig. 2) we see that even the age-cohort model provides 
a satisfactory fit to the data. 

600 
Non-white 

500- 

0 400- 

/ .....White 

4' 300- ........... 

200 

1935- 1945- 1955- 1965- 

Period 
Figure 1. Age-standardized mortality rates for prostate cancer in the U.S. by race. 
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Table 3 
Summary chi square of age (A), period (P) and cohort (C) models for data in Table 2 

Model df G2 R Adf A G2 Effect 

A, P, C 25 98.91 0.97 5 28.47 PjA, C 
11 622.52 CIA, P 

A, P 36 721.43 0.75 6 2191.92 PIA 
A, C 30 127.38 0.96 12 2785.97 CIA 
A 42 2913.35 

Parameters derived from fitting the age-cohort model for nonwhites are shown in Table 4. 
This table would provide an adequate summary of the data when a subset of the factors is 
used. However, we might instead consider all three factors together so that our parameters 
will reflect any possible adjustment for the period effects. The estimable functions are the 
deviations from linearity shown in Table 4 for age and cohort effects. We might also choose 
to include a linear component, but here we run into the estimability problem and we must 
make an arbitrary choice. One possibility is to assume that period is linear, 'TL = 0. In this 
case the linear age is actually an estimate of aL + TTL, while the linear cohort is an estimate 
of YL + TTL. Hence, the linear age and cohort parameters are biased by whatever that true 
value of 'TL happens to be. By adding the linear contributions shown in Table 4, we obtain 
effects similar to the age-cohort model. The advantage of these estimates is that they provide 
an adjustment for any deviations from linearity due to period. 

A plot of the cohort effects is shown in Fig. 3. This suggests that in recent cohorts there is 
actually a decline in prostate cancer deaths for nonwhites. In fact, the main difference in the 
pattern of cohort effects between the races appears to be that whites exhibit a peak about 

o6 . 2000 

'C x ~~~~~~~1000 

5 300 CD 

1860 1870 3 0 1 
0 
0 

200 
CD~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 

-0 5 - ~ ~ ~ Coor 

F100 

50 

1860 1870 1880 1890 1900 1910 
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Table 4 
Age and cohort effects for age-cohort and age-period-cohort model 

Age-period-cohort 
Group Age-cohort Deviation 

Deviation + linear 
Age: 50- -1.97 -0.242 -1.99 

55- -1.15 0.001 -1.17 
60- -0.42 0.162 -0.42 
65- 0.17 0.167 0.17 
70- 0.72 0.145 0.73 
75- 1.17 0.013 1.18 
80- 1.49 -0.245 1.51 

aL + VTiL 0.584 

Cohort: 1855 -1.07 -0.376 -1.07 
1860 -0.70 -0.125 -0.70 
1865 -0.54 -0.092 -0.55 
1870 -0.29 0.028 -0.32 
1875 -0.06 0.141 -0.09 
1880 0.09 0.172 0.06 
1885 0.24 0.223 0.22 
1890 0.44 0.320 0.44 
1895 0.49 0.258 0.49 
1900 0.53 0.192 0.54 
1905 0.40 -0.039 0.42 
1910 0.30 -0.230 0.35 
1915 0.17 -0.470 0.22 

YL + 7'TL 0.115 

30 years earlier than nonwhites. For period we obtain deviations from linear parameters 
(-0.025, -0.022, 0.015, 0.054, 0.028, -0.023, -0.028) for nonwhites which are plotted in Fig. 
4, together with values for whites. For nonwhites we note that while the magnitudes of the 
effects are small, their pattern tends to be concave downward. The cohort and period effects 
taken together suggest an improvement in the prostate cancer mortality rates for nonwhites; 

1.0 - 

Non- white 

0.5 - 
White 

. 0.0 - | 

LU 

-0.5 - 

-1.0- 

-1.5- 1860 1870 1880 1890 1900 1910 

Cohort 
Figure 3. Cohort effects from the age-period-cohort model by race. 
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0.06 

0.04 - ? 

-0.02 - on-White 

-0.02- a di," 9\ 

,/ 

-0.04- 
1935- 1945- 1955- 1965- 

Period 
Figure 4. Period effects from the age-period-cohort model by race. 

this is very different from the picture presented by the direct adjusted rates. If present trends 
continue, one would expect the improvement to be reflected ultimately in the age-standardized 
rates. 

3. Balanced Unequally Spaced Intervals 

Sometimes the age intervals are not equal to the period intervals. For example, rates may be 
reported for 10-year periods and five-year age intervals. In this section we shall consider the 
case in which period intervals are R times wider than age intervals. The case in which age 
intervals are wider than period intervals presents no new problems so it will not be discussed. 

A change of one unit for the period index j (= 1, . . ., J) represents a length of time equal 
to a change in age of R units. We shall divide age into groups for reference purposes and refer 
to a particular age interval by the double index (i, r), where i = 1, . . ., I and r = 1, . . ., R. 
The design we shall consider is balanced, so the total number of age intervals is IR. This 
grouping of age intervals also applies to cohort intervals, which are represented by (k, r) 
where= 1,. . .,Kandr= 1,. . .,R. As before, we have 

k=j+I- i; (3.1) 

and in Table 5, an example is given of these indices when I = J = 3 and R = 2. It is important 
to notice that under this indexing system we go from lower to higher age intervals as we 
increase first r then i. However, the sequence of cohorts is obtained by a decrement of r and 
an increment of k. 

Serendipity might have resulted in the estimability problem vanishing with this change in 
design, but this is hardly the case. As was pointed out by Fienberg and Mason (1979), we 
retain the old difficulty and bring in yet another. Hence, we shall parameterize the factors 
affected by the grouping, in this case age and cohort, somewhat differently than in ?2. 

3.1 Parameterization of Grouped Time Effects 

The grouping of the age and cohort intervals must be taken into account in the parameteri- 
zation. We break down the effect of each of these factors into four components: (i) subgroup, 
(ii) linearity, (iii) parallelism, (iv) subgroup curvature. 
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Table 5 
Cohort indices for unequally spaced age and 
period intervals where I = J = 3 and R = 2 

Period 
Age 

1 2 3 

(1, 1) (3, 1) (4, 1) (5, 1) 
(1, 2) (3, 2) (4, 2) (5, 2) 
(2, 1) (2, 1) (3, 1) (4, 1) 
(2, 2) (2, 2) (3, 2) (4, 2) 
(3, 1) (1, 1) (2, 1) (3, 1) 
(3, 2) (1, 2) (2, 2) (3' 2) 

For age, the subgroup variable is defined by 

AGh(i, r)= -1, h R, 
A r { otherwise, (3.2) 

for h = 1, ..., R - 1. The linear trend among age groups is given by AL (i, r) = i - -; 
however, because we have an ordering on the subgroups as well, it is more natural to use 

AL(i, r) = R(i - I- ) + (r - R-) (3.3) 
which involves the ordering among all age intervals. The quantity in (3.3) is a linear function 
of A* (i, r) and AGh (i, r), so in our design matrix we will only include columns defined in (3.2) 
and (3.3). 

Parallelism terms are given by 

Aph(i, r) = AGh(i, r)A (i, r) 

A(i, r), h = r, 
-Aj(i, r), h = R, 
L0 otherwise, (3.4) 

where h = 1, ..., R - 1. These terms are orthogonal to the group, as well as to the linear 
terms, in that Ei'rAL(i, r)Aph(i, r) = Ei,,-AGh(i, r)Aph(i, r) = 0. 

Finally, we define the subgroup curvature component by 

Ach~ir) fAc1(i), h = r 
Ach(i, r) ={O otherwise, (35) 

where h = , ...,R i=, .. ., I - 2, and Acl(i) is defined to be orthogonal to the linear 
component as in ?2. 

Hence, we have split up the IR- 1 degrees of freedom (df) for age into contributions due 
to 

Source df 

Group R-I 
Linear I 
Parallelism R-I 
Curvature (I - 2)R . 

Table 6 gives an example of the regressor variables for the case where I = 3 and R = 2. 
The effect due to cohort is broken down in a similar manner to the age effect. The cohort 

group component CGh (i, r) is equal to GGh(i, r). Period, on the other hand, only has linear 
and curvature components, due to the lack of grouping. Because of the relationship among 
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Table 6 
Regressor variables for grouped age when I = 3 and R = 2 

A ~~~~~~~~~~~~~~~~Curvature 
nAg Group Linear Parallelism interval 1 2 
(1, 1) -1 -2.5 1 1 0 
(1, 2) 1 -1.5 -1 0 1 
(2, 1) -1 -0.5 0 -2 0 
(2, 2) 1 0.5 0 0 -2 
(3, 1) -1 1.5 -1 1 0 
(3, 2) 1 2.5 1 0 1 

indices given in (3.1), the grouped linear components are related by 

CL= PL - AL (3.6a) 
and 

CL =RPL - AL. (3.6b) 
The entire design matrix is given by 

X = (1 AcPPcCcP! ALPLCL AG! CG), (3.7) 
where Acp and Ccp are matrices which include both curvature and parallelism components. 
Corresponding parameters are 

= (~ GCP7TCc cP AL'XLyLaG GG) 

To summarize the deviation from linearity for age, we use Acpacp which is orthogonal to a 
linear age trend as well as to groups. Cohort deviations from linearity are found in a similar 
way. 

3.2 Estimable Functions of Parameters 
To find estimable functions of parameters we partition the design matrix X as shown in (3.7). 
Using the method outlined in ?2.2, we find 

I: 0 0 0 

_ _ -I _ _ -_ _ _ _ _ _ _ _I- 
0 0 1 ?- 0 0 

0 0 0 I I 
_ I I I 

Once again we see that none of the linear trends are estimable, but we can estimate 
d1 RaL + d27TL + (d2- dl )RyL for arbitrary di and d2. However, we cannot estimate the group 
coefficients for either age (aGh, h = 1, . .., R - 1) or cohort (YGh, h = 1, . . ., R - 1): we can 
only estimate the difference, aGh - YGh. The latter estimability problem arises not only for a 
model which includes all three effects but also for the subset model which includes only age 
and cohort effects. 

3.3 Example 
To illustrate the models considered for unequally spaced intervals we shall use the data in 
Table 2 and modify it by dropping the period 1935-1939 and the age group 80-84. For the 
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Table 7 
Summary chi square of age (A), period (P) and cohort (C) models for unequally spaced intervals 
Model df G RA Adf A G2 Effect 

A, P, C 3 13.66 0.99 1 14.30 PIA, C 
7 409.40 CIA, P 

A, P 10 423.06 0.68 2 899.39 PIA 
A, C 4 27.96 0.98 8 1294.49 CIA 
A 12 1322.45 

remaining data we sum the cells for adjacent periods, which leaves us with data for 10-year 
periods (1940-1949, 1950-1959, 1960-1969). In the modified data we group age and cohort 
by twos (R = 2) and by the number of possible levels for age groups and periods (I = J = 3). 
Hence, the relationship among indices is as shown in Table 5. This modification of the 
original observations effectively throws away some of the data and is only made here to show 
the computations involved if just the reduced data were available. 

A summary of the likelihood-ratio chi square is given in Table 7; it shows a significant lack 
of fit for the age-period-cohort model (p < .01) but the RA is nearly 1 so the model does 
account for a great deal of the variability. Table 8 gives a summary of the deviations from 
linearity for all three factors. The coefficient of the subgroup variable is not included here, 
resulting in the sum of the odd and even deviations for both age and cohort being 0. 

Estimates of linear trends are &L + '7L = 0.6252 and YL + 7'TL = 0.0717. If any period linear 
trend is ignored, the trends shown in Table 8 are obtained. A plot of the age trends is shown 
in Fig. 5. 

A final parameter gives aG - YG = 0.0010 which is an estimable function of the subgroup 
parameters. The implication of this is that we may set aG = A and iG = A - 0.0010 for an 
arbitrary A. In Fig. 5 we show the effect of this arbitrary parameter on the age effects and we 

Table 8 
Age, period and cohort effects for unequally 
spaced intervals in prostate cancer mortality 

among nonwhites in the U.S. 

Effect Deviation Deviation 
+ linear 

Age: 50- -0.160 -1.72 
55- 0.049 -0.89 
60- 0.118 -0.19 
65- 0.105 0.42 
70- 0.042 0.98 
75- -0.154 1.41 

Period: 1940- -0.017 
1950- 0.033 
1960- -0.017 

Cohort: 1867.5 -0.171 -0.494 
1872.5 -0.149 -0.400 
1877.5 -0.028 -0.208 
1882.5 0.091 -0.016 
1887.5 0.159 0.123 
1892.5 0.219 0.255 
1897.5 0.189 0.296 
1902.5 0.149 0.328 
1907.5 -0.147 0.104 
1912.5 -0.310 0.013 
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Figure 5. Age effects from age-period-cohort model for unequally spaced intervals by zero (solid line) 

and nonzero (broken line) A. 

see that if it is large enough it can induce a saw-tooth shape in the trend. Such a shape seems 
very unnatural, but the dilemma we are in with these data is that such a phenomenon cannot 
be ruled out when the data are in this form. Our summary in Table 8 effectively assumes that 
the contribution of groups is 0, which to some extent oversmooths the trend. The fact that our 
estimate of aG - YG is small indicates that whatever group effect does exist, there would need 
to be a corresponding cancelling out between age and cohort, which is implausible. 

4. Discussion 

A model which assumes that, on some scale, there is an additive effect due to age, period and 
cohort is in itself arbitrary. We might instead have considered interactions, but in fact if we 
look at interactions among any two factors, the third factor spans a subspace of that 
interaction space. One view of this model is that it is between a two-factor main effect model 
and a model that includes all interaction terms which would be saturated. In some instances 
a simpler summary of the data might be obtained by using a two-factor model with 
interactions. 

The models fitted here require a generalized inverse for their solution and so an arbitrary 
constraint must be used. Barrett (1973, 1978) and Fienberg and Mason (1979) suggested 
equating certain parameters; this would introduce an arbitrary element which can have a 
large effect on the parameter estimates and their trend. L. L. Kupper and J. M. Janis, in an 
unpublished report (Institute of Statistics, University of North Carolina, Mimeo Series 
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No. 1311, 1980), used principal components to avoid the linear dependence in the design 
matrix and, in effect, to introduce another set of arbitrary constraints. In this paper we have 
identified a set of estimable functions which are invariant to the actual constraints used. 
These functions are not unique, but they have been chosen to give one summary of the results 
which can be easily interpreted. This approach also identifies which component of the 
parameters cannot be estimated. 

In these examples we have used maximum likelihood estimators for the parameters, 
assuming a Poisson error distribution. The significant lack of fit is due primarily to the large 
number of deaths rather than to systematic departures from the model. This is not very 
surprising when dealing with rates in large populations. In such instances, fitting the log rates 
by means of least squares would not be unreasonable. On the other hand, when frequencies 
are not so large, the significance level of the goodness-of-fit statistic would be critical and 
maximum likelihood would be preferable to least squares. 

The conclusions reached by this analysis of the prostate cancer data are substantively 
different from those suggested by the direct adjusted rates. This is another instance where 
summary rates can smooth out important features in the data when the appropriate model 
does not hold (Freeman and Holford, 1980). Model fitting can lead to an understanding of 
the factors that are important, and a better summary of the data can often be obtained by 
using the fitted model. 
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RESUME 

Lorsque les modeles portant sur des statistiques vitales incluent des effects dus a l'age, a la periode et 
a la cohorte, il y a confusion venant de la dependance lineaire entre ces trois facteurs. La dependance 
intervient que les intervalles sur l'age et la periode soient 6gaux ou non. Une solution a 1'6tude de cette 
dependance est d'imposer une contrainte sur les parametres. Les fonctions estimables des parametres ne 
dependent pas de la contrainte particuliere utilisee. Pour des intervalles de temps, on peut estimner-la 
non linearite seulement grace a une fonction lineaire des trois pentes. Quand les intervalles d'age et de 
periode sont differents, d'autres confusions interviennent. On suppose que le nombre de morts au 
numerateur de 1'equation donnant le taux est poissonnien. Les calculs sont illustres a l'aide de donnees 
de mortality due au cancer de la prostate chez les non-blancs des Etats-Unis. 
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APPENDIX 

In order to generate the curvature component of evenly spaced interval variables, we generate a set of 
regressor variables which are orthogonal to the linear trend. One method is to use orthogonal 
polynomials but many tables do not go above a fifth degree so higher-degree terms must be generated 
by a formula. An alternative set of regressors can be found by making the usual analysis-of-variance 
design matrix orthogonal to the linear term. If we have I levels of an equally spaced ordinal variable, 
then the usual regressor variables can be given in a matrix Z, where the ith row and jth column are 
given by 

Zij = -1, i = I, 

0, otherwise 

with i = 1 ... , I and]j = 1 ... , I-1. 
Linear trend can be found by using the column vector L, where 

Li = i - 'I- 
Using the method described by Draper and Smith (1966, p. 156), we can generate a matrix orthogonal 
to L, 

Z* = Z - L(L'L)-1LZ. 

The elements of this matrix are given by 

Mij + 1 i = j 
Z i*j Mij -19 i = I, 

Mij, otherwise, 

where 

Mi. = {-12 Li(Lj- 'I + 1)}/{I(I -1)(I + 1)}. 
To avoid a linear dependency we only use the first I - 2 columns of Z *, denoted by Z . The curvature 
component would be found from Z 0*,B, where I? are the parameters associated with the columns of Z 0*. 
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