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Bayesian Age-Period-Cohort Models
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Bayesian Modeling

A number of authors, beginning with Berzuini et al. (1993), have
carried out Bayesian analyses of APC data, using random walk (RW)
models.

These are popular and are often referred to as nonparametric
smoothing models.

A number of authors have considered various forms of these models
including Berzuini and Clayton (1994), Besag et al. (1995),
Knorr-Held and Rainer (2001), Schmid and Held (2004), Schmid and
Held (2007), Riebler and Held (2010), Riebler et al. (2012a), Riebler
et al. (2012b), Smith and Wakefield (2016), Riebler and Held (2017).

We now discuss RW models in an APC context.
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Random Walk Models for APC Data

One could just take the prior on the factor levels as independent
normals (say), but this is not leveraging the smoothness over the time
scales we expect to see.

It makes sense to use RW2 priors on the three time factors for
smoothness and since (as discussed above) the second differences
(stated for age here)

∆2αa = αa − 2αa−1 + αa−2,

are identifiable (i.e., estimable).
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Bayesian modeling

The Riebler-Held model is:

yap|λap ∼ Poisson(Napλap)

log λap = δ + αa + βp + γA−a+p + zap,

δ ∼ N(mδ, s2
δ),

α|τ2
α ∼ RW2(τ−2

α ), τ2
α ∼ Ga(a1,b1),

β|τ2
β ∼ RW2(τ−2

β ), τ2
β ∼ Ga(a1,b1),

γ|τ2
γ ∼ RW2(τ−2

γ ), τ2
γ ∼ Ga(a1,b1),

zap|τ2
z ∼iid N(0, τ−2

z I), τ2
z ∼ Ga(a2,b2).

The additional unstructured random effect zap allows for
excess-Poisson variation (overdispersion) around the constrained
temporal effects.
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Bayesian modeling

Previous authors using this formulation have imposed sum-to-zero
constraints on the age, period, and cohort effects, but not zero linear
trends (Riebler et al., 2012a).

This makes sense because there are no linear terms in the model
(whereas there is an intercept).

The posterior distributions of Bayesian APC models can be
approximated with MCMC using the stand-alone package BAMP

(Schmid and Held, 2007) and with integrated nested Laplace
approximations (Rue et al., 2009) using the BAPC package (Riebler
and Held, 2015) – the latter is preferred (much faster).

We fit the RW2 prior Bayesian model to the Danish lung cancer data
using the BAPC package.
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Figure 1: Posterior distributions for the precision parameters, τ 2
α, τ 2

β , τ 2
γ , τ 2

z ,
from the BAPC package.
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Figure 2: Posterior distributions for the overdispersion parameters zap, from
the BAPC package.
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Figure 3: Observed and fitted, with interval estimates, from the BAPC package.
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A Bayesian Version of the MNN Parameterization

Smith and Wakefield (2016) develop a Bayesian version of the MMNN
parameterization.

They specify priors directly on θ:

π(ηi1 j1 , ηi2 j2 , ηi3 j3 ) ∝ 1

∆2α3, . . . ,∆
2αA|τ2

α ∼ N(0, τ−2
α I)

∆2β3, . . . ,∆
2βP |τ2

β ∼ N(0, τ−2
β I)

∆2γ3, . . . ,∆
2γA+P−1|τ2

γ ∼ N(0, τ−2
γ I)

with gamma priors on the precisions.

The improper flat prior on the three initial points is because we want
the analysis to be invariant to which set of points we select.
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Forecasting
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Forecasting

Forecasts of mortality or incidence are important for allocating public
resources and evaluating health policies.

Given the identifiability issues, it is desirable to choose a forecasting
method that does not depend on the choice of constraints in an
ad-hoc identification scheme.

Suppose we forecast rates h periods ahead in time for the same set
of age groups.

We require, for the a-th age group,

ηa,P+h = δ + αa + βP+h + γA−a+P+h.

In general, the forecasts depend on projecting the period and cohort
effects ahead by h steps, based on period and cohort effects
estimated from the observed data.
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Forecasting
That is, for some functions fβ and fγ , we require,

βP+h = fβ(β1:P)

and
γA−a+P+h = fγ(γ1:A−a+P).

Table 1 shows what is required to predict 1, 2, 3 periods ahead for
data with A = 5 age groups and P = 5 periods.

For example, for a h = 2 prediction for age group a = 2 at p = 7 we
need to estimate βP+2 = β7 and γA−a+P+2 = γ10.

Period
1 2 3 4 5 6 7 8

5 1 2 3 4 5 6 7 8
4 2 3 4 5 6 7 8 9

Age 3 3 4 5 6 7 8 9 10
2 4 5 6 7 8 9 10 11
1 5 6 7 8 9 10 11 12

Table 1: Illustration of projections required for forecasts at p = 6, 7, 8. 14 / 32



Forecasting

As written, ηa,P+h is a function of non-identifiable effects, and so the
forecasting functions fβ and fγ must be carefully chosen so that

η(g(αa, βP+h, γA−a+P+h, δ)) = η(αa, βP+h, γA−a+P+h, δ).

Two common functions are constant forecasts,

fβ(β1:P) = βP

and linear extrapolation,

fβ(β1:P) = βP + h∆βP .
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Forecasting

In a Bayesian context, constant forecasts arise from a first-order
random walk prior, and linear extrapolation arises from a
second-order random walk prior (Rue and Held, 2005).

Kuang et al. (2008a) show that invariant forecasting functions (i.e.,
functions that give rise to the same forecasts of the log rates
regardless of the chosen constraints) are of the form

fβ(β1:P) = βP + h∆βP + f (∆2β3, . . . ,∆
2βP)

for some function f .

If f (·) = 0, we recover linear extrapolation, but constant forecasts (i.e.,
fβ(β1:P) = βP) cannot fit into this form (and hence are not invariant) —
don’t use RW1 models.

We show forecasts from the BAPC package.
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Figure 4: Observed, fitted and predictions, and then forecasts for the last 4
periods, with the model fitting based on all data but these last 4 periods.
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The Lee-Carter Model
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Lee-Carter Model
The Lee-Carter (LC) model (Lee and Carter, 1992) is a popular
forecasting model.

The basic Poisson LC model is:

Yap|λap ∼ Poisson(Napλap)

log λap = αa + βaκp︸︷︷︸
age-period interaction

+εap

εap ∼iid N(0, σ2
ε )

In this model:
• αa is an overall age-profile, average over the study period,
• a period-specific effect κp,
• βa are adjustments to the period pattern for different age groups,
• constraints are required for identifiability – typically

∑
a βa = 1

and
∑

p κp = 0,
• εa,p allow for overdispersion.
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Lee-Carter Model

The basic idea is to take a time-invariant pattern (κp) and perturb in
am age-specific fashion.

To forecast mortality rates, a random walk has been proposed:

κp = φp + κp−1 + υp

The Poisson extension of the original LC model is due to Brouhns
et al. (2002), with a Bayesian implementation (using MCMC) by
Czado et al. (2005).

20 / 32



Lee-Carter Model Extensions

Renshaw and Haberman (2006) proposed a cohort extension to allow
for both age-specific period trends and age-specific cohort trends –
see the ilc package.

Lee-Carter models can be fitted in the Epi package via the LCa.fit

function.

So far as Bayesian versions are concerned, Wiśniowski et al. (2015)
propose a very general version of the LC model by forecasting the
age patterns of fertility, mortality, immigration, and emigration within a
cohort projection model. For implementation, MCMC is used within
OpenBUGS.

It is not currently possible to implement LC models (or extensions) in
INLA, because the product term of unknown parameters (known as a
bilinear model1) does not satisfy the requirement a latent Gaussian
model.

1A bilinear interaction is where the slope of a regression line for Y and X changes
as a linear function of a third variable, Z
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Concluding Remarks
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APC Models: Concluding Remarks

The medical statistics and demography literatures contain many other
approaches to ‘solving’ the identifiability problem.

For example, Robertson and Boyle (1986) propose an approach
based on the ability to access individual records, but this approach is
based on assumptions also, see Clayton and Schifflers (1987,
p. 477).

The intrinsic estimator approach from demography uses the null
space of x to define the linear constraints (Yang et al., 2004); this
approach is described in detail in a book-length treatment (Yang and
Land, 2013).

But Luo (2013) argues that this is no more scientifically justified than
earlier approaches.
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APC Models: Concluding Remarks

One may fix aspects of the curves, based on the context, in order to
examine period and cohort effects, but one must be aware that this
choice is an assumption and cannot be confirmed/refuted by the data.

For example, when studying lung cancer one may assume that cohort
effects are strong, since they reflect smoking behavior amongst
different groups.

In contrast, when studying breast cancer, period effects may reflect
the introduction of screening across all age groups.
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APC Models: Concluding Remarks

The Bayesian framework for APC models has been extended to a
spatial context, see Riebler and Held (2010); Riebler et al. (2012a).

Work needed on unequally-spaced groupings, e.g., age in 5 year
intervals, period in 1 years.

In my own research, I’m looking to analyze child mortality using APC
models. Issues include: modeling on unequal time scales; how to
combine with spatial smoothing models; how to account for survey
design.

Final Summary: While we can obtain estimates by age and period
(say), after fitting a sequence of models, setting the constituent levels
or apportioning the trend to period or cohort effects is not possible
without uncheckable assumptions. Hence, it is best to just examine
the fitted values, using a “good” parameterization such as that
suggested by Kuang et al. (2008b). A lot is made of the second order
terms that are identifiable, but these are very difficult to interpret.
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Appendix: Forecasting the MMNN way
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Meseothelioma Example

Martı́nez Miranda et al. (2015) discuss forecasting of mesothelioma
mortality.

Meseothelioma is a lung cancer that is associated with exposure to
asbestos.

They focus on mesothelioma deaths of males in the age range to
25–89 years owing to sparsity in the more extreme age groups.

Thus, the data are an age-period array with A = 65 age levels and
P = 41 periods. The total number of deaths is 31,902, with the
annual observed number of deaths peaking at 1774 in 2007.

27 / 32



30 40 50 60 70 80 90

0
20

0
40

0
60

0
80

0
10

00
12

00

(a) sums by age

age

ag
e 

da
ta

 s
um

1970 1980 1990 2000

50
0

10
00

15
00

(b) sums by period

period

pe
rio

d 
da

ta
 s

um

1880 1900 1920 1940 1960 1980

0
20

0
40

0
60

0
80

0
10

00
12

00

(c) sums by cohort

cohort

co
ho

rt
 d

at
a 

su
m

1970 1980 1990 2000

0
10

0
20

0
30

0

(d)

period

re
sp

on
se
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Meseothelioma Example

The APC model is adequate (when compared to the saturated
model).

Also some evidence to that the AC model may be reasonable when
compared to APC model.

From Martı́nez Miranda et al. (2015), “The decision is therefore
marginal so the data are not sufficiently informative to tell whether a
period effect is needed or not. Thus, from an inferential viewpoint we
cannot draw strong conclusions about the period effect. However,
from a forecasting viewpoint parsimony is often useful so the period
effect will be dropped”.
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Meseothelioma Example

Figure 6 shows forecasts based on different cohorts; the dots indicate
the observed counts of mesothelioma deaths by period.

The top curve represents forecasts of the total number of deaths
among those cohorts in which the men were born in 1966 and before.

The next curve includes cohorts until 1952 and the bottom curve
cohorts until 1937.

Figure 7 shows forecasts based based on data up to the given
(period) date – this was done to compare with forecasts carried out in
the literature, at particular times (calendar years).
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Meseothelioma Example
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Figure 6: Forecasts of annual numbers of deaths based on the full sample
and decomposed by cohort contribution (age-cohort model).
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Meseothelioma Example
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