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Motivation

In the Epi package implementation of APC models, there is an
emphasis on spline modeling.

In the BAPC package, Bayesian fitting is carried out using random walk
of order 2 (RW2) models, and the INLA method for summarizing
posterior distributions.
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Spline Models
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Spline Modeling
• Factor models have lots of parameters and do not impose any

form of smoothing that respects the ordering of age, period or
cohort.

• Spline models are based on piecewise polynomial fitting and are
extremely popular.

• The following description is taken from Chapter 11 of ?).
• Within the Epi package, linear, natural and B-splines may be

fitted.
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Figure 1: Simulated data: natural spline fit with 10 knots.
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Piecewise Polynomials and Splines

For data that we referred to as continuous responses, splines are
simply linear models, but with an enhanced basis set that provides
flexibility.

Let hj (x) : R→ R denote the m-th function of x , for j = 1, ..., J.

A generic linear model consists of the linear basis expansion in x :

f (x) =
J∑

j=1

βjhj (x).

An obvious choice of basis is a polynomial of degree J − 1, but the
global behavior of such a choice can be poor.

However, local behavior can be well represented by relatively low
order polynomials.
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Light Detection and Ranging Example

We illustrate various spline models using data, taken from ?), from a
light detection and ranging (LIDAR) experiment.

The LIDAR technique (which is similar to radar technology) uses the
reflection of laser-emitted light to monitor the distribution of
atmospheric pollutants.

The data we consider concern mercury. The x axis measures
distance traveled before light is reflected back to its source (and is
referred to as the range), and the y axis is the logarithm of the ratio of
distance measured for two laser sources: one source has a
frequency equal to the resonant frequency of mercury, and the other
has a frequency off this resonant frequency.

For these data, point and interval estimates for the association
between the log ratio and range are of interest.
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Light Detection and Ranging Example
• To motivate spline models, we fit

piecewise constant, linear,
quadratic and cubic models using
least squares, with three pieces
in each case.

• The piecewise linear model is
shown at the top: By forcing the
curve to be continuous but only
allowing linear segments we see
that the fit is not good
(particularly in the first segment).
The lack of smoothness is also
undesirable.

• The quadratic and cubic fits in
panels 2 and 3 are far more
visually appealing, though neither
provide satisfactory fits, because
we have only allowed three
piecewise polynomials. In
particular, in panel 4 the cubic fit
is still poor at the left endpoint.

400 450 500 550 600 650 700

−0.8
−0.6

−0.4
−0.2

0.0

x

y

●●●●●
●
●●
●●●●
●●
●
●●
●

●
●

●●●

●●
●●

●
●
●
●●
●●●

●●
●●
●
●
●
●●
●
●
●●
●
●
●●

●
●
●

●

●●●●
●
●
●

●

●
●
●
●

●
●●●
●●
●

●

●
●●●
●●

●

●●

●●●
●●
●

●

●●
●

●

●

●●
●
●

●●●

●

●
●
●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●●

●●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

400 450 500 550 600 650 700

−0.8
−0.6

−0.4
−0.2

0.0

x

y

●●●●●
●
●●
●●●●
●●
●
●●
●

●
●

●●●

●●
●●

●
●
●
●●
●●●

●●
●●
●
●
●
●●
●
●
●●
●
●
●●

●
●
●

●

●●●●
●
●
●

●

●
●
●
●

●
●●●
●●
●

●

●
●●●
●●

●

●●

●●●
●●
●

●

●●
●

●

●

●●
●
●

●●●

●

●
●
●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●●

●●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

400 450 500 550 600 650 700

−0.8
−0.6

−0.4
−0.2

0.0
x

y

●●●●●
●
●●
●●●●
●●
●
●●
●

●
●

●●●

●●
●●

●
●
●
●●
●●●

●●
●●
●
●
●
●●
●
●
●●
●
●
●●

●
●
●

●

●●●●
●
●
●

●

●
●
●
●

●
●●●
●●
●

●

●
●●●
●●

●

●●

●●●
●●
●

●

●●
●

●

●

●●
●
●

●●●

●

●
●
●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●●

●●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

400 450 500 550 600 650 700

−0.8
−0.6

−0.4
−0.2

0.0

x

y

●●●●●
●
●●
●●●●
●●
●
●●
●

●
●

●●●

●●
●●

●
●
●
●●
●●●

●●
●●
●
●
●
●●
●
●
●●
●
●
●●

●
●
●

●

●●●●
●
●
●

●

●
●
●
●

●
●●●
●●
●

●

●
●●●
●●

●

●●

●●●
●●
●

●

●●
●

●

●

●●
●
●

●●●

●

●
●
●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●●

●●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

8 / 91



Piecewise Polynomials and Splines

We now start the description of spline models by introducing some
notation.

Let ξ1 < ξ2 < ... < ξK be a set of ordered points, called knots,
contained in some interval (a,b).

An M-th order spline is a piecewise M − 1 degree polynomial with
M − 2 continuous derivatives at the knots.

Splines are very popular in nonparametric modeling though, as we
shall see, care is required in choosing the degree of smoothing.

The latter depends on a variety of factors including the order of the
spline, and the number and position of the knots.

9 / 91



Piecewise Polynomials and Splines
We begin with a discussion of the order of the spline. The most basic
piecewise polynomial is a piecewise constant function, which is an
order-1 spline.

With two knots, ξ1 and ξ2, there are three basis functions:

h1(x) = I(x < ξ1), h2(x) = I(ξ1 ≤ x < ξ2), h3(x) = I(ξ2 ≤ x)

where I(·) is the indicator function. Note that there are no continuous
derivatives at the knots.

To obtain linear models in each of the intervals we may introduce
three additional bases

h3+j = hj (x)x , j = 1,2,3

to give the model

f (x) = I(x < ξ1)(β1+β4x)+I(ξ1 ≤ x < ξ2)(β2+β5x)+I(ξ2 ≤ x)(β3+β6x),

which contains six parameters.

10 / 91



Piecewise Polynomials and Splines

The lack of continuity is a problem with this model, but we can impose
two constraints to enforce

f (ξ−1 ) = f (ξ+1 )

and
f (ξ−2 ) = f (ξ+2 ),

which implies

β1 + ξ1β4 = β2 + ξ1β5

β2 + ξ2β5 = β3 + ξ2β6

to give four parameters in total.
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Piecewise Polynomials and Splines

A neater way of incorporating these constraints is with the basis:

h1(x) = 1, h2(x) = x , h3(x) = (x − ξ1)+, h4(x) = (x − ξ2)+ (1)

where t+ denotes the positive part.

The generic basis (x − ξ)+ is sometimes referred to as a truncated
line.

The resultant function

f (x) = β0 + β1x + β2(x − ξ1)+ + β3(x − ξ2)+

is continuous at the knots, since all prior basis functions are
contributing to the fit up to any particular x value.
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Piecewise Polynomials and Splines
The model defined by the basis (1) is an order-2 spline and the first
derivative is discontinuous.

Figure 2 shows the basis functions for this representation.
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Figure 2: Basis functions for piecewise linear model with two knots at ξ1 and
ξ2. The solid lines are the bases 1 and x , and the dashed lines are the bases
(x − ξ1)+ and (x − ξ2)+.
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Piecewise Polynomials and Splines
We now consider how the piecewise linear model may be extended.
Naively, we might assume the quadratic form:

f (x) = β0+β1x+β2x2+β3(x−ξ1)++β4(x−ξ1)2
++β5(x−ξ2)++β6(x−ξ2)2

+,

which is continuous, but has first derivative

f ′(x) = β1+2β2x+β3I(x > ξ1)+2β4(x−ξ1)++β5I(x > ξ2)+2β6(x−ξ2)+,

which is discontinuous at the knot points ξ1 and ξ2, and is undesirable
because of the lack of smoothness. Hence, we drop the truncated
linear bases to give

f (x) = β0 + β1x + β2x2 + β3(x − ξ1)2
+ + β4(x − ξ2)2

+

which has continuous first derivative,

f ′(x) = β1 + 2β2x + 2β3(x − ξ1)+ + 2β4(x − ξ2)+.

The second derivative is discontinuous, however, which may also be
undesirable.
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Piecewise Polynomials and Splines

Hence, a popular form is a cubic spline.

We will concentrate on cubic splines in some detail and so we
introduce a slight change of notation, with respect to the truncated
cubic parameters. With two knots the function and first three
derivatives are

f (x) = β0 + β1x + β2x2 + β3x3 + b1(x − ξ1)3
+ + b2(x − ξ2)3

+

f ′(x) = β1 + 2β2x + 3β3x2 + 3b1(x − ξ1)2
+ + 3b2(x − ξ2)2

+

f ′′(x) = 2β2 + 6β3x + 6b1(x − ξ1)+ + 6b2(x − ξ2)+

f ′′′(x) = 6β3 + 6b1I(x > ξ1) + 6b2I(x > ξ2).

The latter is discontinuous, with a jump at the knots.

Figure 3 shows the basis function for the cubic spline, with two knots,
and Figure 4 the fit to the LIDAR data.
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Piecewise Polynomials and Splines
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Figure 3: Basis functions for a piecewise cubic spline model, with two knots at
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Figure 4: Piecewise cubic fit to LIDAR data.
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Cubic Splines
For K knots we write the cubic spline function as

f (x) = β0 + β1x + β2x2 + β3x3 +
K∑

k=1

bk (x − ξk )3
+, (2)

so that we have K + 4 coefficients.

We simply have a linear model, f (x) = E[Y | c] = cγ, where

c =


1 x1 x2

1 x3
1 (x1 − ξ1)3

+ ... (x1 − ξK )3
+

1 x2 x2
2 x3

2 (x2 − ξ1)3
+ ... (x2 − ξK )3

+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3
+ ... (xn − ξK )3

+

 , γ =



β0
β1
β2
β3
b1
...

bK


.

Estimator: γ̂ = (cTc)−1cTY . Linear smoother: Ŷ = SY ,
S = c(cTc)−1cT.
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Natural Cubic Splines

Spline models such as (2) can produce erratic behavior beyond the
extreme knots.

A natural spline enforces linearity beyond the boundary knots, i.e.

f (x) = a1 + a2x for x ≤ ξ1

f (x) = a3 + a4x for x ≥ ξK .

The first condition only considers values of x before the knots, and
therefore the bk parameters in (2) are irrelevant.
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Natural Cubic Splines
It is straightforward to see that for linear before x ≤ ξ1 we require

β2 = β3 = 0. (3)

For x ≥ ξK :

f (x) = β0 + β1x +
K∑

k=1

bk (x − ξk )3

= β0 + β1x +
K∑

k=1

bk (x3 − 3x2ξk + 3xξ2
k − ξ3

k ),

and so for linearity
K∑

k=1

bk =
K∑

k=1

bkξk = 0, (4)

to get rid of the x3 and x2 terms.

Hence, we have four additional constraints in total, so that the basis
for a natural cubic spline has K elements.
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Cubic Smoothing Splines

We now present a formal derivation of the natural cubic spline.

Result: Consider the penalized least squares criterion

n∑
i=1

(yi − f (xi ))2 + λ

∫
f ′′(x)2dx , (5)

where the second term penalizes the roughness of the curve, and λ
controls the degree of roughness.

It is clear that without penalization we could choose an infinite
number of curves that interpolate the data (in the case of unique x
values at least), with arbitrary behavior in between.

The f (·) that minimizes (5) is the natural cubic spline with knots at the
unique data points, we call this function g(x).

Proof is in ?).
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Cubic Smoothing Splines

We stress that the fitted natural cubic smoothing spline will not
typically interpolate the data, and the level of smoothness will be
determined by the value of λ chosen.

Low values of λ (large effective degrees of freedom), impose little
smoothness and bring the fit closer to interpolation.

In terms of interpretation, if a thin piece of flexible wood (a
mechanical spline) is placed over the points (xi , yi ), i = 1, ...,n, then
the position taken up by the piece of wood will be of minimum energy,
and will describe a curve that is approximately minimizes

∫
f ′′2, over

curves that interpolate the data.
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Example: Light Detection and Ranging

• For a natural cubic spline to the
LIDAR data, the top figure shows
the ordinary and generalized
cross-validation scores,
respectively) versus the effective
degrees of freedom.

• The curves are very similar with
well-defined minima.

• The OCV and GCV scores are
minimized at 9.3 and 9.4 effective
degrees of freedom, respectively.

• The lower plot fit (using the GCV
minimum, which corresponds to
λ̂ = 959), appears good. In
particular we note that the
boundary behavior is reasonable.
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B-Splines

There are many ways of choosing a basis to represent a cubic spline;
the so-called B-spline basis functions are popular, a primary reason
being that they are non-zero over a limited range, which aids in
computation.

B-splines also form the building blocks for other spline models.

B-splines are available for splines of general order, which we again
denote by M (so that for a cubic spline, M = 4).

The number of bases functions is K + M since we have an M − 1
degree polynomial (giving M bases), and one basis for each knot.

The original set of knots are denoted ξk , k = 1, ...,K , and we let
ξ0 < ξ1 and ξK < ξK+1 represent two boundary knots.
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B-Splines

We define an augmented set of knots, τj , j = 1, ...,K + 2M, with

τ1 ≤ τ2 ≤ ... ≤ τM ≤ ξ0

τj+M = ξj , j = 1, ...,K
ξK+1 ≤ τK+M+1 ≤ τK+M+2 ≤ ... ≤ τK+2M

where the choice of the additional knots is arbitrary and so we may,
for example, set

τ1 = ... = τM = ξ0

and
ξK+1 = τK+M+1 = ... = τK+2M .

These additional knots ensure the bases functions detailed below are
defined close to the boundaries.
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B-Splines

To construct the bases, first define

B1
j (x) =

{
1 if τj ≤ x < τj+1
0 otherwise (6)

for j = 2, ...,K + 2M − 1. For 1 < m ≤ M define

Bm
j (x) =

x − τj

τj+m−1 − τj
Bm−1

j +
τj+m − x
τj+m − τj+1

Bm−1
j+1 (7)

for j = 1, ...,K + 2M −m. If we divide by zero then we define the
relevant basis element to be zero.

The B-spline bases are non-zero over a domain spanned by at most
M + 1 knots.

For example, the support of cubic B-splines (M = 4) is at most five
knots. At any x , M of the B-splines are non-zero.
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B-Splines
The cubic B-spline model is

f (x) =
K+4∑
j=1

B4
j (x)βj . (8)

For further details on computation, see Hastie et al. (2009, p.186).

Figure 6 shows the cubic B-spline basis (excluding the intercept) with
K = 9 knots.
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Figure 6: Twelve B-spline basis functions (we have excluded the intercept),
corresponding to a cubic spline with K = 9 equally-spaced knots.
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Penalized Regression Splines

Although the result on natural cubic splines is of theoretical interest,
in general we would like to have a functional form that has less
parameters than data points.

Regresssion splines are defined with respect to a reduced set of
K < n knots.

Deciding on the number and location of knots automatically is difficult.

For example, starting with n knots and then selecting via stepwise
methods is fraught with difficulties since there are 2n models to
choose from (assuming the intercept and linear terms are always
present).
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Penalized Regression Splines

An alternative penalized regression spline approach, with K < n
knots is to choose sufficient knots for flexibility, but then to penalize
the parameters associated with the knot bases.

If this approach is followed the number and selection of knots is far
less important than the choice of smoothing parameter.

An obvious choice is to place an L2 penalty on the coefficients,
i.e. λ

∑K
k=1 b2

k .

The resultant low rank smoothers use considerably less than n basis
functions.
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A Brief Spline Summary

The terminology associated with splines can be confusing, so we
provide a brief summary.

For simplicity we assume that the covariate x is univariate, and that
x1, . . . , xn are unique.

• A smoothing spline contains n knots, and
• a cubic smoothing spline is piecewise cubic.
• A natural spline is linear beyond the boundary knots.
• If there are K < n knots we have a regression spline.
• A penalized regression spline imposes a penalty on the

coefficients associated with the coefficients of the piecewise
polynomial. The penalty terms may take a variety of forms.

The number of bases functions that define the spline depends on the
number of knots and the degree of the polynomial, with a reduced
number of bases if a natural spline.

Spline models may be parameterized in many different ways.
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Parameterization of the Spline Model

?) is a strong advocate for the use of spline models in
age-period-cohort modeling:

• Fewer parameters than factor models.
• Smooth functions of time variables.
• Can be used with unequally-spaced data.

But which type of splines to use, and how to choose knots/smooth?
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Parameterization of the Spline Model

The following is based on Section 6.2 of ?).

Recommendations are:

1. The age function should be interpretable as log age-specific
rates in cohort c0 (a reference cohort) after adjustment for the
period effect.

2. The cohort function is 0 at a reference cohort c0, and so is
interpretable as the log relative rate, relative to cohort c0.

3. 3.1 The period function is 0 on average with 0 slope, and so is
interpretable as the log relative rate, relative to the age-cohort
prediction (the residual log relative rate).

3.2 Alternatively, the period function could be constrained to be 0 at a
reference date, p0. In this case the age-effects at a0 = A + p0 − c0

would equal the fitted rate for period p0 (and cohort c0), and the
period effects would be residual log relative rates relative to p0.
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Parameterization of the Spline Model

The second choice fixes one point on the curve(0 at c0), and the third
fixes a level (0 on average or 0 at p0) and a slope (0 slope for the
period function).

The inclusion of the slope (drift) with the cohort effect makes the
age-effects interpretable as cohort-specific rates of disease
(longitudinal rates).

Depending on the subject matter, the role of cohort and period could
be interchanged, in which case the age-effects would be
cross-sectional rates for the reference period.
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Spline Model
Table 1 gives summaries from the spline model which was fitted in the
Epi packge with the call:
apc . f i t ( dfEpi , npar =5 ,model =” ns ” , dr . e x t r =” Ho l fo rd ” , parm=”ACP” )

This fits a natural spline model with 5 degrees of freedom.

Resid. Df Resid. Dev Df Deviance p-value
Age 105 15242.0
Age-drift 104 6564.0 1 8678.0 < 2.2 × 10−16

Age-Cohort 101 1016.4 3 5547.6 < 2.2 × 10−16

Age-Period-Cohort 98 419.3 3 597.1 < 2.2 × 10−16

Age-Period 101 2910.5 -3 -2491.3 < 2.2 × 10−16

Age-drift 104 6564.0 -3 -3653.5 < 2.2 × 10−16

Table 1: Spline models for Danish male lung cancer data.

The conclusions are similar to the factor model, though the fitted
curves are smoother in the extremes of the data.

The overall fit is not good (419 on 98 df) for the APC model.
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Figure 7: Age-period-cohort estimates from the spline model. Curves with
added annual period drifts of -4%, -3%,. . . ,4% are also shown. The rates
predicted from curves of like colors are the same.
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Smoothing Models
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Smoothing/Penalization

• We will first generically talk about Bayesian smoothing models
• In general, when looking at estimates over time, we want to know

if the differences we see are “real”, or simply reflecting sampling
variability.

• In data sparse situations, when one expects similarity smoothing
local patterns (in time, space, or both) can be highly beneficial.

• This can equivalently be thought of penalization, in which large
deviations from “neighbors”, suitably defined, are discouraged.

• In this section we will generically think of modeling prevalence.
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Motivation for Smoothing: Temporal Case

• Temporal setting (assume period only): Even if the underlying
prevalence is the same over time, we will see differences in the
empirical estimates.

• Figure 8 demonstrates: I simulated binomial data with
n = 10,20,200 and p = 0.2 (shown in blue) in all cases.

• In the top plot in particular, we might conclude large temporal
variation, but all we are seeing is sampling variation.

• Figure 9 summarizes estimates from a second simulation in
which there is a real temporal pattern – here we would not want
to oversmooth and remove the trend.

• Later we will apply temporal smoothing models to these two sets
of data.
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Figure 8: Prevalence estimates over time from simulated data with true
prevalence of p = 0.2 (blue solid lines).
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Figure 9: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line.
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Smoothing

When faced with estimation n different quantities of the prevalence
under different conditions, there are three model choices:

• The true underlying prevalence risks are ALL THE SAME.
• The true underlying prevalence risks are DISTINCT but not

linked (like a factor model in APC context).
• The true underlying prevalence risks are SIMILAR IN SOME

SENSE.

The third option seems plausible when the conditions are related, but
how do we model “similarity”?
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Smoothing

There are a number of possibilities for SMOOTHING models:

• The prevalences are drawn from some COMMON probability
distribution, but are not ordered in any way. We refer this as the
independent and identically distributed, or IID model. We could
think of this as saying we think the prevalences are likely to be of
the same order of magnitude.

• The prevalences display DEPENDENCE over time.

These are both examples of HIERARCHICAL or RANDOM
EFFECTS MODELS — a key element is estimating the SMOOTHING
PARAMETER.
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Smoothing over Time

Rationale and overview of models for temporal smoothing:
• We often expect that the true underlying prevalence in an area

will exhibit some degree of smoothness over time.
• A linear trend in time is unlikely to be suitable for more than a

small number of years, and higher degree polynomials can
produce erratic fits.

• Hence, local smoothing is preferred.
• Splines and random walk models have proved successful as

local smoothers.
• And to emphasize again, in either approach, the choice of

smoothing parameter is crucial.
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Random Walk Models
We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their
neighbors.

The true underlying mean of the prevalence at time t is modeled as a
function of its neighbors:

αt | µNE(t) ∼ N(mt , vt ),

where
• αt is the mean prevalence (or some function of it such as the

logit) at time t .
• αNE(t) is the set of neighboring means – with the number of

neighbors chosen depending on the model used – typically 2 or
4.

• mt is the mean of some set of neighbors – for a first order
random walk or RW1 it is simply 1

2 (αt−1 + αt+1).
• vt is the variance, and depends on the number of neighbors – for

the RW1 model it is σ2/2, where σ2 is a smoothing parameter –
small values give large smoothing.
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Random Walk Models

• The smoothing parameter σ2 is estimated from the data, and
determines the extent deviations from the mean are penalized.

• The penalty term for the RW1 model is:

p(αt | αt−1, αt+1, σ
2) ∝ exp

{
− 1

2σ2

[
αt − 1

2 (αt−1 + αt+1)
]2}

.

• Hence:
• Values of αt that are close to 1

2 (αt−1 + αt+1) are favored (higher
density).

• The relative favorability is governed by σ2 – if this variance is small,
then αt can’t stray too far from its neighbors.

• Predictions from the RW1 are

αn+S|α1, . . . , αn, σ
2 ∼ N(αn, σ

2 × S).
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RW1 Model

• Form of the prior density is:

π(α|σ2) ∝ exp

(
− 1

2σ2

T−1∑
t=1

(αt+1 − αt )
2

)

= exp

(
− 1

2σ2

∑
t∼t′

(αt − αt′)
2

)
= exp

(
−1

2
αTQα

)
where t ∼ t ′ indicates t is a neighbor of t ′ and the precision is
Q = R/σ2 with

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


and zeroes everywhere else.

• This sparsity leads to big gains in computational efficiency.
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RW1 Model

We might consider the model:

Stage 1: Yt |λt ∼ Poisson(Ntλt ), t = 1, . . . ,n.

Stage 2: log λt = αt + εt , with εt ∼ N(0, σ2
ε ), t = 1, . . . ,n.

The RW1 prior is not proper – informally, the collection α1, . . . , αn has
a multivariate normal distribution with rank deficiency 1.

More precisely, the precision matrix1 implied by the conditional
distributions is of rank n − 1.

1inverse of the variance-covariance matrix
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RW1 Model

This class of prior is often called an intrinsic model and, the overall
level is not identified, but if the Stage 1 data model is identifiable, then
the posterior is identifiable.

If there is an intercept in the model, then a constraint is required, and
typically a sum-to-zero is specified,

∑n
t=1 αt = 0.

But the Stage 1 model is not identifiable for APC data when we have
all three variables!
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RW2 Model

• The second order RW (RW2) model produces smoother
trajectories than the RW1, and has more reasonable short term
predictions, which is desirable for modeling child prevalence.

• In terms of second differences:

(αt − αt−1)− (αt−1 − αt−2) ∼ N( 0, σ2 ),

showing that deviations from linearity are discouraged.
• Forecasts S steps ahead have a normal distribution with mean:

E[αn+S | α1, . . . , αn] = αt + S(αt − αt−1)

which is a linear function of the values at the last two time points.
• The variance is

var(αn+S | α1, . . . , αn) =
σ2

6
× S(S + 1)(2S + 1)

which is cubic in the number of periods S, so blows up very
quickly.
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RW2 Model

• Form of the prior density is:

π(α|σ2) ∝ exp

(
− 1

2σ2

n−2∑
t=1

(αt+2 − 2αt+1 + αt )
2

)

= exp

(
−1

2
αTQα

)
where the precision is Q = R/σ2 with

R =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

· · · · ·
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


and zeroes everywhere else.

?) showed that RW2 models as priors, lead to estimators that are
smoothing splines.
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RW2 Model

Like the RW1 prior, the RW2 prior is not a proper multivariate normal
distribution: the precision matrix implied by the full conditionals is of
rank n − 2.

Again an intrinsic GMRF, and when there is an intercept and slopes in
the RW2 model, the impropriety is usually addressed by imposing two
constraints.

Specifically, for RW2 models there is a sum-to-zero constraint and a
zero slope constraint.

For example, for the age effects, this is equivalent to Lα = 0 where
the a-th column of L is {1,a}, a = 1, . . . ,A.

In the APC context, these constraints give a model which is not
over-parameterized but do not yield interpretable intercepts or slopes,
since the data cannot inform on these.
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Figure 11: Nile data with RW1 fits under different priors for smoothing
parameter σ−2.
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Temporal Smoothing Model Summary

We have three models:

IID MODEL:
αt ∼ N(0, σ2),

smooth towards zero.
RW1 MODEL:

αt − αt−1 ∼ N(0, σ2),

smooth towards the previous value.
RW2 MODEL:

(αt − αt−1)− (αt−1 − αt−2) ∼ N(0, σ2),

smooth towards the previous slope.
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RW Fitting to Simulated Data

• We illustrate fitting with the RW2 model, using the simulated data
seen earlier.

• The model is:

Yt |pt ∼ Binomial(nt ,pt ), t = 1, . . . ,n
pt

1− pt
= exp(δ + αt )

(α1, . . . , αn) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter
δ ∼ Prior on Intercept

• Fit using R-INLA.
• On Figures 13 and 14 the fitted values are shown in red – in both

the constant prevalence and curved prevalence cases, the
reconstruction is reasonable.
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Figure 13: Prevalence estimates over time from simulated data, true
prevalence p = 0.2 (blue solid lines). Smoothed random walk estimates in
red.
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Figure 14: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line. Smoothed random walk
estimates in red.
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Bayesian Inference
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Bayesian Inference

Bayesian inference is a convenient framework within which to
implement smoothing models.

• A Data Model (Likelihood) is probabilistically combined with
• A Penalization (Prior) that expresses beliefs about the

parameters θ encoding the model.
• Combination occurs via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

• On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Data Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

• In a Bayesian analysis the complete set of unknowns
(parameters) is summarized via the multivariate posterior
distribution.

• The marginal distribution for each parameter may be
summarized via its mean, standard deviation, or quantiles.

• It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

• The range that is reported is known as a credible interval.
• The computations required for Bayesian inference (integrals) is

often not trivial and many be carried out using a variety of
analytic, numeric and simulation based techniques.

• We use the integrated nested Laplace approximation (INLA),
introduced by ?).

• Book-length treatments:
• ?) – space-time models.
• ?) – general models.
• ?) – advanced space-time models.
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Bayes Example

• Imagine the data model is normal with an unknown mean µ:

y | µ ∼ N(µ, σ2/n),

where σ2/n is assumed known (σ/
√

n is the standard error).
• We also imagine the prior is normal:

µ ∼ N(m, v),

so that values of the mean µ that are (relatively) far from m are
penalized.

• The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)2︸ ︷︷ ︸

Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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Figure 15: Normal data model with n = 10, y = 19.3 and standard error 1.41.
The prior for µ has mean m =15 and v = 32. The posterior for the parameter
µ is a compromise between the two sources of information: the posterior
mean is 18.5 and the posterior standard deviation is 1.28.
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INLA

64 / 91



The Context

As a running example, consider the mixed effects model:

yi |β,ui ,θ1 ∼ p(yi |β,ui ,θ1)

u|θ2 ∼ N(0,Q−1(θ2))

for i = 1, . . . ,n, where
• β = [β0, . . . , βJ ]T are fixed effects,
• u = [u1, . . . ,un] are random effects following a zero mean

multivariate normal distribution, with Q the precision matrix,
• θ1 are scale parameters in the likelihood, p(yi |β,ui ,θ1),
• θ2 are variance-covariance parameters in the random effects

distribution.
• We write θ = [θ1,θ2]T to represent all variance parameters.

Computation, from either a frequentist or Bayesian perspective, is not
straightforward for this model.
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Bayesian inference for the mixed model

Bayesian analysis adds a hyperprior, with independence often
assumed,

π(β,θ1,θ2) = π(β)× π(θ1)× π(θ2).

Penalized complexity (PC) priors are recommended ?).

The posterior is,

p(β,u,θ1,θ2|y) = p(y |β,u,θ1)× p(u|θ2)× π(β,θ1,θ2)/p(y),

where

p(y) =

∫
β

∫
u

∫
θ1

∫
θ2

p(y |β,u,θ1)×p(u|θ2)×π(β,θ1,θ2) dβdudθ1dθ2,

a typically high-dimensional integral.
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Integrals, integrals, integrals all around
• Posterior marginal distributions, e.g.,

p(βj |y) =

∫
β−j

∫
u

∫
θ1

∫
θ2

p(β,θ1,θ2|y) dβ−jdudθ1dθ2.

To reconstruct a density we need to do this for multiple values of
βj .

• The posterior mean is,

E[βj |y ] =

∫
βj

βjp(βj |y) dβj

with the variance requiring E[β2
j |y ].

• The posterior median β̃j = Median(βj |y) is that value that solves∫ β̃j

−∞
p(βj |y) dβj = 0.5,

with posterior quantiles found, similarly.
• Predictive distributions:

p(z|y) =

∫
β

∫
u?

∫
θ

p(z|β,u?,θ)p(β,u?,θ|y) dβdu?dθ.
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Laplace Approximations

Integrals may be calculated using analytical approximations,
numerical integration and Monte Carlo methods – we describe an
example of the first of these, Laplace’s method.

Let g(u), be a one-dimensional function and

I =

∫ ∞
−∞

exp[g(u)]du,

denote a generic integral of interest and suppose ũ is the maximum.

By Taylor’s theorem,

g(u) =
∞∑

k=0

(u − ũ)k

k !
g(k)(ũ),

where g(k)(ũ) represents the k -th derivative of g(·) evaluated at ũ.
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Laplace Approximations

Hence,

I =

∫ ∞
−∞

exp

[ ∞∑
k=0

(u − ũ)k

k !
g(k)(ũ)

]
du

= exp[g(ũ)]

∫ ∞
−∞

exp

[
g(2)(ũ)

2
(u − ũ)2

]
exp

[ ∞∑
k=3

(u − ũ)k

k !
g(k)(ũ)

]
du

Taking the approximation to the second term of the Taylor series and
letting

v = −1/[g(2)(ũ)]

gives

Î = exp
[
g(ũ)

] ∫ ∞
−∞

exp

{
− 1

2v
(u − ũ)2

}
du

= exp
[
g(ũ)

]
(2π)1/2 v1/2.
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Laplace in a Bayesian context

Laplace approximations have a long history in Bayesian computation,
and ?) is a key reference.

Suppose we wish to evaluate the posterior expectation of a positive
function of interest φ(u), i.e.

E[φ(u)|y ] =

∫
exp[log φ(u) + log p(y |u) + log π(u)] du∫

exp[log p(y |u) + log π(u)] du

=

∫
exp[g1(u)] du∫
exp[g2(u)] du

.

Application of Laplace’s method to numerator and denominator gives

Ê[φ(u) | y ] =
ṽ1

ṽ2

exp[g1(ũ1)]

exp[g2(ũ2)]

where ũj is the maximum of gj (·) and ṽj = −1/g(2)
j (ũj ), j = 1,2.
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Laplace in a Bayesian context

In asymptotic terms, Laplace’s method typically has an error of order
O(n−1).

For the above calculation, however, it may be shown that (?),

Ê[φ(u) | y ] = E[φ(u) | y ](1 + O(n−2)),

since errors in the numerator and denominator cancel.

If φ is not positive then a simple solution is to add a large constant to
φ; Laplace’s method may then be applied with the constant
subtracted at the end.

See ?) for more details in a Bayesian context.
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Multivariate Laplace

Now consider multivariate u with dim(u) = p and with required
integral

I =

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp[g(u)] du1 . . . dup.

the above argument may be generalized to give the Laplace
approximation

Î = exp
[
g(ũ)

]
(2π)p/2 | ṽ |1/2, (9)

where ũ is the maximum of g(·) and ṽ is the p × p matrix whose
(i , j)-th element is

− ∂2g
∂ui∂uj

∣∣∣∣
ũ

.

So for implementation, we need to maximize functions, and we need
second derivatives – the latter can be a big pain to calculate
analytically, so a numerical approach is desirable.
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Laplace approximations in practice

In general, the Laplace approximation works well when the integrand,
with respect to whatever is being integrated over, is “normal-like” –
this is heavily dependent on the parameterization adopted.

In a Bayesian setting, where we want to integrate over all parameters,
we must identify parameters that are not normal-like, and either
reparameterize, or treat differently.

Variance components in particular, require special attention.
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Laplace in a Bayesian context

Tierney and Kadane (1986, Section 4.1) discuss how to approximate
the marginal posterior density, and this is explicitly used in the INLA
method.

Simplify by assuming a single parameter set u = [u1, . . . ,up] and
suppose ũ = [ũ1, ũ2] maximizes the posterior, which is proportional to

p(y |u)π(u),

so that ũ is the posterior mode.

Let u = [u1,u2] with u2 = [u2, . . . ,up] and define ṽ to be the p × p
matrix corresponding to the inverse of the Hessian of p(y |u)π(u).

For fixed u1, let ũ?2 = ũ?2(u1) maximize p(y |u1,u2)π(u1,u2), and let
ṽ? = ṽ?(u1) be the (p − 1)× (p − 1) matrix corresponding to the
inverse of the Hessian of p(y |u1,u2)π(u1,u2) (i.e., the second
derivates with respect to the elements of u2).
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Laplace in a Bayesian context

Now apply Laplace’s method to the numerator and denominator of,

p(u1|y) =

∫
p(y |u1,u2)π(u1,u2) du2∫

p(y |u)π(u) du
,

which is the marginal density at the point u1.

This gives the approximation,

p̂(u1|y) = (2π)−1/2
(
|ṽ?(u1)|
|ṽ |

)1/2
π(u1, ũ

?
2)p(y |u1, ũ

?
2)

p(y |ũ)π(ũ)
(10)

It can be shown (?) that the error in the approximation is of order
O(n−3/2) in n−1/2 neighborhoods of ũ1.
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LGMs

The integrated nested Laplace approximation (INLA) for Bayes
computation was introduced by ?).

INLA, the R package implementation is designed for latent Gaussian
models (LGMs):

Stage 1: Likelihood p(yi |ηi ,θ1) where ηi is a linear predictor with a
known link function (cf GLMs, though class is more general), and the
vector θ1 contains variance/scale parameters. The linear predictor is
of the form

ηi = β0 +
J∑

j=1

βjzij +
K∑

k=1

f k
i ,

where
• β = [β0, β1, . . . , βJ ]T where β0 is the intercept and βj are fixed

effects associated with observed covariates zij , j = 1, . . . , J.
• {f k

i , k = 1, . . . ,K} are random effects – these may correspond to
smoothers in time and space, among many other choices.
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LGMs

Stage 2: The latent Gaussian field is on x = [η,β, f 1, . . . , f K ] with

x |θ2 ∼ N(0,Q−1(θ2)),

where Q(θ2) is the precision matrix of the latent Gaussian field.

Let θ = [θ1,θ2]T.

Stage 3: Hyperpriors: π(θ).

The resulting posterior is,

π(x ,θ|y) ∝ exp

[
n∑

i=1

log p(yi |ηi ,θ)− 1
2

x TQ(θ)x + log π(θ)

]
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An Example of a LGM

Consider the Poisson RW2 model for data indexed by age a and
period p:

Ya,p|ηa,p ∼ Poisson(na,p,exp(ηa,p))

ηa,p = δ + αa + βp

αa ∼ RW2(σ2
α),

βa ∼ RW2(σ2
β)

with hyperpriors on δ (normal) and σ2
α, σ

2
β .

In the above LGM notation, we have x = [δ,α,β] and θ2 = [σ2
α, σ

2
β].
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INLA

INLA calculates the univariate marginals:

π(θj |y) =

∫ ∫
π(x ,θ|y) dxdθ−j =

∫
π(θ|y) dθ−j (11)

π(xi |y) =

∫ ∫
π(x ,θ|y) dx−idθ

=

∫ [∫
π(xi ,x−i |θ,y)dx−i

]
π(θ|y) dθ

=

∫
π(xi |θ,y)π(θ|y) dθ (12)
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INLA

The latent field x and the variance components θ are treated quite
differently by INLA, because the latter are less normal-like in general,
even after reparameterization.

The nested part of INLA reflects that given values of θ Laplace
approximations are carried out for x , and these are averaged over
using numerical integration techniques.

We now describe the various approximations used in INLA.
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INLA

The marginal posterior is, for any value of x ,

π(θ|y) =
π(x ,θ|y)

π(x |θ,y)

∝ p(y |x ,θ)p(x |θ)π(θ)

π(x |θ,y)

The numerator is available, while the denominator is in general not.

The approximation is,

π̂(θk |y) ∝ p(y |x ,θk )p(x |θk )π(θk )

π̂G(x |θk ,y)
(13)

where π̂G(x |θk ,y) is the Gaussian approximation to the conditional
which is obtained by matching the mode and the curvature at the
mode, and is equivalent to Laplace approximation to the density,
i.e., (10).
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INLA

From ?),

π(x |θ,y) ∝ exp

[
n∑

i=1

log p(yi |ηi ,θ)− 1
2

x TQ(θ)

]

≈ (2π)−n/2|P(θ)|1/2 exp

[
−1

2
(x − µ(θ))TP(θ)(x − µ(θ))

]
where

• µ(θ) is the location of the mode, and
• P(θ) = Q(θ) + diag(c(θ)) with c(θ) being the negative

derivatives of the log-likelihood with respect to xi , evaluated at
the mode.

The Gaussian approximation is likely to be accurate since, relative to
the N(0,Q−1) prior, the log-likelihood terms only shifts the mean,
reduces the variance and may introduce some skewness into the
marginals – crucially, it doesn’t change the dependency structure.
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INLA

The marginal (12), i.e., π(xi |y), needs to be calculated for a
potentially very long vector x .

We could take the marginal from π̂G(x |θk ,y) but unfortunately this is
not generally very accurate.

As an alternative, rewrite as

π(xi |y) =
π(x |θ,y)

π(x−i |xi ,θ,y)

∝ p(y |x ,θ)p(x |θ)π(x ,θ)

π(x−i |xi ,θ,y)

and the denominator can again be estimated estimated using the ?)
density approximation.

?) describe a third approximation, the simplified Laplace which
corrects the Gaussian approximation for location and skewness using
a Taylor’s series expansion about the mode.
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INLA

The INLA computing scheme therefore consists of (?):
1. Explore the θ space via the approximation π̂(θk |y). Specifically,

find the mode of π̂(θk |y) and identify a set of points {θ1, . . . ,θK}
in the areas of high density.

2. For these K points, compute π̂(θk |y) using (14).

3. Calculate π̂(xi |θk ,y) for k = 1, . . . ,K using one of Gaussian,
Laplace, simplified Laplace.

4. Use numerical integration to approximate the marginal,

π̂(xi |y) =
K∑

k=1

π̂(xi |θk ,y)× π̂(θk |y)∆k , (14)

using points and weights {θk ,∆k , k = 1, . . . ,K}.
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Exploring the θ space

First, a “good” parameterization is found, we assume that θ satisfies
this; also let dim(θ) = m.

Find the mode, θ?, and the Hessian matrix H; let H−1 = VΛV−1 be
the eigen decomposition, then form the new standardized variable:

z = (VΛ1/2)−1(θ − θ?),

which adjusts for location, scale, and rotation.
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Exploring the θ space

?) describe three methods for exploration:
1. grid: This approach builds a grid for the standardized variable z.

Unfortunately the number of points grows exponentially with m; if
we use p points in each dimension, pm are required in total.

2. empirical Bayes: just take the posterior mode only, i.e., a single
point.

3. CCD: use a classical design, specifically the central composite
design (CCD) – integration points are placed on spheres.
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Grid versus CCD

Figure 16: Grid (left) and CCD (right) points for numerical integration, from ?).
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INLA: Posterior sampling

Marginals are the standard output of INLA, but various operations
may be carried out using the functions

• inla.dmarginal for density values
• inla.pmarginal for the CDF
• inla.qmarginal for quantiles
• inla.rmarginal for random samples
• inla.hpdmarginal for HPD regions
• inla.emarginal computes the expected values of a function of a

parameter
• inla.tmarginal calculates the marginal distribution of a

transformation of a latent variable or hyperparameter.
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INLA: Practical Advice

Some functionals cannot be obtained using these functions, so
samples may be drawn, and manipulated:

• inla.posterior.sample() draws samples from the approximate
posterior distribution of β and θ.

• To make use of this function, use control.compute =

list(config = TRUE) in the INLA model fit.
• Included in the arguments is selected which allows only specific

components to be sampled.
• In general, the returned sample contains

"hyperpar" "latent" "logdens"
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Notes on INLA

• A small amount of iid error is added to ηi , to make Q
non-singular.

• INLA produces univariate marginals and summaries, by default,
but more flexible inference (including multivariate) can be
achieved by simulating from an approximation to the posterior.

• For example, for the latent field x we sample from a mixture of
multivariate Gaussians, where the weights correspond to the
integration weights (for the grid and CCD options).
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INLA: Practical Advice

To assess accuracy, one may see how much the results change when
different approximation strategies are used.

• Analytic approximation:
inla(...,control.inla=list(strategy="laplace"))

• Numerical integration strategy: inla(..., control.inla =

list(int.strategy = "grid"), ...)

• See all the defaults: inla.set.control.inla.default()
• For reproducible results, and a better approximation: inla(...,
control.inla = list(strategy = "laplace", int.strategy

= "grid", dz=0.1, diff.logdens=20), num.threads=1) The
diff.logdens dictates how far we go into the tails when
exploring the θ space.

• To make use of multiple cores, INLA uses the OpenMP multiple
processing interface, but this produces different results (usually
very small) if the same code is rerun – reproducibility is obtained
with num.threads=1
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