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Logistics
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APC R Packages

There are now a number of packages for carrying out APC modeling.

We will illustrate modeling using:
• Within the Epi package (Bendix Carstensen).
• Via the apc package (Bent Nielsen).
• Bayesian modeling can be carried out in the BAPC package

(Andrea Riebler and Leonhard Held).

Rosenberg and Anderson (2011); Rosenberg (2018) also describe a
Webtool for fitting APC models, with R code in the background.

Thanks to: Bendix Carstensen, Bent Nielsen, Andrea Riebler and
Theresa Smith for sharing thoughts and materials.

4 / 51



My Statistical and Epidemiological Life

From 1990-1995, I was in the Department of Mathematics at Imperial
College, London.

From 1996-1999, I was in the Department of Epidemiology and Public
Health at Imperial College, London.

Since 1999, I’ve been a Professor in the Departments of Statistics
and Biostatistics at the University of Washington.

Since 1996, I’ve worked on spatio-temporal models for health data,
initially for cancer, and more recently with applications in
demography, small area estimation and infectious diseases.

When one considers temporal modeling of chronic diseases,
Age-Period-Cohort modeling is an interesting topic...
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Motivation
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Age-Period-Cohort Modeling

Epidemiologist, demographers and social scientists have a great
interest in time related changes in an event of interest (death, disease
incidence,...).

From Berzuini and Clayton (1994), “...time itself does not cause
disease events: it is simply the scale along which other causes
operate. When we model the dependence of rates upon time we are
attempting to allow for the effects of other variables which we have
failed to measure: the time scale is a surrogate or proxy measure for
other influences.”

If we add relevant covariates to the model, we would expect the
strength of temporal dependence to decrease.

We discuss three time scales that are often relevant for studying
disease development.
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The Three Time Scales

Age effects are due to growing old (independently of exposures).
More specifically, these effects can arise from physiological changes
or accumulation of social experiences; for health, these can be
referred to as wear and tear. From Yang and Land (2013): “Age
effects therefore represent biological and social processes of aging
internal to individuals and represent development changes across the
life course”.

Period effects affect all age groups simultaneously. Examples: world
wars, recessions and booms, famine, infectious disease pandemics,
public health interventions, technological advances. Also, changes in
disease classification.

Cohort effects occur because of specific events occurring at a
particular time to a particular group, e.g., the introduction of a new
medical antenatal practice at some time, which affects babies who
are subsequently born.
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The Three Time Scales: Examples

In the context of respiratory illness:
• Age effects: Loss of elasticity in lung tissue.
• Period effects: A severe air pollution incident.
• Cohort effects: Smoking.

In the context of cancer:
• Age effects: Accumulation of mutations.
• Period effects: Introduction of PSA testing, breast cancer

screening.
• Cohort effects: Smoking, HPV vaccine.
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The Lexis Diagram
• Cohort analyses have been a tool

used by demographers and
sociologists since the late 19th
and early 20th centuries when
cohort started to be recognized
as a key time scale in tracking
vital statistics (e.g., fertility and
mortality).

• In 1875 Wilhelm Lexis introduced
a cohort-age diagram for
representing the time scales
along which we calculate vital
rates (Lexis, 1875; Keiding,
1990).

• The Lexis diagram is a
coordinate system based on
calendar time (period) and age,
in which individual’s trajectories
are drawn as lines of unit slope
joining birth to current time, or
the event of interest (e.g., death).
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Figure 1: The Lexis diagram. Each
line represents a person, with solid
dots indicating death or the event of
interest.
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Figure 2: Age-period-cohort interpretation of the Lexis diagram.
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Figure 3: Aggregated data summarize the Lexis diagram, later we will discuss
how data can be aggregated. Green rectangles are age-period
classifications, blue parallelograms are age-cohort classifications.

This picture suggests we have an underlying temporal point process,
see Keiding (1990) for more discussion of this aspect, we do not
consider it further (though it’s very interesting!).
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The Lexis Diagram

The sum of all the life line lengths in a particular portion of the
diagram represents person-years lived or exposure (risk) time in that
portion.

Life lines and events can be considered from a cohort or period
perspective.

Upper triangular individuals were in the age band to the left on the
y-axis, when the period starts, while lower triangular individuals were
in the previous age band.

For example, consider the bottom square in Figure 4: the 52 cases in
the bottom left upper triangle were all in the age group 40–45 in 1943,
while the 28 cases in the right lower triangle were all in the age group
35–40 in 1943.
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Motivating Data: Male Lung Cancer in Denmark

Calendar time

A
g

e

1943 1953 1963 1973 1983 1993

40

50

60

70

80

90

52

28

51

30

50

23

56

43

44

38

54

43

56

30

62

28

56

60

95

54

64

27

70

65

77

86

115

93

124

102

149

103

172

112

149

114

139

112

140

117

147

118

186

65

84

113

152

140

235

207

282

226

313

247

306

274

372

285

360

248

342

249

280

213

280

166

106

155

196

208

285

311

389

383

542

510

639

436

569

546

663

555

594

496

556

439

491

205

93

120

171

223

256

321

466

489

670

672

869

813

883

771

907

919

1049

836

825

672

735

378

62

79

111

162

209

282

351

517

548

687

877

979

1039

1097

1167

1064

1028

1160

1160

1033

979

506

50

60

96

119

121

179

266

330

387

589

672

776

910

1014

1062

1221

1173

1120

1037

1120

1040

651

23

31

47

79

72

95

110

210

203

311

346

514

499

714

666

893

878

946

806

834

665

556

7

13

20

37

26

61

70

87

85

135

148

242

224

349

299

454

390

491

363

474

404

312

3

4

2

8

7

16

19

29

24

48

31

79

73

103

73

140

115

192

102

184

124

138

Figure 4: Lexis diagram of male lung cancer cases in Denmark, age range
40–89, over the period 1943–1996, these data are in the Epi package, and
were collected by The Danish Cancer Registry and Statistics Denmark.
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Motivating Data: Male Lung Cancer in Denmark
Horizontal , vertical and diagonal lines represent age, period
and cohort. Individuals within these various lines can be
characterized as falling within the relevant boundaries.

To tabulate data by

• age and period, sum over in
the Lexis diagram.

• period and cohort, sum over
in the Lexis diagram.

• age and cohort, sum over
in the Lexis diagram.
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The case data are combined with population data, summed in the
same way.
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Estimating the Time at Risk

• Following Carstensen
(2007, Section A.1) we
describe how population
at risk time can be
estimated from census
data.

• We estimate at risk times
in the triangles A and B,
and these can be
summed up to give
population estimates over
the regions needed for
age-period,
period-cohort,
age-cohort, if needed.

• Let La,p represent the
population size in age
group a at the beginning
of year p.

Figure 5: From Carstensen (2007).
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Estimating the Time at Risk

For simplicity, we estimate the at risk time when the La,p are available
for 1-year age groups and periods (as is often the case).

If no deaths or migrations occurred in the population, we would have
La,p = La+1,p+1.

As the La,p population slides up the parallelogram they are subject
to mortality, and we want to estimate the numbers dying in A and B,
to estimate the populations.

In the presence of mortality, we know the survivors have been at risk
throughout the year, so they contribute an amount,

1
2

La+1,p+1,

to each of A and B – this is the risk time we have to apportion
between A and B.
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Estimating the Time at Risk

Under the assumption that the the deaths in A ∪ B are uniformly
distributed, we can obtain the expected person-time contributions to
the risk time of individuals who die in A or B.

Assuming deaths occur uniiformly over time, the total amount of risk
time contributed to A and B by those dying is

1
2
(La,p − La+1,p+1).
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Estimating the Time at Risk

Those who die in A contribute no risk time to B and their average
contribution to A can be calculated by integration over the triangle A;
for simplicity assume age and period range from 0 to 1.

A person dying at age a, time p contributes a risk time of p
(0 ≤ p ≤ 1), so the contribution (using the density function which is of
height 2) is:∫ p=1

p=0

∫ a=1

a=p
2p dadp =

∫ p=1

p=0
2p(1− p) dp =

[
p2 − 2

3
p3
]p=1

p=0
=

1
3
.

Hence, the contributed risk time is:

1
2
(La,p − La+1,p+1)

1
3
.
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Estimating the Time at Risk
Those who die in B contribute risk in both A and B — if death occurs
at age a and at date p, the person has contributed (p − a) person
years in A and a person years in B.

The average amount contributed to A is, therefore,∫ p=1

p=0

∫ a=1

a=p
2(p−a) dadp =

∫ p=1

p=0

[
2pa− a2]a=1

a=p dp =

∫ p=1

p=0
p2 dp =

1
3
.

Hence, the contributed risk time is:
1
2
(La,p − La+1,p+1)

1
3

Similarly, in B, ∫ p=1

p=0

∫ a=1

a=p
2a dadp =

∫ p=1

p=0
p2 dp =

1
3
.

And the contributed risk time is:
1
2
(La,p − La+1,p+1)

1
3
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Estimating the Time at Risk
Hence:

• given age-period population estimates, from the census or
another source such as World Population Prospects
(https://population.un.org/wpp/), to give La,p,La+1,p+1, or
the Human Mortality Database.

• one can calculate the risk time for each A and B in the Lexis
diagram using the last line of the table (these are age-class
cohort risk times).

A B
Survivors 1

2 La+1,p+1
1
2 La+1,p+1

Dead in A 1
2 (La,p − La+1,p+1)× 1

3 No contribution
Dead in B 1

2 (La,p − La+1,p+1)
1
3

1
2 (La,p − La+1,p+1)

1
3

Sum 1
3 La,p + 1

6 La+1,p+1
1
6 La,p + 1

3 La+1,p+1

• We can estimate the age-class a period p ( ) risk times by:
1
3

La,p +
1
6

La+1,p+1 +
1
6

La−1,p +
1
3

La,p+1

(B contribution replaces a by a− 1).
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A B
Survivors 1

2 La+1,p+1 = 470 1
2 La+1,p+1 = 470

Dead in A 1
2 (La,p − La+1,p+1)× 1

3 = 10 No contribution
Dead in B 1

2 (La,p − La+1,p+1)
1
3 = 10 1

2 (La,p − La+1,p+1)
1
3 = 10

Sum 1
3 La,p + 1

6 La+1,p+1 = 490 1
6 La,p + 1

3 La+1,p+1 = 480

Table 1: An example of person-year contributions to the risk set when
La,p = 1000 and La+1,p+1 = 940. The sum of the risk times is 970, which is
940+(1000-970)/2.
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APC Modeling: A Brief History

For a fascinating review of the early developments of APC mortality
models in the 19th century, see Keiding (2011).

In the mid-20th century, studying cohort effects through simple
techniques such as plots of age-specific mortality by birth year helped
medical researchers understand age-time interactions for diseases
such as tuberculosis (Frost, 1939; Springett, 1950).

Greenberg et al. (1950) introduced a primitive APC model with log
incidence rates of syphilis regressed on a non-linear function of
continuous age and categorical period and cohort effects.
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APC Modeling: A Brief History

The application of APC models to cancer incidence and mortality
gained steam in the 1980s with a series of seminal papers including
Osmond and Gardner (1982); Holford (1983); Clayton and Schifflers
(1987a,b).

Interest in the estimation and identification issues inherent in APC
models:

• Dates back at least as far as the sociology literature in the 1970s
(Mason et al., 1973; Fienberg and Mason, 1979).

• Specific applications in cancer epidemiology began in the 1980s
(Holford, 1983).
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Overview of APC Analysis

The first step is to collate the health, population (and possibly
exposures/covaraites of interest) data, and then massage into a form
convenient for analysis, which will often involve aggregation.

Next, present initial tabulations of the data, and visualizations of rates
as a function of the three time scales; this includes Lexis diagrams.

Age is virtually always included in a disease model and so the Age
Only Model is often the null (starting) model.

Age-Period and Age-Cohort models may be fitted, if supported by the
context, followed by Age-Period-Cohort models, if supported by the
data.

Modeling of APC data, requires an understanding of the inherent
non-identifiability, due to the interplay between the time scales.
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Overview of APC Analysis

Hence, one potential sequence of models we might consider is:
• Age only.
• Age+Linear Period.
• Age+Linear Cohort.
• Age+Period.
• Age+Cohort.
• Age+Period+Cohort.

We will fit the above sequence of models to Danish male lung cancer
incidence data; the analysis results are reproduced in the
accompanying R notes.
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Overview of APC Analysis

Age, period and cohort effects may be modeled in different ways
including:

• Discrete time models: using a categorical classification of time
(i.e., defining factors) with no constraints1 (and often a likelihood
analysis) or placing random walk priors (which encourage
smoothness) on the levels and carrying out a Bayesian analysis.

• Continuous time models: Splines.

The fundamental identifiability of APC models is that when all of age,
period and cohort are included in the model, the same fit to the data
is obtained if we shift up/down or linearly transform (“tilt”) the three
sets of estimates in a compensatory fashion (if we know any 2 of age,
period and cohort, the third is a linear combination).

The curvature (non-linear) aspects are estimable.

1for example, default models do not enforce smoothness which is often unappealing
for time variables
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Figure 6: Illustration of the fundamental identifiability for the Danish lung
cancer data. The curves of like colors provide the same fit, i.e., the fitted
values for a particular set of age, period and cohort values are identical.
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Some Key Statistical References

Clayton and Schifflers (1987a) look at age-period and age-cohort
models in detail.

Clayton and Schifflers (1987b) examine the age-period-cohort model
in detail; issues of model selection and non-identifiability also
considered.

Carstensen (2007) provides a comprehensive, accessible review, and
also functions for fitting and display of APC data in the Epi package in
R. Includes detail on how to aggregate the data for analysis and a
discussion of identifiability and parameterization.

Kuang et al. (2008), Nielsen and Nielsen (2014) and Martı́nez
Miranda et al. (2015) discuss an appealing parameterization.

Smith and Wakefield (2016) discuss and compare various Bayesian
models, including a Bayesian version of the aforementioned
parameterization.
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Initial Data Examinations
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Tabulations and Graphs

It is always worth tabulating the data to check for errors, and see the
magnitude of the counts.

Graphs are more informative for getting an initial idea of the
associations between the disease rates and the the three time scales.
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Table of Person Years (divided by ×105)

Age
Per 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993

40 69.4 75.5 76.9 74.9 75.7 71.0 69.5 75.6 94.1 102.6 75.3
45 62.2 67.7 73.8 75.4 73.7 74.7 69.8 68.1 74.2 92.4 82.1
50 53.9 60.1 65.4 71.6 73.4 71.8 72.5 67.5 65.9 72.0 70.1
55 47.1 51.2 57.1 62.2 68.1 69.9 68.3 68.7 64.1 62.6 54.4
60 40.3 43.5 47.4 52.8 57.3 62.7 64.4 62.8 63.0 59.1 46.3
65 32.9 35.8 38.6 42.0 46.3 50.1 54.8 56.4 54.9 55.3 42.1
70 23.0 26.9 29.5 31.7 34.1 37.4 40.4 44.3 45.9 44.9 36.6
75 14.0 16.7 19.6 21.5 22.9 24.6 26.8 29.0 31.9 33.6 26.3
80 6.8 8.1 9.9 11.6 12.6 13.7 15.0 16.3 17.6 19.6 16.8
85 2.5 2.8 3.4 4.2 4.9 5.6 6.4 7.1 7.8 8.5 7.5

• Decreasing person years with age, which has implications for
estimation.
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Table of Cases

Age
Per 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993

40 80 81 73 99 82 97 86 90 116 149 91
45 135 163 208 226 252 284 263 251 257 265 251
50 197 292 442 508 560 580 657 608 591 493 446
55 261 404 596 772 1052 1075 1115 1218 1090 995 696
60 213 394 577 955 1342 1682 1654 1826 1885 1497 1113
65 141 273 491 868 1235 1856 2136 2231 2188 2193 1485
70 110 215 300 596 976 1448 1924 2283 2293 2157 1691
75 54 126 167 320 514 860 1213 1559 1824 1640 1221
80 20 57 87 157 220 390 573 753 881 837 716
85 7 10 23 48 72 110 176 213 307 286 262

• Once the data are aggregated, there are four recommended
plots (Clayton and Schifflers, 1987a,b; Carstensen, 2007).
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Table of Rates (Cases/Time at Risk) (×104)

Age
Per 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993

40 12 11 9 13 11 14 12 12 12 15 12
45 22 24 28 30 34 38 38 37 35 29 31
50 37 49 68 71 76 81 91 90 90 69 64
55 55 79 104 124 154 154 163 177 170 159 128
60 53 91 122 181 234 268 257 291 299 253 240
65 43 76 127 207 267 370 389 395 399 396 352
70 48 80 102 188 286 388 476 515 500 480 462
75 39 76 85 149 225 350 452 537 572 487 464
80 30 71 88 135 175 285 382 461 501 426 426
85 28 35 67 114 146 196 276 299 396 335 351

• Age and period midpoints are used for row and column labels.
• There is clearly a relationship between the rates and age, with a

general increase and then more gradual decline.
• There is a similar pattern with period, but the magnitude of

change is smaller (maximum row totals are in red).
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Initial Plots: Rates are on log scale

• Plot 1: Rates versus age, with
responses in the same period
connected (log rate scale),
i.e., cross-sectional (in each
period) age-specific rates.

• Figure 7 illustrates. For all
periods there is a relatively
steep increase, followed by a
more gradual decline.

• Plot 1 will exhibit parallel lines
if age-specific rates are
proportional between periods
(i.e., follow an age–period
main effects model).

• The curves are not parallel
which suggests age and
period main effects alone are
not sufficient.
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Figure 7: Plot 1: Danish lung cancer
data: (log) rates against age with each
curve representing one period. Each
period (line) offers a cross-sectional
look at the rates by age.
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Initial Plots: Rates are on log scale

• Plot 2: Rates versus age, with
responses in the same cohort
connected, i.e., longitudinal
age-specific rates.

• Figure 8 illustrates.
• Plot 2 will exhibit parallel lines

if age-specific rates are
proportional between cohorts
(i.e., follow an age–cohort
main effects model).

• The curves are not parallel
which suggests age and
cohort main effects alone are
not sufficient.
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Figure 8: Plot 2: Danish lung cancer
data: (log) rates against age with each
curve representing one cohort. Each
cohort (line) offers a longitudinal look
at the rates by age.
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Initial Plots: Rates are on log scale

• Plot 3: Rates versus period,
with responses in the same
age group connected.

• Figure 9 illustrates.
• Plot 3 will exhibit parallel lines

if age-specific rates are
proportional between periods
(i.e., follow an age–period
main effects model).

• The curves are not parallel
which suggests age and
period main effects alone are
not sufficient.
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Figure 9: Plot 3: Danish lung cancer
data: (log) rates against period with
each curve representing one age
group.

37 / 51



Initial Plots: Rates are on log scale

• Plot 4: Rates versus cohort,
with responses of the same
age connected.

• Figure 10 illustrates.
• Plot 4 will exhibit parallel lines

if age-specific rates are
proportional between cohorts
(i.e., follow an age–cohort
main effects model).

• The curves are not parallel
which suggests age and
cohort main effects alone are
not sufficient.
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Figure 10: Plot 4: Danish lung cancer
data: rates against cohort with each
curve representing one age group.
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Factor Models
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One-Way Factor Models

We digress to discuss ANOVA models, since one approach to
analysis of APC data treats each of age, period and cohort as factors.

Consideration of the ANOVA model also helps understand the
non-identifiability associated with age-period-cohort models.

Suppose we have a factor with A levels and the simple linear model:

E[Ya] = δ + αa,

for a = 1, . . . ,A.

No ordering or similarity assumed for [α1, . . . , αA]; they are
exchangeable – this is unappealing for an ordered time variable
where we will often expect smoothness over time – later we will
discuss random walk models that encourage smoothness.

The set of parameters θ = [δ, α1, . . . , αA]
T is not identifiable.
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Identifiability in a Model with a Single Factor

Informal definition of identifiability: Identical description (fit) to a set of
data arising from different sets of model parameters.

And the different parameter sets, may have very different
interpretations.

We start with a simple example of non-identifiability that arises in any
model with factors.
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Identifiability in a model with a single factor
The model can be expressed as

E[Y ] = xθ =


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1


︸ ︷︷ ︸

A×(A+1)


δ
α1
α2
...
αA


︸ ︷︷ ︸
(A+1)×1

The LS estimator θ̂ = (x Tx)−1x TY does not have a unique solution
since (x Tx)−1 is singular — we see that in x the sum of columns 2 to
(A + 1) is equal to column 1.

To gain an identifiable set of parameters, we require a single
constraint.

The most common solutions are:
• Corner-Point Constraint: Set α1 = 0.
• Sum-to-Zero Constraint: Enforce

∑A
a=1 αa = 0.

Parameter interpretation of each constrained set is different. 42 / 51



Identifiability in a Model with a Single Factor

Identifiability corresponds to the same fit corresponding to different
sets of parameters.

Recall θ = [ δ, α1, . . . , αA ].

The identifiability problem occurs because we can add a constant, a,
say to δ, and subtract that constant from each αa, and obtain the
same fit.

The transformation that represents the different sets of parameters is

G = {g : gθ = (gδ, gα)}

where

gδ = δ − a

gα = {αa + a}A
a=1

for any real number a.
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Identifiability in a Model with a Single Factor
For simplicity, suppose A = 2.

The unconstrained (non-identifiable) set is

(δ − a)︸ ︷︷ ︸
δ?

+ (α1 + a)︸ ︷︷ ︸
α?

1

= δ + α1

(δ − a)︸ ︷︷ ︸
δ?

+ (α2 + a)︸ ︷︷ ︸
α?

2

= δ + α2

so that the fit of the parameter set θ = [δ, α1, α2]
T is identical to the

parameter set θ? = [δ?, α?1, α
?
2]

T, and θ 6= θ?.

But note for any a 6= 0:

δ 6= δ?,

α1 6= α?1,

α2 6= α?2,

θ = [10,5,3] gives the same fit (a=5) as θ? = [5,10,8] with fitted
values of [15,13] under both parameter sets.
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Identifiability in a Model with Two Factors

In a two-way array of data Yab, with two factors and A and B with A
and B levels, respectively, consider the main-effects only model,

E[Yab] = δ + αa + βb,

for a = 1, . . . ,A, b = 1, . . . ,B; we have 1 + A + B parameters.

In the situation in which the two factors, we require two constraints to
ensure identifiability.

45 / 51



Identifiability in a Model with Two Factors
The model is

E[Yab] = δ + αa + βb,

for a = 1, . . . ,A, b = 1, . . . ,B.

The corner-point constraints are α1 = β1 = 0.

The two sum-to-zero constraints are
A∑

a=1

αa =
B∑

b=1

βb = 0.

In both cases we have

1 + (A− 1) + (B − 1) = A + B − 1,

identifiable parameters.

The extension to more factors is immediate, so with 3 factors, we
need 3 constraints, and the number of identifiable parameters is

1 + A− 1 + B − 1 + C − 1 = A + B + C − 2.
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Interpretation for Single Factor Model

In the single factor model

E[Ya] = δ + αa,

for a = 1, . . . ,A, with the
• corner-point parameterization, δ is the mean response at level 1,

and αa is the mean difference between level a, a = 2, . . . ,A, and
level 1.

• sum-to-zero parameterization, δ is the overall mean response,
and αa is the difference between the mean for level a,
a = 1, . . . ,A, and the overall mean.
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Interpretation for Two Factor Model

Now we consider interpretation in the main effects only two factor
model:

E[Yab] = δ + αa + βb.

Under the:
• Corner-point parameterization, δ is the mean response at the

first level, and αa is the mean difference between level a,
a = 2, . . . ,A, and level 1 (regardless of the level of B) and βb is
mean difference between level b, b = 2, . . . ,B, and level 1
(regardless of the level of A).

• Sum-to-zero parameterization, δ is the overall mean response,
and αa is the difference between the mean for level a,
a = 1, . . . ,A, and the overall mean (regardless of the level of B)
and βb is the difference between the mean for level b,
b = 1, . . . ,B, and the overall mean (regardless of the level of A).
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Interpretation for Two Factor Model

To emphasize: being in column b (a) is associated with a change in
the mean response of βb (αa), regardless of the level of factor A (B),
i.e., there is no interaction.

A plot of the responses versus factor A (say) levels, with separate
lines for each level of factor B, across levels of factor A, will be
parallel if the main effects model is appropriate.
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Cartoon of No Interaction between Factors A and B

Factor A

y

Factor B Level 1

Factor B Level 2

Level 1 Level 2 Level 3

• The parallel lines indicate that a main effects only model is
sufficient to describe these data.

• Could flip this around so Factor B on the x-axis — Initial Plots 1
and 3 do this with age and period as factors, and Initial Plots 2
and 4 do this with age and cohort as factors.
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Concluding Remarks

• Begin by getting the required time at risk and tabulating the data.

• The Lexis diagram is a useful summary.

• The four plots we have described are initial explorations of
whether rates are proportional between periods or cohorts.

• Identifiability is ubiquitous in factor models, but as we will see is
much more difficult to conceptualize/deal with in APC models.
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