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Notation and Preliminaries




APC Notation

Age is time from birth and is usually discretized into single years or
five-year intervals.

Period is the time at which the event of interest (incidence/mortality)
was recorded. Discretized into single years, or groups of years.

Cohort is the time at which birth occurred. Recorded as a single year,
or a collection of years.
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Let a, p, ¢ index age, period, cohort.

A key observation is that given any two of age-period-cohort, the third
can be derived.

Different authors use different indexing:

e We can index in terms of calendar dates and years, e.g., a = 70,
p = 2005, ¢ = 1935. In thiscase, c = p — a.

e More usually (and we use this notation), each of the factors is
indexed from 1 onwards in the usual way, i.e., a=1,... A,
p=1,...,P,c=1,...,C. Inthiscase,c=A—a+p.

Note that the number of cohort levelsis C=A+ P — 1.
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Tabulation

Period
1 2 3 4 5
5/1 2 3 4 5
412 3 4 5 6
Age 3|3 4 5 6 7
214 5 6 7
115 6 7 9

Table 1: Here we display A = 5 age groups and P = 5 periods. Indices of

age, period, and cohort for equal-width age groups and time intervals. The
first row and last column give the distinct cohorts; 5 is in both so there are

C=A+ P —1=9cohorts.

The cohorts (which are distinguished by different colors) proceed up
the diagonals, as in the Lexis diagram.

Notice that the first and last cohorts (with indices 1 and 9,
respectively) have a single observation only, which has implications
for model fitting (sampling variability).



e Suppose we wish to forecast rates for time periods 6-8 using a
model with age, period and cohort terms and no interactions.

e The indices in bold green indicate the cohort effects that need to
be forecasted to generate predictions for these time periods.

e The period effects 6-8 need to be forecast also.
e The age effects are already present.

Period
1 2 3 4 5| 6 7 8
511 2 3 4 5 6 7 8
412 3 4 5 6 7 8 9
Age 3|3 4 5 6 7 8 9 10
2/4 5 6 7 8 9 10 M1
115 6 7 8 9|10 11 12

Table 2: Indices of the age, period, and cohort parameters for equal-width
age groups and time intervals.
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Due to the dependence between a, p and ¢, we only need to index
data and model parameters by two of the three; a is usually taken
along with one of p or c.

Let Yy, be the number of disease counts observed in period p and
age group a; cohort is found from ¢ = A — a+ p — we assume data
are available at a yearly time scale.

Suppose
E[Yap] - Nap)‘apv
denotes the mean, where
o Ny, is the number of person years at risk.
e )\ is the rate per year of new events.



Interpretation in Simple Models

A Poisson model is a natural starting point for the modeling of rates
for a rare disease — the rate parameter is positive, so loglinear models
are common.

To tie down interpretation, suppose first we have the age main effects

only model:

log Aagp = 0 + aa,
fora=1,..., A, with oy = 0 (corner-point constraint) for identifiability.
Then,

E[Yla=a"] exp(d+aa) exp(aa:)
E[Yla=1] _ exp(s) oo
so that exp(ag+ ) is the relative rate (or rate ratio) comparing the

disease rate in age a* to the disease rate in the first age group —
doesn'’t tell us about the absolute level, only relative to baseline.

Tor an overdispersed version



Interpretation in Simple Models

Again consider the model
|0g Aap = 6 + aa,

fora=1,... A

In anticipation of models we examine later, consider the first and
second differences:

Aag = ag— g1
Azaa = Aazg—Dag g = (aa - aa—1) - (Oéa—1 - Oéa—2)
Slopea—1—a Slopea—2—a-—1
= aa— 203 1— Qa2

The first differences tell us the change in the relative (log) rates
between consecutive ages — if +ve/-ve, the rate is
increasing/decreasing.

The second differences tell us how the local slopes are changing — if
+ve/-ve, the difference in slopes is increasing/decreasing.
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Interpretation in Simple Models

To tie down interpretation, suppose first we have the age and period
main effects only model:

log Ag = 0 + g + Bp,
fora=1,...,A,p=1,..., P, with ay = 7 = 0 for identifiability.
Then,

E[Y|a=a*,p = p*] _ exp(d + g+ + Bp)
E[Y|a=1,p=p*] exp(d + Bp+)

— exp(aa)

so that exp(«a,- ) is the relative rate comparing the disease rate in age
a* to the disease rate in the first age group, with the period held
constant — but with no interaction, this age association is the same for
all periods.
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Age-Period and Age-Cohort Models
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Age-Period Models

We now discuss the fitting of age-period models.

Obvious but key point: These models assume no cohort effects.

Let Yz be the number of disease counts observed in period p of age
aand E[Yzp] = NzpAgp denote the mean, where Ny, is the number of

person years at risk.

Various plausible models are listed in Table 3.

Form of log A\sp | Description No of Parameters

Qa Age (factor) effects only A

aa+ Pp Age and period (factor) main effects | A+ P — 1

az+Bxp Age and linear period effects* A+1

aa+ g(p) Smoother in period Depends on smoother
f(a)+ g(p) Smoothers in age and period Depends on smoother
g+ Pp + vap Interaction (factor) model AxP

Table 3: Age-period models, *known as the drift model.
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|dentifiability in the Age-Period Model

Consider the model

log Aap = f(a) + 9(p).

The functions f(a) and g(p) are not identifiable since we can write

log Aap = [f(a) + K] + [9(P) — K]

for some constant k.

Hence, only contrasts (i.e., differences, or first derivatives) of f(-) and
g(+) are identifiable.

This isn’t a big deal, since we can “tie down” one of the curves (see
later).

14/64



|dentifiability in the Age-Period Model

As an example, in the linear model with
f(a) = ki +ca

and
9(p) = ko + Bp

we obtain,
|Og Aap =0 +aa+ ,Bp,

and we cannot uniquely identify f(a) and g(p), since 6 = ki + ko).
But differences such as
f(4) — f(2) = 2

or
9(6) —9(1) =58,
are identifiable.
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|dentifiability in the Age-Period Model

In other words, there is no way to determine from the data alone the
absolute levels of f(-) and g(-).

In the apc.£fit function in the Epi package, various
parameterizations are available.

Identifiability can be obtained by (say) picking a reference period py
and taking g(po) = 0.

With this choice f(a) is interpreted as the age-specific log rate in
period py and g(p) as log rate ratios of period p as compared to py.

As an alternative we could pick a reference age ap, and look at rates
relative to this point.

16/64



|dentifiability in the Age-Period Model

APv2 <— glm( D ~ factor(A) + relevel( factor(P), "1971.5” )
+ offset( log(Y) ), family=poisson, data=dfEpi )

 rate per 100,000 PY.
5
°

Lung cancer
Rale ratio

Age Date of diagnosis

Figure 1: Left: Age levels interpretable as age-specific rates in period
po = 1971.5. Right: Period levels are interpretable as rate ratios of period p
relative to pp = 1971.5. Shaded regions are 95% confidence intervals.
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Age-Cohort Models

o Various age-cohort models can be fitted.
e Again obvious, but key point: These models assume no period
effects.

e Let Y, be the number of disease counts observed in cohort ¢ of
age a and E[Yzc] = NacAac denote the mean, where Ny is the
number of person years at risk.

e Various plausible models are possible.

Form of log Aac | Description No of parameters

Qa Age (factor) effects only A

Qa+ Ve Age and period (factor) main effects | A+ C — 1

ag+vyxcC Age and linear period effects* A+1

aa+ h(c) Smoother cohort Depends on smoother
f(a) + h(c) Smoothers in age and cohort Depends on smoother
Qa+ Yo + Vac Interaction (factor) model AxC

Table 4: Age-cohort models, *known as the drift model.
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Equivalence of Drift Models

Suppose the true model is linear in period p and cohort c:

logAgp = aa+Bp+n~cC.
In an age-period model (c = A— a—+ p):
loghsp = aa+pBp+y(A—a+p)
= aa+(B+7)p+v(A-a)
= o +8p
~—~

aaty(A-a) Bty
In an age-cohort model (p =c— A+ a):
loghae = aa+pB(c—A+a)+nc
= aat(B+7)c+B(A-a)
= \a’;/ +\7;c
agt+p(A—-a) Bty
So identical slopes are obtained since
Bl=v*=8+1.
This is referred to as the net drift and is estimable. 10768



Age-Period and Age-Cohort Models

Different age curves are generated by the two drift formulations, aL
and a3, so unless the age incidence relationship is known, the
models are indistinguishable (Clayton and Schiffler, 1987, page 470).

Clayton and Schifflers (1987) refer to the age relationships estimated
by the age-period model as cross-sectional age curves and the
age-cohort model as longitudinal age curves.

A related discussion is the inability to estimate both cohort and
longitudinal effects from cross-sectional data (Diggle et al., 2002).

Note that the age-period and age-cohort models are not nested and

so they cannot be tested against each other using likelihood ratio
tests.
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Drift Model for the Danish Male Lung Cancer Data

In the Danish lung cancer data there are 10 age groups, and 11
periods, hence 110 total cells.

The Age model has 10 distinct levels — age is given special status,
since age is almost always a very important component, and a
flexible model is used.

In Table 5 we take output from the apc function in the Epi package.

The drift model is a huge improvement over the Age only model.

Resid. Df | Resid. Dev | Df | Deviance p-value
Age 100 15103.0
Age-drift 99 6417.4 1 8685.6 | <22x 1076

Table 5: Drift model for Danish male lung cancer data.
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Period Drift Model for the Danish Lung Cancer Data

The fits, and residual deviance and degrees of freedom are identical
under the two models (Age with Period Drift/Age with Cohort Drift),
but the age effects are different in the two models?.

Estimate Std. Error  zvalue Pr(>|z|)
(Intercept) -55.0584 0.5093 -108.11  0.0000
as.factor(A)47.5 0.9497 0.0367 25.86  0.0000

as.factor(A)52.5 1.7936 0.0338 53.03  0.0000
as.factor(A)57.5 2.4405 0.0326 74.76  0.0000
as.factor(A)62.5 2.8947 0.0322 90.02  0.0000
as.factor(A)67.5 3.1809 0.0320 99.40  0.0000
as.factor(A)72.5 3.3428 0.0321  104.19  0.0000
as.factor(A)77.5 3.3315 0.0326 102.17  0.0000
as.factor(A)82.5 3.1951 0.0342 93.35  0.0000
as.factor(A)87.5 2.9305 0.0402 72.83  0.0000

P 0.0233 0.0003 90.70  0.0000

2and differences between age groups, so not just an intercept issue
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Cohort Drift Model for the Danish Lung Cancer Data

Estimate Std. Error  zvalue Pr(>|z|)
(Intercept) -54.0679 0.4984 -108.49  0.0000
as.factor(A)47.5 1.0663 0.0368 29.01  0.0000
as.factor(A)52.5 2.0266 0.0339 59.73  0.0000
as.factor(A)57.5 2.7901 0.0329 84.82  0.0000
as.factor(A)62.5 3.3608 0.0326  103.16  0.0000
as.factor(A)67.5 3.7636 0.0326 115.36  0.0000
as.factor(A)72.5 4.0420 0.0329 122.73  0.0000

(A)

(A)

(A)

as.factor(A)77.5 4.1472 0.0337  123.01 0.0000
as.factor(A)82.5 41274 0.0356 116.09  0.0000
as.factor(A)87.5 3.9793 0.0416 95.59  0.0000

Cterm 0.0233 0.0003 90.70  0.0000
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|dentifiability
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|dentifiability in the Age-Period-Cohort Model

Age, period, cohort effects can all be present in a particular
population, the difficulty is in estimating the effects because of
non-identifiability.

Non-identifiability occurs because, as already stated, given any two of
age, period, cohort the third can be deduced.

The basic APC model is,
log Aap = Map = 0 + aa + Bp + e, (1)
where the cohortindexisc=A—a+ p.

In this model, it is tempting to
e interpret ¢ as the overall log rate of incidence and

« to interpret differences in the age effects («), period effects (5,),
or cohort effects (v.) as log relative rates.

However, direct interpretation of these effects is difficult because the
model is over parameterized.
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A general main effects only (i.e., no interaction) model is

nap = log \ap = f(a) + g(p) + h(c),

for functions f(a), g(p), h(c), and where c = A— a+ p.
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Non-identifiable Slopes

As a hint of the identifiability problems to come, suppose we wish to
estimate (log-)linear slopes:

logdagpe = 0+ pa+p+pCc
= d+pra+pp+8°(A-a+p)
0+ A+ (8" =% a+ (87 + 5% p (2)
—_—— —,— ——
Intercept “Age” Slope “Period” Slope

so that the slopes 3, 57 and ¢ are not identifiable, due to the linear
relationship between a, p, and c.
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A Helpful Explanation?

Suppose we wish to estimate slopes and quadratic terms in the
model:

log e = 0+ pBa+ B p+8°c+~"a ++"p% +1°c
5+pa+ B p+BYA—a+p) +71 & ++"P° ++°(A—a+p)’
= 6+ BCA+CA 1 (BN -8 —2A%)a+ (87 + 8% +24%)p

Intercept “Age” Slope “Period” Slope
A C 2 P C 2 C
+ () a+ (v +y) P v 2ap @)
N—— —_—— ~—~
“Age” Quadratic “Period” Quadratic “Age-Period” Cross Term

so that the slopes *, 57 and 3° are not identifiable, due to the linear
relationship between a, p, and ¢, but the quadratic terms 7, 47 and
~C terms are identifiable.

Because the cohort indices are a linear combination of the age and
period indices, we can’t identify linear terms in the model — more on
this later, when we consider second difference models that are locally
quadratic.
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|dentifiability in the Age-Period-Cohort Model

There are two sources of identifiability to consider.

The simpler one to account for is that which always occurs in models
with factors: with an intercept in the model, we have one more level
than is estimable and so three constraints are required.

A typical solution is to impose corner-point or sum-to-zero constraints.
The same thing happens with factors replaced by smoothers; Simon

Wood recommends having an intercept and sum-to-zero constraints
for each smoother:

https://rdrr.io/cran/mgcv/man/identifiability.html
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|dentifiability in the Age-Period-Cohort Model

The more insidious form of identifiability arises because of the linear
dependence between the three factors:

c=A—-a+p,

and there is no solution to this problem —in some situations in which
non-identifibability arises (e.g., ecological inference) additional data
can help, but not here...

Instead one must make assumptions if one wishes to directly
interpret the parameters in equation (1), or not interpret these
parameters, but only interpret those parameters that are identifiable.

Further, these assumptions are uncheckable from the raw data alone.

If we're just interested in forecasting then individual parameter
interpretation not as critical but, as we will see, certain models
produce forecasts that are invariant to the way that identifiability is
overcome.
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|dentifiability in the Age-Period-Cohort Model

Suppose we group the intercept, age, period, and cohort effects into
a single vector, 8, where

HT:[67aT7ﬂT7’YT]:[§7a17"'7aA7ﬁ17"’7ﬁP7’y17"'7"yC]7 (4)
withC=A+P—1.

We see that, for a suitably defined design matrix x, the vector of log
rates is n = n(0) = x'6.

The matrix x is rank deficient in this case because the entries
corresponding to the cohort effects are linearly dependent on the
entries for the age and period effects and because of the general
factor problem, as described above.
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|dentifiability in the Age-Period-Cohort Model

Thus, the full set of age, period, and cohort effects are not identifiable.
With respect to the parameter set

0" =1[6a", 8,y 1=[0a1,...,a4,B1,---,Bp,71,---»,7¢ ],
there are

1 + A-1+P—-1+C—-1-1 the last because of c=A—a+p
= 1+A-14+P-14+(A+P—-1)—1-1
2(A+P)—4

identifiable parameters.
Distinguish between ‘regular’ situations with 3 factors, e.g., age,

gender, race.
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|dentifiability in the Age-Period-Cohort Model

Several authors, beginning with Fienberg and Mason (1979), have
discussed the non-identifiability of the individual terms of the APC
model.

Kuang et al. (2008b) and Nielsen and Nielsen (2014), following

Carstensen (2007), define the identifiability issue from a group
theoretic perspective.
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|dentifiability in the Age-Period-Cohort Model

The overall linear predictor
Nap = 0 + aa + Pp + e,
is
e invariant to a translation on each set of effects and

e addition of a linear trend in the age, period, and cohort
parameters.
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|dentifiability in the Age-Period-Cohort Model

The group of transformations that give identical fits is

where
g8 = d—a—-b—c—(A—-1)d (5)
ga = {ag+a+(a—1)a}o, (6)
98 = {Bo+b—(p—1)a},, (7)
a=A,p=P
97 = (Vaaptct[(A-T1)—(a—1)+(p—1)]d (8)
=A—a+p—1 a=1,p=1

for any real numbers a,b,c,d.

An interpretation of these numbers is that a, b, c are the overall
levels of the age, period, cohort effects, respectively, and d is the
linear trend.
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|dentifiability in the Age-Period-Cohort Model

The log rates are invariant with respect to these transformations.

Specifically, for any choices of the indices of the three factors a, b, c,
Nap(96, 90a, 9B, gvc) = [6—a—-Db—c—(A—1)d]
+laa+a+(a—1)d]
[ Bp+b—(p—1)d]
+[vaaptct(A-—atp—1)d]
= 0+ aa+ Bp+va-arp
= 77ap(5, Qg, /8p7 'Yc)~
Hence, for any g,

Nap(90) = nap(99, 9ava, 9Bp, 9c)
= nap(57 Qg 5p; ’Vc)
= 7ap(6).
Since the data likelihood only depends on the age, period, and cohort
parameters through the log rates, it is also invariant to these groups
of transformations.
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|dentifiability in the Age-Period-Cohort Model

To obtain identifiability, sum-to-zero constraints,
Zaa = Zﬁp = Z'}’c =0,
a P c

are a common solution (another is corner point constraints).

The total number of non-identifiable parameters is 4, but the
sum-to-zero constraints reduces this number by 3 (effectively fixing
the values a, b, c).

This gives identifiability of the intercept ¢.

But this does not solve the identifiability problem caused by the linear
relationship between cohort, period and age.

This linear relationship means that separate linear associations with
each of age, period and cohort are not identifiable.

We require one more constraint to produce an identifiable set.
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|dentifiability in the Age-Period-Cohort Model

One approach is to assume two period or two cohort effects are equal
(Mason et al., 1973).

For example, Clayton and Schifflers (1987) consider restricting the
first differences of the period effects i.e.,

B2 = B1,83 — B2, ..., Bp — Bp-1

to be zero on average, which is equivalent to the restriction 51 = Sp.

Alternatively, one can restrict a sequential pair of effects to be equal
(.9, M1 = 72).

Holford (1991) rejects these approaches because the estimated
effects will depend on which pair of effects are restricted, and
generally there is no scientific rationale for choosing, say v1 = ~2 over
Va4 = 7s.
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|dentifiability of Age-Period-Cohort Model

One approach to the identifiability problem of APC models is to
express the model only in terms of those functions of the age, period,
and cohort parameters that are estimable.

For example, Holford (1983) partitions each set of effects into the
linear effect and a curvature effect.

Linear combinations of the curvature effects (for example, the

average) are estimable, and some functions of the slopes in the age,
period, and cohort effects are estimable.

39/64



|dentifiability of Age-Period-Cohort Model

Suppose again that 54, 37, and 3¢, are the linear slopes of the age,
period, and cohort effects.

Holford’s model consists of factors for each of age, period and cohort
— from these sets of factors, the estimable linear trends can be
calculated.

The design matrix is then parameterized by the linear trends, and the
remaining non-linear terms.

Under this parameterization, the curvature effects and linear
combinations of the slopes of the form

up? 4+ vB” + (v —u)B°,
for different values of u, v are estimable, as we show on the next slide.

As examples:
e setting (u,v) = (1,
e setting (u,v) = (0,
as we saw earlier in (2).

0) we see that g4 — ¢ is identifiable and
1) shows 7 + ¢ is identifiable,
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|dentifiability of Age-Period-Cohort Model

As discussed above, the log rates are invariant to the addition of a
linear trend d to the age and cohort effects and subtraction of d from
the period effects, i.e.,

B = p+d,
B” = B7-q,
B¢ = p°+a4
Then,
uﬁA*—FvBP*—F(vfu)ﬂc* = w+vB +(v—1)B° +ud—vd+ (v —u)d

up? +vp7 + (v —u)p°.

Hence, these functions of the linear slopes are invariant to any
transformation g.
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|dentifiability of Age-Period-Cohort Model

Rosenberg and Anderson (2011) showed that many epidemiological
summaries, such as longitudinal or cross sectional age trends, can be
expressed as estimable functions of the parameters in Holford’'s APC
model.

These summaries are available in a user-friendly web tool from the
National Cancer Institute:

http://analysistools.nci.nih.gov/apc/

The R code is here:

https://github.com/CBIIT/
nci-webtools-dceg-age-period-cohort/blob/master/apc/apc.R
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Models for the Danish Male Lung Cancer Data

In the Epi package, factor or spline models can be fitted.

Table 6 gives summaries from the factor model, via the call:

apc.fit( dfEpi, model="factor",parm="ACP")

Resid. Df | Resid. Dev | Df | Deviance p-value
Age 100 15103.0
Age-drift 99 6417.4 1 86856 | <22x107'®
Age-Cohort 81 829.6 18 | 5587.8 | <22x107'®
Age-Period-Cohort 72 208.5 9 621.1 <22x1071®
Age-Period 90 2723.5 -18 | 25149 | <22x107'®
Age-drift 99 6417.4 -9 | -3693.9 | <22x1071®

Table 6: Factor models for Danish male lung cancer data.
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Models for the Danish Male Lung Cancer Data

o Everything is significant when added — sample size is very big
here, so complex models favored.

o We begin with Age as the null model, with period and cohort
giving highly significant reductions in the deviance.

o Informally (AIC?) cohort appears to have a stronger association
than period.

o Holford (1991) (among others) discusses cohort effects for lung
cancer.

o Figure 2 clearly illustrates the identifiability associated with the
APC models!
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Figure 2: Age-period-cohort estimates from the factor model. Curves with
added annual period drifts of -4%, -3%,. ..,4% are also shown. The rates
predicted from curves of like colors are the same.
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|dentifiability in the Age-Period-Cohort Model

Alternatives to using all of age, period, cohort include using simpler
two-factor models or a two-factor model with a predictor
(‘characteristic’) in place of the third factor (O’Brien, 2000).

For example, a plausible model for lung cancer rates may include age
and period factors and the smoking rate as a linear predictor.

Replacing the effects of one time scale with an explanatory variable
(here, smoking) is a good alternative to the full age-period-cohort
model in simple problems where the disease generating process is
well understood.

However, access to the relevant data may be an issue, and

forecasting disease rates would require forecasts of explanatory
variables.
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A Canonical Parameterization
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A Canonical Parameterization

Kuang et al. (2008b) suggested a related parameterization of APC
models to that of Holford, which we now discuss.

Kuang et al. (2008a), Kuang et al. (2008b), Nielsen and Nielsen
(2014) and Martinez Miranda et al. (2015) parameterize the APC
model in terms of three initial log rates and the full set of second
differences for data with equal-width age and time intervals.

Kuang et al. (2008b) construct a mapping from the rates at three
initial time points using age-cohort indices (i.e., nac instead of 7).

We focus on a parametrization in Martinez Miranda, Nielsen and
Nielsen (2014) based on age-period (ap) indexing.

We refer to this as the MMNN model.
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A Canonical Parameterization

The parameter set consists of
o three sets of second differences, and
o three points 54, that are chosen to identify the shared level and
the linear trend.

Hence, the parameter set is

0 = [na1,m41 —NA-1,1,142 — 1A1,
A2a3, ey AZOzA,
A2537 ey AZBP?

A2Fy3a tee A2’YA+P71 ]
which is of length 2(A + P) — 4, as required.
Kuang et al. (2008b) show that the parameter @ is identifiable in that
n(0) =n(6”)
only if
0=0".
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A Canonical Parameterization

Next, the link between the parameter vector and the log rate is
derived.

From Theorem 1 of Martinez Miranda et al. (2015), the overall log
rate can be written as

Nap= nar +(@—A)(nar —na-1,1) +(p—1)(na2 — na1)
<~

Overall Level Linear Trend Linear Trend
A-2A-2 A—a+tp t
2 2
DI W 3 ST 3 SN
t=a s=t t=3 s=3

Time Effects
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A Canonical Parameterization

This means that, for a design matrix x, we can write n = x"60, where
0 is,

2 2 2 2 2 2
[na1,na1—na=1,1, Na2—na1, A%as, ..., A%aa, APs, ..., A Bp, A3, ..., A%yarp_1].

The entries in x are equal to the multiplicative factors in (9).

For example, for A= P =3 (sothat C =5

~

, the mapping is

M1 1 —2 0 1 0 1 0 0

Mo 1 2110210 s

M3 1 2 21132 1]|[B "
e 1. 100000 0f[","™
m2|=[1 -1 100100 AZ(ES
T3 1 -1 201210 A2
a1 1 0 000O0O0O A2%
32 1 0 100000 AJ“
733 1 0 201100 e
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A Canonical Parameterization

Note this parametrization has four fewer parameters than the model
with an overall rate and the full set of age, period and cohort effects.

This makes sense because the group transformation g, given by
(5)—(8), is defined by four real numbers.

The parameters 0 are easily estimated via standard Poisson
regression where the columns of x are treated as the predictors.

This can be done directly or using the apc package (Nielsen, 2014).
Just as the set of estimable functions for the linear trends in Holford’s
model is infinite, the choice of the three initial points in the Nielsen

parameterizations (which are, equivalently, functions of first
differences) is not unique.
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A Canonical Parameterization

¢ Instead of o Using this guideline, as an
example, the baseline rates
{na1,ma-11,ma2} reflect the rates in the middle
of Table 7 rather than the
we can choose any three corners.
{77/1/‘1 s Migjo s 77/3/3} Period
as long as the indices of the 5 } 2 g j g
three points are not linearly 4|2 3 4 5 ¢
dependent (see Corollary 1 in Age 3|3 4 5 6 7
Kuang et al. (2008b)). o|l4 5 6 7
 Nielsen and Nielsen (2014) 115 6 7 9

choose |ln|t|al points based on Table 7: There are A = 5 age groups
the median age and cohort and P = 5 periods. Indices of age,

levels and not on the period, and cohort for equal-width age
extremes, as in earlier papers. groups and time intervals.
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|dentifiability of Age-Period-Cohort Model

The second differences (second derivatives, accelerations) in each of
age, period and cohort are identifiable, see Holford (1983); Clayton
and Schifflers (1987) and Kuang et al. (2008b).

This is somewhat surprising when first encountered!

We may write each of the functions as polynomials, for example:

f(a) = L(\a’@ +(a— ao)f'(a) + (a— a)*f" (a0) + - - -

Intercept Linear Term Quadratic Term
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|dentifiability of Age-Period-Cohort Model

Knowing the second derivatives®, does not uniquely identify the linear
part of the function, or the level.

For example, for the quadratic,
f(a) = Aa® + Ba+ C,

the second derivative is
f’(a) = A,

which is consistent with any B and C, i.e., with any slope or intercept.

Sor second differences
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|dentifiability of Age-Period-Cohort Model

Now suppose f(a) = aa.

The first differences are
Aoy = ag — aa_t,

and eliminates (doesn’t tell us anything about) the level (intercept).

The second differences are

A2a, = Aag—aa )
= Aag— Aag_q
(aa - aa—1) - (aa—1 - Ola—z)
Slope is in here Slope is in here

= aa— 203 1+ 0z 2

and eliminates (doesn’t tell us anything about) linear trends.

This helps to understand why the level and linear trends can be
non-identifiable, but the second differences be estimable.
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f(Age)

D20, = Ada=A0,1 >0 D20, = Ada=A0,1 >0

b s
I =]
Aoy Aay
o
=
g
7 7
Sl El
Aay Adtgs
s - EE
T T 1 s T T
a-2 a-1 a a-2 a-1
Age Age

Figure 3: Curves with A%a;, > 0.
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f(Age)

D20, = Ad—A0_, <0

D20, = Ad—A0_, <0
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Figure 4: Curves with A%a, < 0.
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Figure 5: Estimated second differences for the Danish lung cancer data: (a)
Age, (b) Period, (c) Cohort. The blue and red lines are at 1 and 2 standard
errors from zero.

The period and cohort second differences are not so different from
zero, while the age second derivatives are all negative which is
consistent with a slowing down of the age effect.
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Conclusions

o Age-Period-Cohort models suffer from serous identifiability
problems which mean that unless uncheckable assumptions are
made, levels and linear trends in each of the three components
are not interpretable.

e APC models can be used for producing fits and forecasts, which
are an important use.

e Second order terms are interpretable.

o The factor models we have seen so far do not acknowledge the
temporal ordering of the levels.

e The Bayesian models we examine in the next lecture recognize
the ordering.

e Spline models provide a parsimonious way of encouraging
smoothness of rates that are close.
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Cubic Smoothing Splines

Proof: The proof has two parts, and is based on Green and
Silverman (1994, Chapter 2).

We begin by showing that a natural cubic spline minimizes (??)
amongst all interpolating functions, and then extend to
non-interpolating functions.

Assume that x; < ... < x,. We consider all functions that are
continuous in [xy, Xp], with continuous first and second derivatives,
and which interpolate (x;, y;), i=1,...,n.

Since the first term of (??) is zero we need to show that the natural
cubic spline, g(x), minimizes

Xn
/ " (x)?dx.
X1
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Cubic Smoothing Splines

Let g(x) be another interpolant of (x;, ;), and define h(x) = g(x) — g(x). Then

Xn _ 2
/'g%nw
X-

1

[1a"00+ " G0y?ax

/g dx+2/g”(x)h”(x)dx+/h” x)%adx.

Applying integration by parts to the cross term:

/Mwmwmw

|

[ ()7 / 9" (x

|

— / g (X)W (x)dx since g”’(x1) = g"(xa) =0
X1

= fiwwm/mﬁmw

X

since g’/ (x) is constant in, and x;" is a point i, (x;, Xi1)
S G ) = P
i=1
- 0 l
since h(xi+1) = g(Xi+1) — 9(xi+1), and both are interpolants (also for h(x;)).
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Cubic Smoothing Splines

We have shown that

/ na”(x)2dx = ng”(x)zdx+/ ' H'(x)2dx
X1 X

X1 1
Xn
> / g (x)2ax
X1

with equality if and only if h”(x) = 0 for x; < x < x,. The latter implies
h(x) = a+ bx, but h(x;) = h(x,) =0andsoa=b=0.

Hence, any interpolant that is not identical to g(x) will have a higher
integrated squared second derivative.

Therefore, the natural cubic spline with knots at the unique x values is
the smoothest interpolant in the sense of minimizing [ f”(x)2dx. This
is of use in, for example, numerical analysis, where interpolation of
(i, yi) is of interest.

But in statistical applications, the data are measured with error, and
we typically do not wish to restrict attention to interpolating functions.
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Cubic Smoothing Splines

We have shown that a natural cubic spline minimizes (??) amongst
all interpolating functions, but the minimizing function need not
necessarily be an interpolant, since an interpolating function may
have a large associated penalty contribution.

The second part of the proof therefore considers functions that do not
necessarily interpolate the data but have n free parameters g(x;) with
the aim being minimization of (??). The resulting g(x) is known as a
smoothing spline.

Suppose some function, f*(x), other than the cubic smoothing spline
minimizes (??). Let g(x) be the natural cubic spline that interpolates

(x;, F*(x3)), i = 1,..., n. Obviously f* and g produce the same residual
sum of squares in (??) since f*(x;) = g(x;). But by the first part of the

proof
/f* Y2dx > /g” (x)dx.

Hence the natural cubic spline is the function that minimizes (??); this
spline is known as a cubic smoothing spline.
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