Worksheet IX

Answer all the problems completely on a separate sheet of paper. Read all the problems closely, and ask if you have any questions on what a problem means. This worksheet is due at the start of class on Mon, Nov 24.

Problem 1 (6 pts)

For each of the following types of rays, describe the start position of the ray, the direction of the ray, and the purpose of the ray (e.g., what it is used for).

1. Primary (viewing) rays
2. Shadow rays
3. Reflection rays

Problem 2 (8 pts)
(a) Explain briefly how do we use distributed ray tracing to perform anti-aliasing. In particular-what kind of ray are we distributing, and what are we distributing it over?
(b) Explain briefly how do we use distributed ray tracing to create depth of field effects (e.g., close and far away objects are blurry). In particular-what kind of ray are we distributing, and what are we distributing it over?

Problem 3 (4 pts)
What is the difference between supersampling and stochastic (random) sampling? Why can we use either technique for anti-aliasing with ray-tracing? Why do we use stochastic sampling?

Problem 4 (4 pts)
Although only a quadratic polynomial, the equation for an arbitrary ellipsoid (i.e., three axes of different lengths with arbitrary but mutually perpendicular orientation) is complicated. Explain why this isn't a problem when ray tracing. How would you specify an arbitrary ellipsoid and how you would intersect a ray with it? (Do not worry about the surface normal).

Problem 5 (3 pts)
What is a BRDF? What is it used for?

