
Statement of Teaching Philosophy
Joel Ross

As a teacher, my goal is to help students approach computer science as more than just
programming, but as the study of processes that people use to solve problems. Learning
computer science requires developing and mastering such problem-solving techniques—in
particular, the skill of solving problems through constant questioning and testing. Students
must repeatedly ask questions such as: “What is the next line of code?” “Will this algorithm
help solve my problem?” “Why does the system behave this way?” “How does this tech-
nology influence the world around it?” and then seek out the answers in order to construct
an understanding of computer systems. My teaching philosophy centers on helping
students to develop a questioning attitude and apply it as an approach to solving
problems throughout their careers. I aim to help students practice asking questions
that allow them to learn how to learn.

In introductory programming courses, I model this problem-solving approach though live
programming demonstrations, involving students in the questioning process by prompting
them: “what is the next step?” Even if they cannot produce the correct answer, just
considering the question helps students to connect the material to previous topics and other
experiences. For example, a student’s suggestion to use a list to solve a problem better
suited to a tree led to a discussion that helped solidify the whole class’ understanding of
both data structures. Students have a chance to practice this questioning process through
pair programming assignments, further mastering the material by simultaneously teaching
someone else. I have watched pairs of students work together to understand and implement
a program, practically taking turns explaining how to add the next function and then to
fix the next bug. At the end of the course students present “beta” versions of their final
projects to one another (as part of a formative assessment), and the common response of
“wow, how did you do that?!” shows they have developed a questioning attitude and a desire
to continue learning.

In my courses, students also apply a question-and-experiment approach to problem-solving
to support their own self-directed learning. My courses include open-ended final projects
and assignment ‘extension challenges’ that guide students to sources of further information
on a subject. This allows them to practice applying their problem-solving skills to new
topics ranging from techniques for designing software interfaces, to advanced ray-tracing
algorithms for generating photorealistic computer graphics. Learning to self-teach is an
explicit objective of my Software Engineering course, in which students practice using online
resources to master new software libraries. Adopting this objective has challenged me to
find the right balance between lecture and outside work—a balance I am working to achieve
through additional lab sessions where students can utilize the professor as a backup learning
resource. Such self-directed learning requires students engage in critical meta-cognition and
regularly evaluate their own understanding. My courses support this reflection via regular
writing assignments in which students analyze their own processes in implementing computer

1



programs: “what has worked and what hasn’t—and why?” Moreover, I hope to encourage
students to extend this critical reflection to the contexts in which technology is used after
it has been developed. I am experimenting with techniques for introducing more human-
centered concepts and examples in programming courses, such as by including human users
as part of the traditional graphics pipeline.

In order to critically interrogate computational systems, students need to consider systems
from perspectives other than their own as developers. One of my goals for performing
such reflection is to help students appreciate a wider diversity of viewpoints. I strive to
design my courses so that they support such diversity in students. Applying the values of a
liberal arts education, I include interdisciplinary content in my programming courses, such
as the history of computer technology and programming jargon. My assignments often have
students work with media representations (e.g., images and sound) to support engagement
and encourage question-driven experimentation, particularly in non-majors who may feel
overwhelmed by the abstract symbolism of computer code. I also work to emphasize the
contributions of groups traditionally underrepresented in the discipline of computer science.
For example, my Capstone in Computer Science course includes analysis of the writings of
Ada Lovelace, as well as class discussions on the historic role of women in programming early
computers like the ENIAC. I wish to support these multiple, diverse viewpoints to encourage
the participation of women and other underrepresented students in computer science, and
to support a greater sense of social responsibility in all students.

As developers, we need to be aware of how our systems and technical designs affect those
around us. There is purpose and ideology inherent in any act of design, and thus the
meanings of computer systems must be interrogated so that technology can be designed
effectively and used responsibly. A questioning stance can help students learn to bring a
variety of critical perspectives to bear on the position of technology in society—including
research topics such as how system designs might favor or disadvantage different social
groups, or how technological proliferation may impact the natural environment. In the end,
my teaching strategies support a liberal arts education by working to help students develop
this critical, questioning stance for finding solutions to problems. Such a stance can enable
students to become lifelong learners, prepared to effectively adapt to the wide variety of
technical and social contexts they will encounter throughout their future careers.

2


