Efficiently estimating salmon escapement uncertainty from systematically sampled data

Joel H. Reynolds¹, Carol A. Woody², Nancy E. Gove³a, Lowell F. Fair⁴

¹U.S. Fish and Wildlife Service, Refuges, Division of Natural Resources, 1011 E. Tudor Rd, Anchorage, AK 99502; joel_reynolds@fws.gov, ph:907-786-3914, FAX: 907-786-3905.

²U. S. Geological Survey, Alaska Science Center, 4230 University Dr, Suite 201, Anchorage, AK 99508; carol_woody@usgs.gov, ph:907-786-7124, FAX:907-786-7150.

³Alaska Dept. of Fish and Game, Commercial Fisheries Division, 333 Raspberry Rd, Anchorage, AK 99518. nancy_gove@fishgame.state.ak.us, ph:907-267-2130, FAX:907-267-2442.

⁴Alaska Dept. of Fish and Game, Commercial Fisheries Division, 333 Raspberry Rd, Anchorage, AK 99518. lowell_fair@fishgame.state.ak.us, ph: 907-267-2376, FAX:907-267-2442.

Corresponding author:

Abstract:

Fish escapement is generally monitored using non-replicated systematic sampling designs, e.g., via visual counts from towers or hydroacoustic counts. These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon (*Onchorynchus nerka*) escapement on the Kvichak River, Alaska, five variance estimators for non-replicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For non-replicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.
Introduction

Annual escapement for anadromous salmonids is often estimated from non-replicated systematic hourly counts (Seibel 1967), made either visually in clear rivers from elevated towers (tower counts; Cousens et al. 1982; Anderson 2000) or hydroacoustically in clear or turbid systems (see review by Ransom et al. 1998). These escapement estimates are critical in determining reproductive success of a given brood year and in developing sustainable fishery management plans (Cousens et al. 1982; Eggers et al. 1995; Fair 2004). Equally critical to sound management are variance estimates of the annual escapement, ideally ones that have low bias and are efficient.

There are many variance estimators for non-replicated systematic sampling, yet all are biased (Yates 1948; Cochran 1977; Wolter 1985). The best estimator depends on the process being sampled; an estimator inappropriate for the specific process can give highly biased or inefficient estimates (Wolter 1985; Skalski et al. 1993). For example, the naïve variance estimator, which treats the observations as a simple random sample, pools both process variation and sampling variation in its estimate. Simulation studies of processes exhibiting non-random patterns, such as stratification, autocorrelation, or linear trends, have shown this estimator can overestimate the true sampling variance by as much as 300% (Wolter 1985, Table 7.3.5; Skalski et al. 1993). The magnitude of the bias depends on the exact nature of the underlying process pattern, limiting general conclusions.

Fish passage generally exhibits regular patterns in time due to processes such as diurnal movement behaviors, tidal fluctuations, the impact of commercial fisheries openings, or seasonal patterns in returns (Becker 1962). Stratification has been used in attempts to remove this process variation in non-replicated systematic escapement counts. One approach post-stratified observations by count magnitude at the end of the season then treated the sample as a stratified random sample to estimate sampling variance (Mathisen 1957, referenced in Becker 1962). This ignores uncertainty associated with estimating the population strata proportions and does not allow control of sampling effort to achieve a minimum sample size within each stratum or optimally efficient estimates (Overton and
Stehman 1996). Another approach stratified by time, e.g., four or six hour blocks, then treated the sample as a (systematically) stratified sample to estimate sampling variance (Table 1; Skalski et al. 1993).

Tower and hydroacoustic counts of fish escapement are expected to exhibit autocorrelation and nonlinear patterns. For such processes, a general review of variance estimators for non-replicated systematic samples broadly recommended two estimators defined further below, termed V4 and V5, with the latter preferable for larger samples (Wolter 1984, 1985). The estimators use differences among consecutive observations to remove short-term autocorrelation and local trends. However, simulation studies specifically of fish passage over 2-3 days in dam bypasses comparing these and other estimators identified V4 and the time-stratified variance estimators as best, with comparable bias (Skalski et al. 1993). Thus, the best estimator for a given context depends on the underlying process and the number of observations.

Annual escapement is expected to be influenced by different processes than the short passage series investigated by Skalski et al. (1993). We therefore compared five variance estimators for total annual escapement estimates by simulating tower count samples using non-replicated systematic sampling (Table 1). The study simulated non-replicated systematic samples of tower counts of Kvichak River sockeye salmon escapement in Bristol Bay, Alaska (Anderson 2000). The five variance estimators were compared to find the least biased. Four confidence interval estimators were also compared in terms of expected coverage and mean interval width (Table 2).

Having identified the least biased variance estimator for non-replicated systematic sampling of tower counts, we then compared five systematic sampling designs to identify the one with the smallest expected variance estimate (Table 3).

While focused on counting tower observations, our study methods are applicable to any systematic sampling context. The specific conclusions depend on the nature of the underlying process, and hence directly apply only to systematic sampling of annual fish
escapement in comparable systems, such as hydroacoustic monitoring of salmon escapement (e.g. Eggers et al. 1995; Burwen and Bosch 1996).

Methods

Simulation Study Data

Sampling was simulated on tower passage ‘censuses’ created from Kvichak River tower count observations of sockeye salmon at Igiugig in 1983 and 2002 (Yuen and Nelson 1987, West 2003). These years represent the extremes of escapement and catch rates within a single river system and allow comparison of variance estimators and sampling schemes on both large and small escapements. The 1983 Kvichak run had an estimated harvest of 16.5 million fish and escapement of 3.57 million fish, with 79% exploitation rate (Yuen and Nelson 1987). The 2002 run had zero estimated harvest and escapement of 0.70 million fish (West 2003).

In 1983, hourly 10-minute tower counts were collected each and every hour from 1700 hour on June 20 until the end of July 23. For the simulation study, a census of complete 10-minute counts was generated using the observed counts from June 27 through July 23 (Figure 1a), the first week of observations being excluded as they were predominantly zero. In 2002, hourly 10-minute tower counts were collected each and every hour from 0001 hour on June 21 until the end of July 18. For the simulation study, a census of complete 10-minute counts was generated using the observed counts from June 27 through July 18 (Figure 1b), the first days of observations being excluded as they were predominantly zero.

Each census of complete 10-minute counts was generated by linearly interpolating between two consecutive observations then adding random error:

\[y_{\text{census}}^{\text{time} + k/6} = \max \left(0, y_{\text{observed}}^{\text{time} i} + \left(y_{\text{observed}}^{\text{time} i+1} - y_{\text{observed}}^{\text{time} i} \right) \frac{k}{6} + \varepsilon \right) \]

where \(k = 1, ..., 6 \) identified the 10-minute period (potential sampling event) after observation \(i \) for which a count was being generated, and

\[\varepsilon \sim \text{Uniform}(\frac{-|y_{\text{time} i+1} - y_{\text{time} i}|}{|y_{\text{time} i+1} - y_{\text{time} i}|}, \frac{|y_{\text{time} i+1} - y_{\text{time} i}|}{|y_{\text{time} i+1} - y_{\text{time} i}|}). \]
Non-replicated systematic samples

Each year’s census data was used as the basis for simulating two non-replicated systematic sampling designs: 10 minutes every hour and 20 minutes every 2 hours (Table 3). Standard protocol for towers in Alaska is to count 10 minutes at the top of every hour for the duration of the run (Anderson 2000). All six possible samples under each design were simulated.

A sample observation consisted of both a left bank and a right bank component, but all calculations were based on their sum:

\[y_{time_i} = \text{right_count}_{time_i} + \text{left_count}_{time_i}. \]

Twenty-four-hour-a-day sampling was simulated.

Variance Estimators

Each variance estimator (Table 1) was applied to each season sample generated from each non-replicated systematic sampling design (Table 3).

Let \(\hat{Y} \) denote the estimated total annual escapement and \(\hat{V}_A(\hat{Y}) \) its estimated sampling variance using estimator A (e.g. ‘A’ = naïve, V2, …). That is, \(\hat{V}_A(\hat{Y}) \) is the square of the standard error for \(\hat{Y} \). Let \(\bar{V}_A(\hat{Y}) \) be the expected sampling variance, i.e., the mean, across all possible samples, of the sampling variance estimates \(\hat{V}_A(\hat{Y}) \). Finally, let \(V_{\text{True}}(\hat{Y}) \) be the true sampling variance, i.e., the actual variance of \(\hat{Y} \) across all possible samples. The bias of each variance estimator,

\[\text{Bias}(\hat{V}_A(\hat{Y})) = \bar{V}_A(\hat{Y}) - V_{\text{True}}(\hat{Y}). \]

was calculated from all possible samples under each design.

Confidence Interval Estimators

Four 95% confidence interval estimators were compared using the non-replicated systematic samples (Table 2). Each interval estimator was calculated using each variance
estimator for each simulated annual sample, but only the results from the least biased variance estimator are reported.

Interval estimators were compared in terms of their coverage and their mean width. Coverage was calculated as the percent of the possible samples, under a given sampling design, whose confidence interval estimates for total escapement actually contained the true total escapement. Ideal coverage was 95%. Interval estimator efficiency was assessed using the mean interval width, the difference between upper and lower bounds, across all possible samples for the sampling design.

Other Systematic Sampling Designs

Three other systematic sampling designs were investigated, each allowing for unbiased variance estimates: a stratified systematic sampling design and two replicated systematic sampling designs (Table 3). All designs maintained a sampling effort of 10 minutes per hour. In stratified systematic sampling, four 10 minute periods were randomly selected in each consecutive four hour period. The total annual escapement and its variance were estimated using standard formulas for stratified random sampling (Table 1).

One replicated systematic sampling design randomly selected four 10 minute periods in each consecutive four hour period. These were the starting points of four independent systematic samples, each 10 minutes per four hours and each providing an estimate of total annual escapement. The four estimates were averaged for the final estimated total annual escapement. The variance of the four estimates was calculated using the naïve estimator (Table 1) for an unbiased estimate of $\hat{V}_{\text{Replicated Sys.}}(\hat{Y})$. Similar procedures held for the other replicated systematic sampling design of two systematic samples of 10 minutes every two hours (Table 3).

Design Comparisons

Designs were compared for true sampling variance, $V_{\text{true}}(\hat{Y})$, their bias (equation 4), and the sample to sample variation of their variance estimates,
For non-replicated systematic sampling designs, the variance estimator identified in the first stage of the study as being least biased was used. Quantities were estimated from all possible samples (Table 3).

All simulations and calculations were conducted using S-Plus 6.2 (Insightful, Inc., Seattle, WA.) or the freeware R language and environment (http://www.r-project.org/). The variance and confidence interval estimators are available as R / S-Plus functions or Excel© (Microsoft, Inc, Redmond, WA.) macros from the first author.

Results

Variance Estimators for Non-replicated Systematic Samples

All estimators were positively biased, with V5 the least biased for both high and low escapement years under both designs (Table 4). Compared to the other estimators, using V5 reduced the bias, on average, from 12% (V4) to 98% (naïve) (Table 4).

Confidence Interval Estimators

Even using the least biased variance estimator, V5, all interval estimators achieved 100% coverage versus the nominal 95% coverage for both high and low escapement years under both non-replicated designs. Note that this variance estimator was positively biased and there were only six possible interval estimates for estimating coverage. While the interval endpoints differed, the mean interval width for a given year was the same to three significant figures regardless of interval estimator, hence are not reported.

Systematic Sampling Designs

Designs greatly differed in their true sampling variation, with the non-replicated designs performing best and stratified design worst (Table 5, Figure 2). The general pattern was fairly consistent across both high and low escapement years (Figure 2). Designs greatly differed in their bias, with the replicated designs being unbiased and the non-replicated designs being most biased (Figure 2). The general pattern of bias was consistent across
both high and low escapement years (Figure 2). Designs differed in the sample to sample variation of their variance estimates, with the stratified and non-replicated designs varying the least (Table 5).

Discussion

Sound fisheries management requires accurate and precise estimates of both total escapement and its variance. This study showed the large reduction in uncertainty in total annual escapement of Pacific salmon possible through either careful selection of variance estimators, in the context of the most common sampling design, or careful consideration of alternative sampling designs.

Non-replicated Systematic Sampling

The dominant sampling design for estimating escapement of Pacific salmon in Alaska is non-replicated systematic sampling, a design with no unbiased variance estimator (Cochran 1977). For this design, the studies that do estimate variance generally employ either the naïve estimator, which ignores the process variation that can dominate fish escapement, or V2, which only removes linear process trends (Wolter 1985).

This study reaffirmed the large bias of the naïve variance estimator for nonlinear, autocorrelated processes such as annual salmon escapement. However, the magnitude of the bias was noteworthy: fishery managers currently using the naïve estimator could reduce their uncertainty by 97% simply by switching to the V5 estimator (Table 4). Perhaps more importantly is the finding that even studies using the V2 estimator could reduce their uncertainty by an average of 38% by switching to V5 (Table 4). Given that calculations will be done on a computer, there seems little reason to purposely choose an estimator other than V5.

Estimators V4 and V5 were specifically developed to account for autocorrelation and nonlinear trends in systematic samples (Wolter 1984, 1985). The naïve estimator commingles this process variation into its estimate of sampling variation, thus
overestimating the true sampling variation (Table 4). The V2 estimator removes only the linear component of this process variation. The stratified variance estimator implicitly assumes a constant escapement process within each 4 hour period. If the sampled process exhibits regular patterns within this time scale and they appear in the systematic samples, then this estimator will commingle that process variation with the sampling variation.

When only a linear process trend occurs, estimators V4 and V5 remain effective. However estimator V2 has more associated degrees of freedom and hence is preferred at smaller samples (Wolter 1985).

For managers using non-replicated systematic sampling for processes similar to seasonal salmon escapement, the V5 estimator is the clear choice for variance estimator (Table 1). The interval estimators were effectively identical in terms of both mean width and coverage, so we recommend the familiar normal interval (Table 2).

These recommendations differ somewhat from a similar study focused on hydroacoustic counts of fish passages in dam bypasses over two to three day periods on Columbia River (Skalski et al. 1983). That study concluded that V4 and stratified estimators were best, the difference in recommendations arising for from the difference in underlying processes of interest and the differences in sample sizes available in each study – V4 being recommended over V5 for smaller sample sizes.

Other Systematic Sampling Designs

Of the five systematic designs investigated, the replicated systematic designs were the best overall, producing small, unbiased variance estimates (Table 5, Figure 2). The stratified design, while showing only slight bias, cannot be recommended as its true variance was at least 70% larger than any other design (Table 5). The non-replicated designs, while exhibiting sample to sample variation on par with that of the replicated designs, cannot be recommended because of their bias (Table 5, Figure 2). Managers
should consider whether the potential increase in precision and elimination of bias in
variance estimation offered by replicated systematic designs warrants the slight increase
in logistical effort.

While the replicated designs clearly outperformed the others, no strong recommendation
can be made regarding which replicated design performed best (Table 5, Figure 2). The
data sets themselves differed greatly in both process magnitude and sources of variation,
e.g., harvest rates, thus the changing performance of the designs merely highlights the
inherent tradeoff between number of replicates and frequency of sampling within a
replicate. The improvement from choosing either of the replicated designs outweighed
the impact of which design was chosen. Refinement as to which design could be
investigated via a similar study using historic data for the process of interest.

Different processes exhibit different patterns and different systematic designs support
variance estimators having different bias and precision. For processes similar to those
investigated here, consider the recommendations given above; for other processes, apply
the methods illustrated here to historic data or data from a similar study system. To
simply rely on the most widely employed estimator is to risk needlessly magnifying the
uncertainty associated with your systematic sample estimate.

Acknowledgements

This research was supported by the U.S. Fish and Wildlife Service, National Wildlife
Refuges; U. S. Geological Survey, Alaska Science Center; and the Alaska Department of
Fish and Game Division of Commercial Fisheries. The manuscript was greatly improved
thanks to insightful reviews from Julie Meka, Karen Oakley, Scott Raborn, Dan Reed,
and Mark Udevitz.
References

Fair, L. F., B. G. Bue, R. A. Clark, and J. J. Hasbrouck. 2004. Spawning escapement goal review of Bristol Bay salmon stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries. Regional Information Report No. 2A04-17, Anchorage, AK.

Mathisen, O.A. 1957. A stratified sampling program for visual tower counting, 1957. University of Washington, Fisheries Research Institute, Seattle, WA.

Seibel, M. C. 1967. The use of expanded 10-minute counts as estimates of hourly salmon migration past counting towers on Alaskan rivers. Alaska Department of Fish and Game Informational leaflet 101, Juneau, AK.

Juneau, AK.

Footnotes

Table 1. Estimators for variance of total estimated escapement, $V(\hat{Y})$, from a systematic sample of n observations, $\{y_j\}$, where j indexes observation sequence; f is the proportion of the possible observations that were actually collected ($f = 1/6$ for all simulations in this study).

<table>
<thead>
<tr>
<th>Estimator</th>
<th>$\hat{V}(\bar{y})$</th>
<th>Assumed Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naivea</td>
<td>$(1 - f)(1/n)\sum_{j=1}^{n} (y_j - \bar{y})^2/(n-1)$</td>
<td>Simple random sample</td>
</tr>
<tr>
<td>Stratifiedb</td>
<td>$\sum_{Strata=1}^{k} N_i^2 (1 - f_i) \frac{s_{Strata}^2}{n_i}$, where $s_{Strata} = \sqrt{\frac{1}{n_i-1} \sum_{j=1}^{n_i} (y_{i,j} - \bar{y}_{Strata})^2}$</td>
<td>Stratified random sample</td>
</tr>
<tr>
<td>V2c</td>
<td>$(1 - f)(1/n)\sum_{j=2}^{n} a_j^2/(2(n-1))$, where $a_j = y_j - y_{j-1}$</td>
<td>Non-replicated Systematic sample</td>
</tr>
<tr>
<td>V4c</td>
<td>$(1 - f)(1/n)\sum_{j=3}^{n} b_j^2/(6(n-2))$, where $b_j = y_j - 2y_{j-1} + y_{j-2} = (y_j - y_{j-1}) - (y_{j-1} - y_{j-2})$</td>
<td></td>
</tr>
<tr>
<td>V5c</td>
<td>$(1 - f)(1/n)\sum_{j=5}^{n} c_j^2/(3.5(n-4))$, where $c_j = y_j / 2 - y_{j-1} + y_{j-2} - y_{j-3} + y_{j-4} / 2$</td>
<td></td>
</tr>
</tbody>
</table>

Note: The estimated variance of the total escapement, $V(\hat{Y})$, is the product of $\hat{V}(\bar{y})$ and the square of an expansion factor dictated by the sampling design (see Table 3).

a Cochran (1977).
b Suggested by Skalski et al (1993); n_i units sampled from N_i total units in strata $I; f_i = n_i/N_i$
c Wolter (1985)
Table 2. Total escapement 95% confidence interval estimators for a non-replicated systematic sample \(\{y_j\} \) of \(n \) observations (from Skalski et al. 1989, 1993).

<table>
<thead>
<tr>
<th>Interval</th>
<th>Formula</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(\hat{Y} +/- 1.96\sqrt{\hat{V}(\hat{Y})})</td>
<td>(\hat{Y} \sim \text{Normal}(Y, \hat{V}(\hat{Y})))</td>
</tr>
<tr>
<td>Lognormal</td>
<td>(\hat{Y} \times \exp\left(+/- 1.96\sqrt{\hat{V}(\hat{Y})/\hat{Y}^2} \right))</td>
<td>(\log(\hat{Y}) \sim \text{Normal}(\log(Y), \hat{V}(\log(Y))/\hat{Y}^2))</td>
</tr>
<tr>
<td>Expanded Lognormal</td>
<td>(\hat{Y} \times \exp\left(+/- 1.96\sqrt{\hat{V}(\hat{Y})(\hat{Y}^2 + 3\hat{V}(\hat{Y})/\hat{Y}^2)} \right))</td>
<td>(\log(\hat{Y}) \sim \text{Normal}(\log(Y), \hat{V}(\log(Y))\left(\hat{Y}^2 + 3\hat{V}(\log(Y))/\hat{Y}^2\right)))</td>
</tr>
<tr>
<td>Square Root</td>
<td>(\sqrt{\hat{Y}} +/- 1.96\sqrt{\hat{V}(\sqrt{Y})/4\hat{Y}})</td>
<td>(\sqrt{\hat{Y}} \sim \text{Normal}(\sqrt{Y}, \hat{V}(\sqrt{Y})/4Y))</td>
</tr>
</tbody>
</table>

Note: Log-transformations suggested by right-skewed observations.

\(^a \) Skalski et al. (1993)

\(^b \) Skalski et al. (1989)
Table 3. Systematic sampling designs investigated for estimating total sockeye salmon escapement from tower counts (see Becker 1962, Anderson 2000).

<table>
<thead>
<tr>
<th>Design</th>
<th>Daily mean escapement, \bar{y}</th>
<th>Expansiona</th>
<th>Possible Samplesb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified Systematic</td>
<td>$\frac{\sum_{i=1}^{k} \bar{y}_i}{6N}$</td>
<td>$6 \times 24 \times N$</td>
<td>10626^N</td>
</tr>
<tr>
<td>Non-replicated Systematic</td>
<td>$\frac{\sum_{i=1}^{n} y_i}{n}$</td>
<td>$6 \times 24 \times N$</td>
<td>6</td>
</tr>
<tr>
<td>20 m / 2 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 m / 1 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicated Systematic</td>
<td>$\frac{\sum_{j=1}^{4} \left(\frac{\sum_{i=1}^{n} y_{ij}}{n} \right)}{4}$</td>
<td>$24 \times 24 \times N$</td>
<td>10626</td>
</tr>
<tr>
<td>4 @ 10 m / 4 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 @ 10 m / 2 H</td>
<td>$\frac{\sum_{j=1}^{2} \left(\frac{\sum_{i=1}^{n} y_{ij}}{n} \right)}{2}$</td>
<td>$12 \times 24 \times N$</td>
<td>66</td>
</tr>
</tbody>
</table>

NOTE: Total annual escapement is estimated by expanding the daily mean escapement:

$\hat{Y} = (\text{Expansion}) \times \bar{y}$.

a units/hr x hrs/day x days

b Number of possible samples given a sampling period of N consecutive days.

c Simple random sample of four 10 m counts from each consecutive 4 hour period, proposed by Skalski et al. (1993). This design uses the sample mean escapement of each consecutive four hour observation strata.
Table 4. Bias of non-replicated systematic sample variance estimators for total annual escapement, by data source year and sampling design.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>1983 Series (units 10^8)</th>
<th>2002 Series (units 10^7)</th>
<th>Reduction by V^5a</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(\hat{Y})</td>
<td>3.4</td>
<td>0.4</td>
<td>9.1</td>
</tr>
<tr>
<td>Naïve</td>
<td>233.6</td>
<td>1878.6</td>
<td>111.9</td>
</tr>
<tr>
<td>Stratified</td>
<td>18.6</td>
<td>39.6</td>
<td>7.9</td>
</tr>
<tr>
<td>V2</td>
<td>12.6</td>
<td>39.6</td>
<td>5.9</td>
</tr>
<tr>
<td>V4</td>
<td>9.6</td>
<td>29.6</td>
<td>3.9</td>
</tr>
<tr>
<td>V5</td>
<td>9.6</td>
<td>24.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

a Mean reduction in bias relative to $V5 = \text{mean of (1 – bias / bias}_{V5}$.}
Table 5. Comparison of systematic sampling designs in terms of actual and expected sampling variance of the estimated total escapement and the sample to sample variation of the sampling variance estimate, by data source year.

<table>
<thead>
<tr>
<th>Design</th>
<th>Units</th>
<th>1983 (V(\hat{Y}))</th>
<th>1983 (\tilde{V}(\hat{Y}))</th>
<th>1983 (\text{Var}(\tilde{V}(\hat{Y})))</th>
<th>2002 (V(\hat{Y}))</th>
<th>2002 (\tilde{V}(\hat{Y}))</th>
<th>2002 (\text{Var}(\tilde{V}(\hat{Y})))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified</td>
<td></td>
<td>(10^8)</td>
<td>(10^8)</td>
<td>(10^{16})</td>
<td>(10^7)</td>
<td>(10^7)</td>
<td>(10^{14})</td>
</tr>
<tr>
<td>Stratified</td>
<td>4 @</td>
<td>20.2</td>
<td>19.1</td>
<td>7.6</td>
<td>15.6</td>
<td>15.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Stratified</td>
<td>10 m / 1 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Replicated</td>
<td>20 m / 2 H</td>
<td>0.4</td>
<td>24.5</td>
<td>61.2</td>
<td>7.9</td>
<td>26.5</td>
<td>75.3</td>
</tr>
<tr>
<td>Replicated</td>
<td>10 m / 1 H</td>
<td>3.4</td>
<td>12.9</td>
<td>9.6</td>
<td>9.1</td>
<td>11.6</td>
<td>14.2</td>
</tr>
<tr>
<td>Replicated</td>
<td>4 @</td>
<td>9.8</td>
<td>9.8</td>
<td>51.7</td>
<td>8.6</td>
<td>8.6</td>
<td>41.8</td>
</tr>
<tr>
<td>Replicated</td>
<td>10 m / 4 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicated</td>
<td>2 @</td>
<td>8.4</td>
<td>8.4</td>
<td>86.6</td>
<td>9.4</td>
<td>9.4</td>
<td>140.3</td>
</tr>
<tr>
<td>Replicated</td>
<td>10 m / 2 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figures

1. ‘Census’ of 10 minute counts for Kvichak River sockeye salmon escapement – (a) 1983, (b) 2002, created from systematically sampled 10 m / H observations as described in text. Noon on each day is marked along the horizontal axis; note change in vertical scale.

2. True variance (open triangles) and average estimated variance (solid circles) of the total escapement estimate under each of the investigated systematic sampling designs (row), by year (column). Columns differ in logarithmic horizontal scale (units fish^2). The replicated systematic sampling designs provide unbiased estimates, hence the symbols overlap.