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Synopsis 

Mixed stock analysis (MSA) is used to 
estimate the relative contributions of distinct 
populations in a mixture of organisms, generally via 
conditional maximum likelihood estimation using a 
baseline of learning samples from all potentially 
contributing populations. MSA is increasingly used 
to judge the presence or absence of specific 
populations in specific mixture samples.  This is 
commonly done by inspecting the marginal bootstrap 
confidence interval of the contribution of interest.  
This method suffers from a number of major 
statistical deficiencies, including zero power to detect 
even a perfectly identifiable population at the low 
contribution levels of interest. In contrast, the 
likelihood ratio test has 100% power to detect any 
positive contribution from this ideal population.  
Both methods are compared in a power analysis 
using a 17-population baseline of sockeye salmon 
(Oncorhynchus nerka) from the Kenai River, Alaska, 
watershed. 

Power to detect a contribution varies with 
the population(s) relative identifiability, contribution 
level, mixture sample size, and analysis method.  The 
power analysis shows the likelihood ratio is more 
powerful than the bootstrap method, with equality 
only at 100% power.  Power declines for both 
methods as contribution declines, but the bootstrap 
method declines faster and goes to zero.  Power 
quickly declines for both methods as population 
identifiability declines, though the likelihood ratio 
test is able to capitalize on the presence of �perfect 
identification� characteristics, such as private alleles 
in genetic markers.  Given the baseline-specific 
nature of detection power, MSA researchers are 
encouraged to conduct a priori power analyses. 
Introduction 

Mixed stock analysis (MSA) is used to 
estimate the relative contributions of distinct 
populations in a mixture of organisms.  This is an 
important tool in wildlife management and research, 
with genotypes commonly used as natural markers to 
distinguish major populations or stocks (e.g., genetic 
stock identification) (Begg et al. 1999, Pearce et al. 
2000).  Increasingly, MSA is used to judge the 
presence or absence of specific stocks in specific 

mixture samples.  For example, management of an 
interception fishery may be heavily influenced by the 
presence of a specific threatened, weakened, or 
politically high profile stock (e.g., salmon of 
Canadian origin harvested by Alaskan fisheries).  

MSA can overestimate stocks contributing 
little or nothing to a mixture (Pella & Milner 1987).  
Managers and researchers require a method for 
testing whether a specific nonzero stock contribution 
is really a biased estimate of zero.  In practice, one 
checks the limit of the contribution�s 95% bootstrap 
lower confidence interval: a stock contribution with 
zero lower interval limit is deemed �statistically 
indistinguishable from zero� (Seeb & Crane 1999).   

This method is statistically flawed.  Using 
the interval as a test assumes that the contribution 
estimate is a pivotal statistic, which it is not.  Further, 
such marginal tests implicitly employ an 
inappropriate measure of distance between 
compositions (Aitchison 1992).  Of greatest practical 
importance, the method is shown, below, to have 
very low or even zero power exactly in the settings of 
interest.  

Consider an ideal marker and an ideal 
population:  a gene for which Population A is fixed 
for an allele that is unique among the other 
populations in the baseline � a private allele.  
Population A is perfectly identifiable, so a mixture 
sample of size n containing πA times n Population A 
individuals will produce a nonzero contribution 
estimate, > 0.  In this scenario, bootstrap 
resampling to estimate the marginal confidence 
interval of π

A�π

A is equivalent to sampling from a 
Binomial (n, πA).  As πA ⇒ 0, Prob( =0) = 

Prob(X=0 | X~Bin(n, π
A�π

A)) ⇒ 1, hence  Prob( 

bootstrap confidence interval�s lower limit = 0) ⇒ 1 
(Appendix).  Thus, even in the ideal case this method 
has at most moderate power to detect small 
contributions (Table 1); the power will be much 
lower in applications with less than ideal 
identifiability (Results).  

One might consider abandoning MSA for 
this question and using an analysis that directly 
assigns each observation in the mixture sample to the 
�most probable� population of origin (for example, 
Banks & Eichert 2000, Cornuet et al. 1999).  Such 
individual assignment methods ignore information 

 



 

coming from the joint distribution of characteristics 
observed in the mixture, are therefore less powerful 
than MSA methods (Millar 1987) in estimating 
population contributions, and hence likely to be less 
powerful in detecting nonzero population 
contributions. 
Table 1.  Maximum power to detect nonzero contributions in MSA 
using the bootstrap confidence interval method, as a function of 
true population contribution π and mixture sample size.  
Calculations assume individuals from the population of interest are 
perfectly identifiable in the mixture sample (Appendix).  Power 
will decline as identifiability declines (Fig. 2).  Calculations are 
based on 1000 nonparametric bootstrap resamples and a 95% one-
sided percentile bootstrap confidence interval (Davison & Hinkley 
1997). 

 Mixture Sample Size 
π 50 75 100 150 200 300 350 

0.10 1 1 1 1 1 1 1 
0.05 0 1 1 1 1 1 1 
0.04 0 0.66 1 1 1 1 1 
0.03 0 0 0.62 1 1 1 1 
0.02 0 0 0 0.58 1 1 1 
0.01 0 0 0 0 0 0.54 1 

The likelihood ratio provides a more 
powerful test of H0: πA = 0 vrs HA: πA > 0.  We 
briefly review the standard MSA model and 
estimation method, conditional maximum likelihood 
estimation (Pella & Milner 1987, Millar 1987), 
develop the likelihood ratio test (Methods), and 
describe how to estimate P values.  The method is 
demonstrated in a simulation study of mixtures of 
sockeye salmon (Oncorhynchus nerka) from the 
Kenai River, Alaska (Demonstration).  The 
likelihood ratio test and the confidence interval 
method are compared in terms of power to detect a 
nonzero contribution from a specific population or 
group of populations.  The comparison demonstrates 
how to conduct a priori power analyses for a given 
baseline, a specific stock of interest, and a range of 
stock contributions and mixture sample sizes. 

The likelihood ratio test is more powerful 
than the bootstrap confidence interval, though both 
methods display lower power than desired. Both 
methods lose power as population identifiability and 
contribution decline, but the bootstrap method loses 
power faster, displaying zero power in some 
scenarios. In the absence of perfect identifiability, the 
likelihood method�s low power limits application to 
those problems involving small to moderate sized 
baselines of potentially contributing populations. 
Methods 
The finite mixture model 

The following model describes mixtures of 
contributions from a finite number of source 
populations (see, for example, Pella & Milner 1987 
or Millar 1987).  Although the presentation assumes 

discrete characteristics are observed on each 
individual, such as a genotype, this is not essential; 
the model holds for continuous characteristics as 
well. 

Randomly sample n individuals from a 
mixture of J populations.  Let the jth population 
contribute an unknown proportion πj >= 0 to the 
mixture, Σπj  = 1; Π = (π1, ..., πJ). If the characteristic 
measured on the ith sample observation is denoted by 
xi, then the probability of observing the sample X = 
{x1, x2, ...,xn} is:    

with Φ

n n J

i j
j 1i 1 i 1

Pr( | ) Pr(x | ) Pr(x | )
== =

= = π
 
 
 
∑∏ ∏ jXΠ Π, Φ , Φ

j j
κ,..., )1φ φ

i Φ

j the column vector of parameters specifying 
the probability density function of the characteristic 
in population j and Φ the matrix [Φ1|...| ΦJ].  For a 
discrete characteristic with k possible outcomes, 
Φj= ( .  This assumes that the set {Pop. 1, 
Pop. 2,..., Pop. J} includes all potentially contributing 
populations (see Smouse et al. 1990).  Expanding 
Pr(xi|Φj) allows for multivariate characteristics. 

Identifiability of the mixture requires that 
the probability density functions of the characteristics 
differ across the contributing populations (Redner & 
Walker 1984).  Characteristics commonly used in 
fisheries include parasite assemblages (Moles & 
Jensen 2000), scale patterns (Marshall et al. 1987), 
morphometrics and meristics (Fournier et al. 1984), 
artificial tags such as thermal marks, coded wire tags, 
or fin clips (Ihssen et al. 1981), and, increasingly, 
genetic markers (Seeb & Crane 1999; Ruzzante et al. 
2000).    

Estimation 
Estimating the mixture proportions, Π, 

requires information regarding the characteristic 
probability density function, Φj, for each contributing 
population.  This is generally available in the form of 
a sample from each baseline population.  In most 
fisheries applications researchers fix the nuisance 
parameters, Φj, at their estimates from the baseline 
samples, Φ� j (Millar 1987).  Maximum likelihood is 
then used to estimate the unknown Π conditional on 
Φj =Φ� j.  This is justified by the relatively small 
amount of information on Φj in the mixture sample 
relative to the baseline sample (Milner et al. 1981).  
Bayesian methods also exist (Pella & Masuda 2001). 

Uncertainty in the mixture proportion 
estimates, Π� , arises from sampling uncertainty in 
both the mixture and the population baselines.  In 
practice, these sampling uncertainties can be 
accounted for by nonparametric bootstrap resampling 
of the mixture sample and parametric bootstrap 

 



 

resampling of the baseline characteristic 
distributions,  Φ� j.  Bootstrap resampling the baseline 
widens the confidence intervals, reducing the power 
to detect nonzero contributions.  The following 
demonstration only resamples the mixture sample. 

Testing  population contribution  
Assume a sample from a mixture consisting 

of contributions from a known set of baseline 
populations and specific interest in testing Ho: πΑ = 0 
for Population A.  The likelihood ratio test compares 
the likelihood of the observed sample under the 
general model in which πΑ > 0 to the likelihood under 
the null model in which πΑ = 0.  The likelihood ratio 
test statistic, conditional on Φj =Φ� j, is: 

{ }
{ }

1 2 J
' ' ' '
1 2 A Jπ ,π ,...,π ,π

�L( , ,..., | , )
LR �L( | , )=0,...

π π π
= =X Φ

X Φ

{ }n nJ J

j i j j i j
j 1 j 1i 1 i 1

j A

'
j

� �Pr(x | ) Pr (x | )π π
= == =

≠

∑ ∑∏ ∏
  
 
  

Φ Φ  

with {π1, ..., πJ} and {π1�, ..., πJ�} replaced by their 
conditional maximum likelihood estimates under 
their respective models. The observed ratio, LRobs, is 
calculated by (i) fitting the mixture sample using the 
full baseline (the general model, the numerator), then 
(ii) fitting the mixture sample using the reduced 
baseline with Population A dropped to force πΑ = 0 
(the null model, the denominator).  The test can be 
extended to the joint contribution of a specific group 
of populations, Ho: π1 = π2 =�πv =0 vrs HA: π1 or 
π2  or �πv ≠ 0.     

In applications using genetic markers, if 
Population A has private alleles that also occur in the 
mixture sample, the likelihood under the reduced 
baseline will be zero, giving a likelihood ratio of ∞.  
Commonly used MSA software (Debevec et al. 2000) 
generally assigns such individuals to an �unknown� 
baseline component, clearly identifying the nonzero 
contribution of Population A.     

Under the null model and regularity 
conditions, �2 times ln(LRobs) is asymptotically 
distributed as a χ2 with degree of freedom equal to 
the number of populations being simultaneously 
tested for zero contribution (Stuart et al. 1999).  
Regularity conditions breakdown when any 
population in the null model contributes 0, which is 
often the case.  Even when all null model mixture 
populations are expected to have nonzero 
contributions, experience suggests that the 
asymptotic results may be less than reliable in this 
setting.  The null reference distribution can be 

approximated by Monte Carlo simulation under Ho, 
conditional on Π0 as estimated from fitting the null 
model (Davison & Hinkley 1997). 
Demonstration 

The two methods were compared in terms of 
their power to detect a nonzero population 
contribution.  The simulation study used a baseline of 
nineteen allozyme markers for the sockeye salmon 
populations of Kenai River, Alaska (details in Seeb et 
al. 2000).  To explore how population identifiability 
influences detection power, we explore three 
population sets that display declining, though 
relatively high, identifiability.  

Kenai River sockeye baseline 
The Kenai River watershed is the major 

producer of sockeye salmon in Cook Inlet, supporting 
a commercial fishery (in the inlet), a personal use 
fishery (at the river mouth), and a recreational fishery 
(within the river itself).  The inriver fisheries are 
managed to allow a set range of individuals at each 
spawning ground.  Resource managers and 
researchers are interested in detecting the presence of 
specific populations at time points throughout the 
fishing season. 

The Kenai River baseline consists of 
seventeen populations aggregated into five inriver 
reporting regions based on their identifiability for 
mixed stock analyses1 (Fig. 1).  Three scenarios were 
investigated:  detecting the highly identifiable Upper 
Russian River region (two populations), the 
moderately identifiable Trail Lakes region (three 
populations), and the somewhat less identifiable Tern 
Lake region (Fig. 1).     

The Upper Russian River drainage is above 
a waterfall, a partial barrier to upstream movement.  
The populations spawning above the falls are 
relatively genetically distinct (Seeb et al. 2000), 
though they do not exhibit private alleles at the 
allozyme markers considered.  The Railroad Creek 
population in the Trail Lakes region exhibits a private 
allele at one locus (relative frequency 0.0125); the 
Tern Lake population exhibits a private allele at 
another locus (relative frequency 0.01). 

Simulated mixtures 
For each reporting region of interest, 

mixture samples of genotypes from n=200 
individuals were simulated over a range of regional 
contributions, π = {10%, 5%, 4%, 3%, 2%, 1%}.  For 
the Upper Russian River or Trail Lakes, π was evenly 
split among the region�s populations.  The remaining 

                                                           
1 Reporting regions must demonstrate a 90% or better mean 
contribution estimate for simulated mixtures constructed 100% 
from populations in the reporting region.  For example, see Seeb et 
al. (2000). 

 



 

populations in the baseline evenly contributed the rest 
of the mixture.  A contribution from a given 
population was simulated by randomly generating a 
genotype from that population�s allele frequencies for 
each of the nineteen allozyme markers.   Baseline 
allele frequencies are available in Seeb et al. (2000).  
Fifty mixtures were simulated for each region of 
interest by contribution scenario. 

Analyses  
Each mixture sample was analyzed to 

estimate: the reporting region contributions under 
both the full and reduced baseline models, the 95% 
one-sided percentile bootstrap confidence interval for 
π under the full baseline model, and all quantities 
required to conduct the likelihood ratio test of H0: 
π  = 0 vrs HA: π  > 0.  The bootstrap confidence 
interval used 1000 resamples; for equal numerical 
accuracy, the Monte Carlo approximation to the null 
reference distribution used 1000 simulations.   

The bootstrap and likelihood ratio test were 
compared in terms of their power to detect the 
nonzero contribution of the region of interest.  For a 
given scenario � method by region of interest by 
contribution, power was estimated as the percentage 
of the fifty simulated mixture samples for which the 
method detected a nonzero contribution from the 
region of interest.  Detection was defined as:  
bootstrap method - nonzero limit, when rounded to 
two significant digits, on the 95% one-sided 
confidence interval, likelihood ratio � P value of ≤ 
0.05 or nonzero contribution assignment to the 
�unknown� category when fitting the mixture using 
the reduced baseline model.  Baseline allele 
frequencies were not resampled. 

Mixture samples were generated using S-
Plus 2000 (Insightful, Inc., Seattle, WA., USA) and 
locally written functions.  Mixture analyses were 
conducted using the freeware package SPAM 3.5 
(Reynolds 2001). 

Demonstration Results  
The likelihood ratio test was as or more 

powerful than the bootstrap confidence interval 
method (Fig. 2), detecting at least every contribution 
the bootstrap method detected.  Equality occurred 
only when both displayed 100% power.  Both 
methods displayed less than �ideal identifiability� 
power (versus Table 1 or 100% power for the 
likelihood ratio).  However, the likelihood ratio 
always displayed positive power. 

Both methods lost power as identifiability 
declined (Fig. 2, roughly decreasing down the 
column), or true contribution declined.  The 
likelihood ratio�s power did not decline as quickly as 
that of the bootstrap confidence interval. 

Discussion 
Increased usage of mixed stock analysis 

(MSA) has increased demand for methods of 
detecting small nonzero contributions from a specific 
population.  The likelihood ratio test is a more 
powerful method than the bootstrap approach, 
detecting every contribution the bootstrap method 
detected and more (Fig. 2) while maintaining a 
positive power in every scenario. 

When the population(s) of interest is highly 
identifiable, both methods are capable of 100% 
power even for moderately small contributions 
(Upper Russian, Fig. 2). The likelihood ratio retains 
this power to detect even a single individual in a 
mixture when that individual displays a characteristic 
seen only in its source population, e.g., a private 
allele.  A substantial portion of the Trail Lakes and 
Tern Lake contribution detections involved such rare 
alleles.  The current demonstration does not allow us 
to judge whether or not a contribution would have 
been detected in the absence of a rare allele, though 
the Russian River results clearly demonstrate that 
private alleles are not required for high power.    

Power can be greatly reduced by a reduction 
in identifiability (Russian River vrs Trail Lakes or 
Tern Lake, Figs. 1 & 2).  As the population of 
interest, call it Population A, becomes similar to 
other members of the baseline, the few individuals 
actually contributed by Population A may be 
adequately explained as having originated from the 
other populations.  When these populations 
themselves contribute to the mixture, such as in the 
current demonstration, parsimony leads to absorption 
of Population A�s contribution into that of the other 
populations.   

Absorption is prevented if Population A has 
either sufficiently distinct characteristics, allowing 
clear detection of even a single contribution (e.g., 
private alleles or the Russian River scenario � Fig. 2), 
or has a large enough contribution to the mixture 
sample such that the likelihood ratio test detects the 
signal in the sample�s joint distribution of 
characteristics.  It is sobering to note how easily a 
contribution can be absorbed, that is, how low the 
power to detect a nonzero contribution can be.  The 
power observed here, with a baseline of only 
seventeen populations, will likely decrease for larger 
baselines.  This suggests (i) neither method will be 
effective in applications involving large baselines, 
such as samples from high seas mixtures or large-
scale interception fisheries; (ii) power may improve 
using markers with improved identifiability, i.e., 
more polymorphic loci. 

Bootstrap confidence intervals are obviously 
highly flexible and informative tools.  However, this 
flexibility does not eliminate the need to consider the 

 



 

underlying statistical issues of the application at 
hand.  In fact, this flexibility makes it even more 
important that the user consider these issues. 

Researchers can investigate the power to 
detect specific nonzero contributions in a mixture 
sample of size n using a baseline of interest by 
repeating the above process.  Such a priori analyses 
allow one to determine the sample size required to 
detect a given contribution with a given power, as 
well as compare methods in a specific context.  Note 
that posterior power analyses, while unfortunately 
rather common, are generally uninformative and, 
therefore, misleading (Hoenig & Heisey 2001).  A 
priori power analysis methods in the general context 
of MSA are discussed elsewhere2.   
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Fig. 1 � UPGMA dendrogram of Cavalli-Sforza and 
Edwards genetic distance among the Kenai River 
sockeye salmon baseline populations (Weir 1996).  
Populations were aggregated into five reporting 
regions for mixed stock analysis, where a reporting 
region is the smallest set of populations that achieves, 
on average, a 90% or greater contribution estimate 
for simulated mixtures consisting 100% of 
individuals from the region�s populations.  Left to 
right: Upper Russian River (2 populations, 99.9% 
contribution estimate), Hidden Creek (1 population, 
99%), Trail Lakes (3 populations, 95%), Tern Lake 
(1 population, 90%), Kenai / Skilak Lakes (10 
populations, 94%).  
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Fig. 2 -  Power to detect nonzero contributions, by 
method (line type), for each region of interest (panel), 

across a range of contributions (x axis).  Fifty 
mixtures of size 200 were simulated for each 
contribution level by region of interest combination; 
see text for details.  Power estimates are the 
proportion of each scenario�s simulated mixtures in 
which the method detected the contribution.   

                                                           
2 Reynolds, J. H. & P. A. Crane.  In preparation.  
Power analysis for mixed stock analysis. 
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Appendix 1  Ideal Power to detect nonzero 
contributions with one-sided bootstrap confidence 
intervals. 

Let Population A contribute a proportion 0 < π < 1 of 
uniquely identifiable individuals to the independent 
random mixture sample of size n.  The bootstrap 
mixture resample X then follows a Binomial (n, π), 
with Prob(X=0) = (1 - π)n, so Prob(limit of the one-
sided bootstrap lower confidence interval for π  = 0| 
95% percentile confidence interval, 1000 resamples, 
π, n) = Prob( The number of resamples with X=0 is 
≥ 50 | X ~ Binomial(n, π)) = 

Prob( R ≥ 50 | R ~ Binomial(1000, (1 - π)n) = 

1 - Prob( R < 50 | R ~ Binomial(1000, (1 - π)n ) = 

1 −   (�). 
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The power to detect π > 0 using the one-sided 
bootstrap confidence interval method on this mixture 
sample is therefore 

1 � (�) = . ( )
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