
e c o l o g i c a l m o d e l l i n g x x x ( 2 0 0 6 ) xxx–xxx

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

The use of multi-criteria assessment
in developing a process model
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Ecological data frequently contain multiple patterns. A process model of the system produc-

ing the data should be able to recreate those patterns. We describe a method and associated
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software where components of the pattern are used as multiple criteria to assess a model

during its construction. Successive improvements are made to the model so that it describes

more components of the pattern effectively.

The software, Pareto Evolve is an evolutionary algorithm. Initially it creates many individ-

ual sets of model parameters, each is used in the model to produce results that are then

compared to patterns in a data set. Different individuals may achieve different components

of the pattern and Pareto Evolve calculates those that are most effective and uses them to

produce new individuals. This is done by changing parameter values of individuals, called

mutation, or exchanging parameter values between individuals, called crossover. This pro-

cess is repeated over many generations so that a most effective parameterization evolves.

We illustrate this method with a model for hourly increments of extension of the leading

shoot of a conifer tree. The particular task here is to model water uptake by the plant in

response to water loss due to transpiration, calculate a water deficit between uptake and

loss, and calculate contraction and re-expansion of shoot tissue due to diurnal changes

in tissue water deficit. We choose criteria corresponding to different phases in the diurnal

pattern of expansion and model for up to six consecutive days. A value is set marking the

limit within which the model must achieve the criteria for it to be judged as success.

This value is called a binary discrepancy measure. Pareto Evolve is used to make mul-

tiple searches with successively smaller binary discrepancy measures until all criteria

are no longer achieved. At this point different parameter sets achieve different groups

of criteria and we use these as indicators of how the structure of the model must

be improved to achieve an overall better fit. In our example we find that contraction

is more rapid than re-expansion, which is a hysteresis effect, and that re-expansion

of tissue continues after water deficit within the tissue is estimated to have been

removed.

We discuss how this method can be used in model development and particularly how mul-

tiple criteria assessment can be used in model development.
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1. Introduction

Ecological process models attempt to represent the workings
of complex systems (Wu and Marceau, 2002). During develop-
ment of a process model choices must be made about what
components of the system to include and the detail with
which they should be represented. These are the problems of
defining model bounds and deciding about aggregating or dis-
aggregating model components (e.g., Auger et al., 2000) and
such decisions may determine difficulties in defining model
uncertainty (Oreskes, 2003). Ideally model assessment against
data should inform about the effectiveness of these decisions.
However, standard goodness-of-fit approaches to assessment
may not adequately answer questions about model structure,
particularly if based upon a single measure, e.g., R2 between
data and model output (Håkanson, 2003). Typically ecological
process models have many parameters often with undefined
limits for their values so that deficiencies in model structure
may be overcome by variation in parameter values. It may
not be possible to place deterministic bounds on the values
parameters take that would restrict compensation for struc-
tural deficiencies (Norton, 1996) because variation in parame-
ter values has not been studied when the model is first con-
structed.

Wiegand et al. (2003) suggest that greater use should be
made of patterns that occur in data, particularly time series

features. We show how the Pareto optimization approach can
be used to produce incremental improvements in model struc-
ture by comparing patterns produced with different model
structures.

2. The modeling problem

Shoot extension in temperate zone conifers such as Sitka
spruce (Picea sitchensis (Bong.) Carr.) takes place rapidly in
spring and early summer through extension of terminal buds
formed in the previous summer. In a first investigation, daily
measurements of shoot length were made through the grow-
ing season in the canopy of an 11 years plantation (Ford et
al., 1987a,b) but analysis of growth response was restricted
by accuracy of measurement. An electro-mechanical shoot
growth sensor was constructed (Milne et al., 1977) that enabled
continuous automatic recording of shoot length. The sensor is
supported on previous year’s wood below the growing shoot
and measures extension using a pulsed light emitting diode
that does not touch the growing tissue. Hourly values of shoot
extension over a sample 7-day period are shown in the upper
section of Fig. 1.

The shoot extension sensor produced more accurate data
than manual daily measurements but introduced a further
problem in understanding the dynamics of growth. Each
morning the hourly shoot extension rate declines or becomes
and spatial data. They suggest models be constructed that
include the minimal set of processes necessary for reproduc-
ing patterns in such data and propose systematic compari-
son of observed patterns with those produced by different
modifications of a model. The strength of this approach, as
illustrated by their examples, is that the effects of differ-
ent component processes in a system may be apparent in
the time series or spatial structure produced. Model develop-
ment should progress from obtaining an overall fit towards
describing patterns in dependent data. However, this objec-
tive presents a technical challenge in analyzing the multiple
signals that may occur in such data and in how to assess a
model’s effectiveness in replicating them.

An answer to this technical challenge is to use Pareto opti-
mality to summarize the model’s simultaneous performance
in reproducing the suite of patterns (Reynolds and Ford, 1999).
This summary can be derived by multi-criteria optimization
where a model fitting procedure based on evolutionary com-
putation searches out arrays of parameter values for the model
that achieve as many criteria as possible (Deb, 2001). We apply
such a method to develop a model simulating fluctuation in
shoot extension in a conifer tree in response to changes in the
environment, particularly the processes of contraction and re-
expansion that occurs during the day–night cycle. This is the
first stage of assessment—finding whether a proposed model
structure is adequate for calibration. The method involves cal-
culating the Pareto set consisting of all groups of assessment
criteria that can be achieved by different arrays of parameter
values. The critical technical difficulty is to find the Pareto set,
particularly where large numbers (say > 5) of assessment crite-
ria are used. We use an evolutionary algorithm; Pareto Evolve
(Reynolds, 1997) developed and tested for use with large num-
bers of criteria (Komuro, 2005), and characterize its important
negative and later, particularly during the early night, shoot
extension increases. The 7 days of Fig. 1 are selected from a
larger set because they represent the onset of a warm and
sunny period of weather when substantial diurnal contrac-
tion and re-expansion cycles first appeared. Kanninen (1985)
measured shoot length of 5 years Pinus sylvestris and devel-
oped a time series model of growth rate as a function of 3 h
lagged air temperature but his measurements show no actual
contractions.

Fig. 1 – Top line: hourly measured shoot growth rate of the
terminal shoot of a 14 years plantation growth tree of Sitka
spruce in southwest Scotland from Julian days 178 through
184 in 1976. Dashed vertical lines mark midnight. The
shoot has substantial contractions during the middle of the
day and most rapid extension during the early part of the
night. Note that the amplitude between maximum and
minimum values generally increases over the period.
Bottom line: hourly calculated transpiration using the
Penman–Monteith equation. Note that maxima generally
occur after the time of greatest shoot contraction.
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Contractions, the shrinking of newly formed tissue, are
considered to result from a decline in tissue water poten-
tial with re-expansion due to a gain in water potential. Milne
et al. (1983) made a time series analysis of the relationship
between transpiration, shoot water potential and the contrac-
tion and re-expansion of stem diameter, measured with linear
variable differential transformers (LVDT) recorded electroni-
cally, on trees in the same forest. They found transpiration rate
and shoot water potential were in phase but changes in stem
radius lagged up to 3 h behind them. Calculation of hourly
transpiration (Fig. 1) was made using the Penman–Monteith
equation (Monteith, 1965; see Milne et al., 1983; Milne, 1989 for
details of calculation) and this method has been tested against
direct measurements of evapo-transpiration (Milne, 1979). In
the shoot extension data contraction appears to be rapid and,
in apparent contrast to the changes in stem diameter, mini-
mum extension values are reached a number of hours before
maximum transpiration. Re-expansion appears more gradual
than contraction but it is not immediately clear if a distinc-
tion can be made between re-expansion and the growth of
new tissue. Furthermore the amplitude of the daily change is
not constant.

Important questions include: is contraction more rapid
than re-expansion? Is the full amount of a daytime contrac-
tion regained in the following night period? Why does the
amount of contraction vary between days with similar cal-
culated transpiration (compare days 180, 181 and 182; Fig. 1)?
A
c
e

s
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where T is the mean daily temperature (◦C) and RD is the
daily radiation (MJ m−2). We start with this overall structure
of lagged temperature and radiation effects, so, for each hour
daily average temperature and radiation over the lagged val-
ues were calculated. This starting point provides a mean
hourly shoot growth rate that varies little over the limited
periods we examine and our task is to investigate model struc-
ture and parameter values for contraction and expansion that
explain the diurnal variation around that mean.

Our initial model for hourly extension is
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with the last term describing contraction and re-expansion.
The four parameters to be estimated for temperature and
radiation effects, x1–x4, correspond to the coefficients given
in Eq. (1). Note that the temperature, T (◦C), and radia-
tion, RH (MJ m−2), contributions to growth are re-calculated
for each hour and the contraction/expansion component is
added to that—contraction does not inhibit growth and re-
expansion does not accelerate it. For the last term we cal-
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process-based model should be able to simulate different
haracteristics of the time series; hence we should use differ-
nt criteria to assess each characteristic.

The time series model of daily shoot extension, y at day d,
olved for measured daily increment of a leading shoot (Ford
t al., 1987b) was

d = 0.133Td−1 − 0.042Td−2 + 0.0107RD
d−2 + 0.0150RD

d−3, (1)

Table 1 – Developmental stages in modeling water deficit a
extension

(a) Calculation of the last term of Eq. (2)

Uptake = deficit × x6; contraction and re-expansion = �D × x5

(b) The replacement of a single contraction and expansion paramete
Uptake = deficit × x7; contraction = �D × x5; re-expansion = �D × x6

(c) The addition of a further expansion component to that shown in
Uptake = deficit × x7; contraction = �D × x5; re-expansion = �D × x6;∑

contraction >
∑

re-expansion then re-expansion = (
∑

contracti

For each stage hourly deficit, mm, is calculated as the sum of transpi
in deficit, �D, for each hour is used to calculate contraction, if �D is
versions of the model are given in Table 3. The figures referenced in
culate two components: a water deficit and a response in
shoot extension to a change in that deficit (Table 1a). Deficit,
D, is the balance between loss of water from the plant
through evapo-transpiration and replenishment by an esti-
mated value for uptake from the soil. We assume that water
loss is equivalent to evapo-transpiration as calculated from
the Penman–Monteith equation (Monteith, 1965). That calcu-
lation requires a measure for canopy resistance (Milne et al.,
1983; Milne, 1989). We estimate a parameter, x6, for the rate of
water uptake per unit of deficit (mm uptake/mm deficit/h). So

ts effect of contraction and re-expansion of shoot

Fig. 5a and b

at last term
Fig. 5c

deficit = 0 and∑
re-expansion) × x8

Figs. 5 and 7

up to that point in the day minus an hourly uptake and the change
tive, and re-expansion if �D is negative. Parameter values for these
ght hand column indicate where the defined model is graphed.
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Fig. 2 – The initial model, Eq. (2) (solid line) as fit to data
(histogram lines) using the simplex method to minimize
residual sum of squares between model and data.
Parameter values for this model are given in Table 3.

the change in deficit for any hour is

�Dt = Wt − x6Dt−1, (3)

where Wt is the calculated evapo-transpiration for that hour.
The last term of Eq. (2) calculates change in contraction or re-
expansion dependent upon the change in deficit and with x5

an estimated parameter. As water deficit increases, i.e., when
hourly transpiration values exceed water uptake, then we esti-
mate the shrinkage in that hour as x5�D

∑
S*, where

∑
S* is

the previous day’s net increase in shoot length and used as
an initial estimate of the amount of tissue that can shrink,
i.e., has not undergone sufficient cell wall thickening to pre-
vent shrinkage. Subsequently we investigate the time period
over which

∑
S* should best be calculated. As the deficit starts

to decrease then re-expansion is calculated as x5�D
∑

S*. Ini-
tially, Eq. (2), just one parameter, x5, is used for both the con-
traction and re-expansion phases but a question of interest
is whether the magnitude of contraction and re-expansion is
identical in response to �D.

To illustrate the difficulty in assessing a model using a sin-
gle criterion we use the residual sum of squares (RSS) between
model and data (Fig. 2) and the downhill simplex method
of optimization (Nelder and Mead, 1965) with the Numerical
Recipes in C implementation of Press et al. (2002). Parameter

values minimizing RSS for days 179–184 were sought. Dur-
ing day 178 the calculation of water deficit equilibrates so we
do not use values from that day in any of the optimizations
described. The RSS from a repeated simplex fit was 14.97% so
one approach is to say that the model explains 85% of the vari-
ation in the data. However, problems with this attained fit are
apparent from Fig. 2. The largest deviations between model
and data occur around the minima and maxima, i.e., when the
shoot shows maximum contraction and expansion, which are
features of particular interest in the development of the con-
traction/expansion component for the model. The period of
minimum values is underestimated for each day. The data-
model series for Fig. 2 has a partial residual autocorrelation
term at lag 1, ˛(1) = 0.56 ± 0.17 (p < 0.05) reflecting this pattern.

In multi-criteria assessment one can focus on the attain-
ment of minima and maxima by selecting criteria specifically
defined on them. Our objective is not to achieve a lower resid-
ual sum of squares, although we do, but to model the process
of contraction and expansion so that patterns in the data are
explained (Wiegand et al., 2003).

3. The Pareto optimal set of model
solutions

Assessing a model using multiple criteria reveals that some
arrays of parameter values satisfy some assessment crite-

ent
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d indi
Table 2 – Definition of terms used in multi-criteria assessm

Term

Individual An array of values, one for e
number of individuals form

Assessment criterion An objective function identi
criteria is used to define the

Binary discrepancy measure A binary discrepancy measu
considered a successful achi
individual’s performance rel
and data is within the discre

Pareto group A set of assessment criteria
Requires use of binary discre

Pareto frontier The set of all Pareto groups
Pareto set The set of all non-dominate
ria while other arrays of parameter values satisfy others
(Reynolds and Ford, 1999). This can be useful information.
It suggests the model has not completely failed but is only
partially successful and how different parameter values can
satisfy different groups of criteria may indicate how model
structure can be improved.

We use four concepts: binary discrepancy measures, the
Pareto set, the Pareto frontier, and parameter bounds (Table 2).
A binary discrepancy measure (Hornberger and Spear, 1981)
defines a range of assessment criterion values considered as
successful achievement of the criterion. If we chose, say, four
assessment criteria, and set binary discrepancy measures
within which they each must be achieved, then we may
obtain a solution such as illustrated in Fig. 3. The one, or
more, individuals in Pareto group 1 are arrays of parameter
values that produce outputs within the specified discrepancy
bounds for each of assessment criteria A, C and D. These

Definition and explanation

arameter of a model, which produces a unique model output. A
ulation
ith a specific assessment characteristic. The vector of assessment

i-criteria optimization problem
here maximum and minimum values are placed on what will be

ent of an assessment criterion. This enables classification of an
to a specific assessment criterion as: 1 if divergence between model
y and 0 otherwise
re achieved by one, or a number of, non-dominated individuals.
y measures

viduals
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Fig. 3 – Illustration of a set of assessment vectors where
four criteria are not satisfied by any one group. Satisfied
criteria are represented by black squares, unsatisfied
criteria by white squares. Individuals in groups 1 and 2 both
achieve three criteria and are non-dominated but those
in group 3 and group 4 are both dominated by group 1.

individuals are superior to those in group 3 because they
achieve assessment criterion D and superior to those in group
4, because they achieve criterion A. Individuals (i.e., arrays of
parameter values) in groups 3 and 4 are dominated by Pareto
group 1. However, Pareto group 2 achieves an assessment
criterion that individuals in Pareto group 1 do not achieve,
and vice versa, so the individuals in Pareto groups 1 and 2
are both members of the Pareto set, i.e., the collection of
non-dominated individuals.

In this work, we use an example where structural compo-
nents are added to a model to explain particular features in a
data set. It is important to note that all versions of the model
can fit the data to some extent. We need to know how a spe-
cific change in model structure may produce an improvement
by accounting for some pattern in the data. Of course the abil-
ity of a model to satisfy all criteria simultaneously is directly
related to the widths of the binary discrepancy measure cho-
sen for each criterion. In our application we chose to use the
same width for all criteria although this is not essential and
widths could be allowed to vary if there is different confidence
in particular criteria. Our approach is to find the width of the
binary discrepancy measures at which the model is able to
satisfy all of the criteria, then decrease that width, find which
criteria are failed, and consider how a structural change may
enable the model to achieve all criteria at this reduced binary
discrepancy width. Comparing the contrasting parameter val-
ues obtained for different Pareto groups in a Pareto frontier
c

4
P

P
t
a

initial population, for our problems typically 100 individuals,
with their parameter values selected randomly from within
the specified bounds and a search will continue for 500 or more
generations. At each generation model outputs and values for
the assessment criteria are calculated for each individual in
the population. Each individual X is assigned a fitness which
measures how good X is as a solution to the multi-objective
function F(X). Based on the fitness values there is then selec-
tion of some individuals to be parents for the next generation.
Where a number of individuals have similar fitness then ran-
dom selection is made between them. The selected parents
produce offspring (reproduction) either by exchanging some
parameter values between two parents, called crossover (Bäck
et al., 1997), or changing some parent parameter values in
small amounts, called mutation (Fig. 4). The cycle of assigning
fitness, selection and reproduction is repeated until a maximum
allowed number of generations is reached.

Many EAs use a procedure called elitism (Deb et al., 2000)
to preserve individuals that have emerged as more successful.
This can make a search faster and ensure the random changes
produced by crossover and mutations do result in progress
towards a solution. Elite individuals are chosen from non-
dominated groups and are preserved for a number of genera-
tions. We found that a Pareto frontier can degenerate if elitism
is not used, i.e., favorable individuals can be lost (Komuro,
2005) which happens because both crossover and mutation
change the individuals they are applied to. In Pareto Evolve,
an indicate what type of improvement needs to be made.

. Evolutionary algorithm solution for the
areto set

areto Evolve (Reynolds, 1997; Komuro, 2005) is an EA based on
he non-dominated sorting genetic algorithm (NSGA) (Srinivas
nd Deb, 1995). The search for a Pareto set begins with an
elites are preserved for a number of generations.
After extensive testing (Komuro, 2005) the following rules

for selecting and maintaining elites were constructed:

(a) If a Pareto group achieves the most criteria in the Pareto
frontier of the current generation then some of its individ-
uals are stored as elites in an external pool.

(b) If a Pareto group achieves more criteria than at least one
of the Pareto groups in the Pareto frontier defined at the
previous generation then some of its individuals are stored
as elites in the external pool.

(c) The external pool lets an elite survive until a better one
appears. All elites stored in the external pool are compared
with the Pareto frontier at the beginning of the next gener-
ation and are removed if better ones have been produced.

(d) Where a criterion remains unachieved by any of the Pareto
groups chosen under conditions a–c, and if there exist
Pareto groups satisfying this criterion in the current gener-
ation, the one achieving the most criteria is chosen among
them.

The external pool of elites should not contain many indi-
viduals numerically close to each other and having the same
assessment vectors. The number of elites corresponding to
each Pareto group selected under one of the above four condi-
tions is determined by

l = {population size}/{number of Pareto groups in

the current generation Pareto frontier}.

If the number of individuals in a Pareto group is smaller
than or equal to the limit l, all of the individuals are accepted.
Otherwise, only l individuals are chosen based on a measure of
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Fig. 4 – (a) Crossover randomly selects parameters from two randomly selected parents and exchanges their values to
generate two offspring. In this example each individual has seven parameters. For two parents X = (x1, x2, . . ., x7) and Y = (y1,
y2, . . ., y7), the first, second, fourth and seventh parameters are randomly chosen to be crossed over, producing offspring Z
and W. (b) Mutation randomly selects parameters from a randomly selected parent and changes the parameter values by
small, randomly generated amounts relative to the search range width. For example, each individual has seven parameters,
and, for parent X = (x1, x2, . . ., x7), the second, third, and sixth parameters are randomly chosen to be mutated to generate
offspring Z. The random change is 0.1 with parameter values in the range [0, 10]. Whether the value is added or subtracted
from the original parameter value is also determined randomly. Mutation is valuable for local searching in the objective
space.

crowdedness in the objective space (Deb et al., 2000; Komuro,
2005) are chosen. If many Pareto groups are obtained l does
not become large. In selecting elites a balance is maintained
between the members of the Pareto set and this in turn helps
to maintain the breadth of the search process. The number of
generations for which an elite is maintained can be varied.

Using the described rules for elitism we found that the
search to be most effective if crossover and mutation prob-
abilities are dynamic (Komuro, 2005). If an elite individual is
chosen to be a parent, then it is inefficient to apply mutation,
i.e., to change parameter values by small amounts because the
created offspring stays numerically close to the parent in the
search space. When using binary discrepancy measures the
task is to achieve additional criteria, rather than to improve the
accuracy of presently achieved criteria so it is more effective
to apply crossover to the parent so that the search becomes
broad. If a parent has not been selected as elite it is mutated.

Pareto Evolve maintains an archive of all non-dominated
solutions encountered during the search. This archive is
updated each generation so that even if Pareto optimal solu-
tions are lost from a specific generation, they are retained in
the archive. The archive is the source of the final Pareto fron-
tier estimate, not the generation-specific Pareto frontier.

Searching for solutions with Pareto Evolve uses random
procedures in crossover, mutation, and the selection of elites.
Consequently it is important to repeat searches and to exam-
ine the variability of solutions that may be obtained.

ment we initially use four criteria for each day: deviations from
the measured mean shoot extension for hours 3 through 6, 9
through 12, 13 through 16, and 21 through 24. These represent,
respectively: the pre-dawn expansion period when we might
expect that water deficit would be at its lowest; the period of
maximum contraction; the period where recovery from con-
traction appears to start; the period of maximum expansion
which occurs in the hours before midnight. All criteria use
the same binary discrepancy measure defining the acceptable
deviation, + or −, from measured values.

The model is first applied to days 179–181 and then days
182–184 separately. There is a difference between these two
parts of the sequence with lower minima and greater ampli-
tude of variation over days 182–184. Deans (1979) shows that
there is an increase in soil moisture tension and a decrease in
fine root length over this time period in this forest so there is
the possibility that additional processes may become impor-
tant over this time.

An initially large binary discrepancy measure of
±1.5 mm h−1 produced a Pareto frontier of one group sat-
isfying all criteria for days 179–181. This discrepancy value
was decreased for successive runs of Pareto Evolve until
the smallest binary discrepancy measure achieving a Pareto
frontier of one group, i.e., all 12 criteria, was ±0.45 mm h−1

(Fig. 5a). This value is indicated on a scale at the top of
Fig. 5a along with short horizontal lines showing actual
values that were attained for each of the 12 criteria that
5. Model development using Pareto Evolve

The failure of simplex minimization of RSS to obtain a model
capturing daily minima could be due to an incomplete or
incorrect model and/or to the choice of criteria—minimization
of RSS for data of this type will seek a solution where minima
and maxima of model and data are in phase with the size
of extreme points being secondary. For multi-criteria assess-
indicate whether the model over- or underestimated that
data for that period. The dot–dash line across the middle of
Fig. 5a is the overall trend defined by the lagged temperature
and radiation terms. Visually (Fig. 5a) the model fit is sim-
ilar to that obtained using the simplex procedure but now
we can quantify the direction of the failures. The criteria
closest to the ±0.45 mm h−1 limit, and where the model
failed when binary discrepancy measures were decreased,
are the contraction periods of days 180 and 181. A plot
(not shown) of the pattern of the parameter search for the
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Fig. 5 – Each graph consists of measured data (vertical bars), and model values (continuous line), and trend contribution to
the model (dash–dot line) determined by lagged temperature and radiation. Above each is a continuous horizontal line that
provides a zero reference for the assessment criteria used in the model fitting procedure. At the right end of that line is the
scale defining the smallest binary discrepancy measure which the model satisfied for all criteria graph and above and below
the reference are lines indicating the particular value achieved for each criteria. In (b) circled figures indicate the criteria
failed in each of three Pareto groups that form the Pareto frontier when binary discrepancy measures are decreased.
Parameter values for these models are given in Table 3.

model in Fig. 5a showed that stable parameter values had
developed.

Pareto Evolve was applied to the model defined in Eq. (2)
for days 182–184 (Fig. 5b) and compared to the fit obtained
for days 179–181. A single Pareto group achieving all crite-
ria was achieved at minimum binary discrepancy measure of
no less than +1.05 mm h−1 over the 4 h periods—more than
twice the minimum binary discrepancy measure achieved for
days 179–181 with the model over-estimating extension dur-
ing the period of pre-noon shrinkage and under-estimating it
during the post-midnight contraction. This model (Fig. 5b) has
a greater rate of contraction and expansion per unit change in
water deficit (parameter x5) than for days 179–181 and a lower
rate of water uptake per unit deficit (x6) (Table 3). We con-
clude that the model is inadequate, particularly in its inability
to achieve minima effectively. The differences in parameter
values between the two periods indicate how the fitting pro-
cedure attempts to accommodate the model to the data and in
particular to achieve the larger changes in amplitude through
changes in parameter values—when really a more effective
model structure is required. Increase in x5 causes more rapid
change in extension per unit change of deficit but decreasing
the rate of uptake prolongs the duration of the deficit enabling

the model to achieve the maximum extension rate in the late
evening hours. Differences in parameters x1–x4 (Table 3) cause
change in the overall trend of growth but do not contribute
directly to the diurnal cycles of contraction and expansion.

When the binary discrepancy measure was decreased to
±1.0 mm h−1 for the model in Fig. 5b a Pareto frontier formed
with three Pareto groups each with one failed criteria (Table 4).
Interestingly the first two of these groups have similar values
of x5 to that obtained for the model of Fig. 5a, although x6,
the uptake rate is lower which, by enabling a larger deficit to
develop, may enable the minima to be achieved more effec-
tively. Group 3 individuals, which fail to meet the final criteria
on day 184, have a greater uptake rate and response to changes
in deficit. The measured recovery from deficit on day 184 is less
rapid than on previous days and this also occurred on day 185
(not shown) and may be an indication of some change in the
controlling eco-physiological processes.

The flexibility provided by x5 and x6 is insufficient to
provide a model that can capture minima and maxima
effectively—we conclude that the model structure is inade-
quate. Three changes were made to the model. (i) Two param-
eters are used to estimate the effects of changes in water
deficit on extension: one when deficit increases and con-
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Table 3 – Model parameters used to produce output in Figs. 2, 5 and 7

x1 x2 x3 x4 x5 x6

Fig. 2 0.1285 0.1129 0.0519 0.0013 0.1622 0.4991
Fig. 5a 0.0955 0.0727 0.0330 0.0250 0.1865 0.5890
Fig. 5b 0.0090 0.0765 0.1135 0.0015 0.2090 0.5420

x1 x2 x3 x4 x5 x6 x7

Fig. 5c 0.0005 0.0510 0.0975 0.0185 0.3650 0.2910 0.8555

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 5d 0.0925 0.0720 0.0435 0.0040 0.5700 0.1625 0.7550 0.4625
Fig. 7 0.0190 0.0490 0.0690 0.0400 0.6240 0.3910 0.7790 0.2030

In each case parameters x1–x4 are those defined in Eq. (2). For Figs. 2 and 5a and b, x5 is the contraction and or expansion, mm, per unit change
of calculated water deficit and x6 is the estimated water uptake rate, mm per mm of deficit. For Fig. 5c there are separate contraction, x5, and
expansion, x6, parameters and x7 is the uptake parameter. Fig. 5d has the same contraction, expansion and uptake parameters as Fig. 5c and
additionally parameter x8 which is the hourly rate of re-expansion of the contraction–expansion difference existing when calculated water
deficit is zero. For Figs. 5 and 7 one representative individual from the final population of the Pareto Evolve search is shown: for Fig. 5a and b
these were selected from 100 individuals after 500 generations; for Figs. 5c, d and 7 these were selected from a population of 300 after 1000
generations.

traction takes place and the other when deficit decreases
and expansion occurs (Table 1b). This is the most important
change because it allows for a hysteresis effect in contrac-
tion and expansion of extensible tissues under changes in
water stress where contraction is greater than re-expansion
per unit change in deficit as reported by Murphy and Ortega
(1996) for pea seedlings. (ii) The period used to calculate the
amount of shoot available to be contracted was changed from
the whole of the previous day to the period between 23 h of
the previous day and 6 h of the day in which the contrac-
tion takes place. This was estimated by seeking the optimal
time using Pareto Evolve. (iii) Arithmetic smoothing is made
in calculation of water uptake so it depends on an average
of the last 3 h. This prevents short-term oscillations during
contraction and expansion. Also, during model development
it was found that no model captured the final criteria effec-
tively, i.e., pre-midnight expansion on day 184. Inspection of
the longer period of measurement suggested a change in pat-
tern of extension from that time onward so this final criterion
was dropped from the assessment criteria.

In the resulting model (Fig. 5c) x5 > x6 (Table 3) giving re-
expansion per unit change in deficit to be less than contrac-
tion, and estimated uptake rate, x7, to be large compared
with previous model versions. Although this model captures
both maxima and minima it fails to capture the gradual
decline of extension between midnight and dawn. Examina-
tion of the Pareto frontier when binary discrepancy values

noon re-expansion and vice versa. This suggested there was a
longer period of re-expansion than simulated, or an increase
in real growth during the period when deficit is zero, i.e., mid-
night to dawn. The gradual decline in measured extension
from midnight suggests a discrepancy in model calculation
of re-expansion. Examination of the calculated water deficit
term produced by the model in Fig. 5c showed it was reduced
to zero by midnight, but by that time the total calculated re-
expansion was substantially less than the total contraction.

The assumption was then made that re-expansion contin-
ues after water deficit has been reduced to zero, i.e., there is a
lag before full re-expansion is attained. This is, in effect, com-
pletion of the hysteresis cycle of contraction and re-expansion.
The model was modified (Table 1c and Fig. 5d) so that the dif-
ference between contraction and expansion was calculated at
the time of zero deficit and then distributed over subsequent
hours with an estimated constant arithmetic decline rate, x8,
applied to the remaining (contraction–expansion) term at each
hour. This model does capture the observed pattern of decline
but it was necessary to change the assessment criteria to esti-
mate parameter x8. Arithmetic differences for the mean of
four successive values provide information on whether the
model under or overestimated measured extension but when
used at the point of the maxima, large compensations could
occur in the calculation of the mean hourly values for the cri-
terion value, e.g., two large under estimates with two large
over estimates. Consequently the assessment criterion for this

r the
e mo

0.
0.
0.
were decreased showed a division into groups that achieved a
gradual post-midnight decline but failed to achieve the post-

Table 4 – Criterion failed and example parameter values fo
discrepancy measures were reduced to ±1.0 mm h−1 for th

Group Criterion failed

1 Day 182, underestimated pre-midnight expansion
2 Day 183, underestimated early afternoon expansion
3 Day 184, exceeded pre-midnight expansion
time period was changed to a mean squared difference. Other
model formulations were examined to see if they could simu-

three Pareto groups that formed when binary
del in Fig. 6b

x1 x2 x3 x4 x5 x6

0025 0.0550 0.0895 0.0100 0.1820 0.4680
0135 0.0725 0.0775 0.0270 0.1850 0.3015
0335 0.1005 0.1070 0.0135 0.2805 0.7570
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Fig. 6 – Pareto frontiers in the breeding population of successive generations in the search that produced the model shown in
Fig. 5a. Criteria are numbered along the top of each diagram. Satisfied criteria are represented by black squares, unsatisfied
criteria by white squares. Each group is labeled alphabetically and the number of individuals represented in the population
of 100 is listed beside the label. Note that at generation 16 group I appears and dominates both A and B of generation 15 and
so these groups are dropped. Groups C–E, each achieving 10 criteria, remain through these four generations.

late the midnight to dawn decline effectively. These included
the use of a two compartment water model, i.e., foliage and
wood with a transfer between them, and use of a root resis-
tance. Both of those versions of the model introduced delays
that substantially reduced re-expansion in late afternoon and
early evening so that the criteria for those times were failed
by large amounts and those changes in model structure were
rejected.

The model of Fig. 5d captures minima, maxima and the
gradual post-midnight decline in extension and reduces the
binary discrepancy range at which all criteria are achieved.
The overall residual sum of squares was 11.4% and the par-
tial autocorrelation term of residuals at lag 1 was 0.24 ± 0.24
suggesting that where model-data discrepancies occur they
do so for a number of hours, e.g., during the early morning
hours of day 182 and in the middle of day 183. However, they
do not occur consistently at the same points in the diurnal
cycle (Fig. 6).

The model in Fig. 5d was then fit to days 179–184 using the
same criteria for each day, i.e., 23 criteria in all (Fig. 7). This was
the largest assessment made: using a population of 200 indi-
viduals and 1000 generations took 5 min 35 s on a 3.6 GHz com-
puter with 4 GB of memory and running in Microsoft Visual
C++. This model captures more features in the data than that
shown in Fig. 2 but there are still some discrepancies between
model and data. The most notable is the large modeled con-
traction for day 181 and the failure to capture pre-midnight
e

d
m
a

days 179–184. However, re-expansion rate, x6, for days 182–184
is only 42% of days 179–184. So, when estimated for the 6 days
sequence re-expansion and to a lesser extent contractions are
estimated to be more rapid. Consequently, the amount and
rate, x8, of re-expansion added after the daily water deficit is
reduced to zero is less, i.e., the x8 value for days 179–184 is 44%
of that for days 182–184. These differences in parameter values
suggest that there may be additional processes not included
in the model. For example, Génard et al. (2001) show the hys-
teresis effect can be greater when water potential is lower and
there may be changes over the 6-day period not captured in
the water deficit calculation.
xpansion of days 179 and 181.
A comparison of parameter values for the model fitted for

ays 182–184 (Fig. 5d) and for days 179–184 (Fig. 7) shows esti-
ated uptake rates, x7, are within 1% of each other (Table 3)

nd contraction rate, x5, for days 182–184 is 91% of that for
Fig. 7 – A model with different parameters for contraction
and re-expansion rates per unit change in deficit, and a
parameter to complete re-expansion in the early morning
hours following removal of water deficit. Parameter values
are given in Table 3.
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6. Discussion

Multi-criteria assessment enabled us to answer three ques-
tions: is contraction more rapid than re-expansion? Yes,
because models with a separate parameter for contraction and
expansion per unit change in deficit, and with the expansion
parameter less than that for contraction, could fit multiple
criteria, i.e., those defining both minima and maxima. Is the
full amount of a daytime contraction regained in the following
night period? Yes, in the final model. However, a component of
re-expansion was required after the removal of water deficit
to capture the criteria of post-midnight decline. Why does
the amount of contraction vary between days with apparently
similar transpiration? There are differences in the amount of
growth available for contraction between different days.

An important consideration is how assessment criteria and
their binary discrepancy measures should be selected. The
procedure we use here has three components.

• Criteria are chosen to test whether the structure of the model
is correct. Consequently the resulting model is not ubiqui-
tously correct—it explains particular features of the data
with a certain degree of accuracy. This means that a model
and the assessment criteria used in its development must
be considered together as a couple.

• Assessment criteria should be informative quantitatively.

trol the underlying growth process. In this way model devel-
opment is a guide to constructing a theory for shoot extension
but it may not be appropriate to anticipate that a model of best
fit will encapsulates that theory.

These model development and assessment procedures
support Wiegand et al. (2003) and Grimm et al. (2005) who sug-
gest that during model development greater use be made of
patterns that occur in data. However, it is important that pat-
terns needing to be explained should be selected in a rational
and quantitative way. Multi-criteria assessment using binary
discrepancy measures provides an effective method for the
example we use. This method recognizes that many models
may be fitted to a data set, but drives model development
so that the largest deviations between model and data are
reduced by adding new features to the model.

The Pareto Evolve software along with an example of
how it can be used is available at http://faculty.washington.
edu/edford/.
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Håkanson, L., 2003. Propagation and analysis of uncertainty in
ecosystem models. In: Canham, C.D., Cole, J.J., Lauenroth,
W.K. (Eds.), Models in Ecosystem Science. Princeton
University Press, Princeton, pp. 139–167.

Hornberger, G.M., Spear, R.C., 1981. An approach to the
preliminary analysis of environmental systems. J. Environ.
Manage. 12, 7–18.

Kanninen, M., 1985. Shoot elongation in Scots pine: diurnal
variations and response to temperature. J. Exp. Bot. 36,
1760–1770.

Komuro, R. 2005. Multi-objective evolutionary algorithms for
ecological process models. PhD Thesis. University of
Washington.

Milne, R., 1979. Water loss and canopy resistance of a young
Sitka spruce plantation. Boundary-layer Meteorol. 16, 67–81.

Milne, R., 1989. Diurnal water storage in the stems of Picea
sitchensis (Bong.) Carr. plant. Cell Environ. 12, 63–72.

Milne, R., Smith, S.K., Ford, E.D., 1977. An automatic system for
measuring shoot length in Sitka spruce and other plant
species. J. Appl. Ecol. 14, 523–529.

Milne, R., Ford, E.D., Deans, J.D., 1983. Time lags in the water
relations of Sitka spruce. For. Ecol. Manage. 5, 1–25.

Monteith, J.L., 1965. Evaporation and Environment. Symposium
of the Society for Experimental Biology, vol. 19. Cambridge

Murphy, R., Ortega, J.K.E., 1996. A study of the stationary
volumetric elastic modulus during dehydration and
rehydration of stems of pea seedlings. Plant Physiol. 110,
1309–1316.

Nelder, J.A., Mead, R., 1965. A simplex method of function
minimization. Comput. J. 7, 308–313.

Norton, J.P., 1996. Roles for deterministic bounding in
environmental modeling. Ecol. Model. 86, 157–161.

Oreskes, N., 2003. The role of quantitative models in science.
In: Canham, C.D., Cole, J.J., Lauenroth, W.K. (Eds.), Models in
Ecosystem Science. Princeton University Press, Princeton,
pp. 13–31.

Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P., 2002.
Numerical Recipes in C. Cambridge University Press,
Cambridge.

Reynolds, J.H., 1997. Multi-criteria assessment of ecological
process models using Pareto optimization. PhD Thesis.
University of Washington.

Reynolds, J.H., Ford, E.D., 1999. Multi-criteria assessment of
ecological process models. Ecology 80, 538–553.

Srinivas, N., Deb, K., 1995. Multiobjective optimization using
nondominated sorting in genetic algorithms. Evol. Comput.
2, 221–248.

Wiegand, T., Jeltsch, F., Hanski, I., Grimm, V., 2003. Using
pattern-oriented modeling for revealing hidden information:
a key for reconciling ecological theory and conservation
practice. Oikos 100, 209–222.

Wu, J., Marceau, D., 2002. Modeling complex ecological
systems: and introduction. Ecol. Model. 153, 1–6.
University Press, pp. 205–234.


	The use of multi-criteria assessment in developing a process model
	Introduction
	The modeling problem
	The Pareto optimal set of model solutions
	Evolutionary algorithm solution for the Pareto set
	Model development using Pareto_Evolve
	Discussion
	Acknowledgements
	References


