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ABSTRACT: Stochastic process models intersect statistical and mechanistic modeling. 
Their assessment and calibration raise important questions regarding the appropriateness 
of statistical inference methods when one cannot implicitly assume a correct model 
specification.  The early stages of process modeling focus primarily on structural 
inference, with parameter inference secondary, exactly the opposite sequencing of 
traditional statistical inference. A stochastic model of feline hematoepiesis is used to 
illustrate a new structural inference method based on simultaneous performance on 
multiple goodness-of-fit criteria, the Pareto Optimal Model Assessment Cycle (POMAC).    
Multi-criteria optimization allows flexible direct model structure assessment, with 
parameter inference a byproduct upon achieving model structure adequacy.  The example 
model appears adequate with regard to the selected assessment criteria, in contrast to 
conclusions from a more classical statistical inference (Catlin 2001).  Simulations with 
the POMAC-based parameter estimates more closely mimic the experimental 
observations.  Differences in parameter inferences from the two approaches are 
discussed, including biological implications.   
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INTRODUCTION 
Stochastic process models intersect 

probabilistic and mechanistic modeling. Their 
mechanistic basis places primacy on structural 
inference, or model assessment, over parameter 
inference (Mallows 1998; Reynolds 1999). 
However, their probabilistic structure supports 
use of standard statistical inference methods 
which generally reverse this inference sequence.   

Statistical inference methods primarily 
focus on parameter estimation, followed, if 
possible, by formal or informal model structure 
assessment at the selected parameterization 
(Figure 1).  For process models, these methods 
may severely restrict the information used in the 
inferences:  the proposed model structure f(y,θ), 
rather than the modeler, dictates both (i) the 
relevant parameter inference information in the 
observations y, via the minimal sufficient 
statistics t, as well as (ii) what, if any, 
information remains available for goodness-of-fit 
assessment via f(y|t) (Sprott 2000).  Though 
specific process characteristics might be 
identified as key features an acceptable model 

must be able to reproduce, if they are not 
formally ‘identified’ by the proposed model 
structure they aren’t incorporated into either 
inference stage.  In contrast, mechanistic 
modeling often uses such process characteristics 
for ad hoc structural assessment. 

Given a set of goodness-of-fit criteria, 
based on the identified process characteristics, 
structural inference can be viewed as a problem 
in multi-criteria optimization (Reynolds 1999):  
does there exist a parameterization allowing the 
model structure to simultaneously satisfy all 
criteria?  The Pareto Optimal Model Assessment 
Cycle (POMAC) utilizes a model’s joint 
performance across a vector of criteria to 
dynamically search out the vector optimum, i.e., 
Pareto Frontier, in the objective (‘criteria’) 
space.  This can both reveal the existence of 
structural deficiencies and provide insight into 
their sources.  Its effectiveness derives from its 
focus on joint performance across criteria.  The 
underlying evolutionary optimization algorithm 
allows for broad selection of goodness-of-fit 
criteria (Reynolds 1997). 

 POMAC was used for structural and 
parametric inference of a stochastic simulation 
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model of feline hematopoeisis.  A previous 
simulation study revealed feasible parameter 
ranges but did not formally assess the model 
structure (Abkowitz 1996).   

The model structure is adequate.  The 
POMAC-based parameter estimates differ from 
those in both the original study (Abkowitz 1996) 
and a more recent estimating equations analysis 
(Catlin 2001); simulations from the current 
estimates more closely mimic the experimental 
observations.  Implications for the task of model 
specification (Mallows 1998) are discussed. 

METHODS: 
Multi-criteria Structural Inference  

Structural inference proceeds by 
defining multiple goodness-of-fit criteria, each 
focusing on a different characteristic of the 
process under investigation (Reynolds 1999).  A 
multi-criteria optimization search is conducted to 
detect if any parameterizations allow the model 
structure to simultaneously ‘satisfy’ all of the 
goodness-of-fit criteria.  The optimization search 
explores and returns the model’s Pareto Optimal 
Frontier or Tradeoff Surface. 

Pareto or vector optimization is based 
on the Pareto dominance relation between two 
vectors: let X = (1, 3, 2), Y = (2, 3, 3), and Z = 
(2, 4, 1). If the objective is to minimize each of 
the three component elements, then X dominates 
Y, ‘X>pY’, all of its elements are at least equal to 
Y’s respective elements and some are smaller 
(‘some better and all no worse’).  Neither X nor 
Z dominates the other as each does better on 
some components but not all three.  If the 
feasible space consisted of just these three 
vectors, the Pareto Frontier would be {X, Z}; 
larger spaces require a dynamic search algorithm 
to reveal the Pareto Frontier (i.e., Reynolds 
1999).  Defining the Frontier requires neither 
commensurable components, specific objective 
target values, nor quantitative distance measures 
from those targets (Reynolds 1999), though 
different optimization algorithms may require 
these. 

For structural assessment, a model’s 
Pareto Frontier is defined as follows.  Let {x, y, 
z} denote a set of, in this case three, observation 
features, i.e., descriptive statistics, for goodness-
of-fit assessment.  For each define a distance 
measure dx(xObserved, xSimulated).    Search over the 
parameter space to find the Pareto Frontier 
minimizing the objective vector (dx, dy, dz).   

Adding thresholds of acceptance for 
each distance or goodness-of-fit measure 
provides a structural assessment (Figure 2): if no 

objective vectors in the Pareto Frontier have 
component distances all within the acceptance 
thresholds, i.e., no parameterizations allow the 
model structure to simultaneously satisfy all the 
criteria, then a deficiency exists, perhaps 
structural or of another type (Reynolds 1999).  
Parameter inference makes no sense since the 
model is inadequate.   

If the Pareto Frontier contains vectors 
that simultaneously satisfy all criteria, then their 
associated parameterizations are clear candidates 
for parameter estimates.  There may not be a 
unique ‘Pareto optimal’ parameterization.  No 
sampling distributions have been specified, so no 
direct estimates of standard errors are provided.  
These might be available from bootstrapping the 
observations and repeating the structural 
inference, but this has not been investigated. 

The POMAC_EVOLVE software 
(http://faculty.washington.edu/edford/research/so
ftware.html) was used to reveal the model’s 
Pareto Frontier.  The search software utilized an 
evolutionary computation algorithm, similar to 
genetic algorithms, to explore the Pareto Frontier 
of a general multi-criteria optimization problem 
(Reynolds 1997).  
 
Application Details 
Hematopoiesis 

Hematopoiesis is the multistage process 
by which stem cells specialize into mature blood 
cells (Golde 1991).  At the first stage, 
hematopoietic stem cells (HSC) can self-renew 
or differentiate into progenitor cells, moving to a 
second stage of development.  Progenitor cells 
eventually differentiate into mature white or red 
blood cells or platelets. 

Little is known of HSC behavior as they 
cannot be observed in vivo, unlike progenitor 
cells, so researchers have developed simulation 
models to investigate hematopoiesis.   Insight 
into hematopoiesis has direct bearing on clinical 
therapies, e.g., stem cell transplants or gene 
therapies, especially for cancer (Abkowitz 1997). 
Experimental Observations   

An experimental method was developed 
to monitor the progenitor cell population in 
Safari cats (Abkowitz 1990).   Safari cats  are 
offspring of mating between domestic (Eurasian 
origin) and wild Geoffroy (South African origin) 
cats, species which evolved independently for 12 
million years (O-Brien 1986).  The two species 
have electrophoretically distinct phenotypes of 
the X chromosome-linked enzyme G6PD, 
denoted as d G6PD and G G6PD, respectively.  
Safari cats are generally balanced heterozygotes, 
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having equal numbers of progenitor cells of each 
parental genotype (Abkowitz 1995).  A stem 
cell’s phenotype is retained during self-renewal 
and differentiation, so the proportion of 
progenitor cells of type d G6PD tracks migration 
of stem cells to the second stage.  This 
proportion can be estimated by sampling n 
progenitor cells and counting the proportion that 
are d G6PD cells. 

Safari cats were irradiated to kill 
existing bone marrow cells, then a limited 
amount of their own marrow cells, harvested 
prior to radiation, were transplanted back into the 
animals.  Samples were taken every 2-6 weeks, 
starting 10 weeks after transplant, and % d 
G6PD monitored.  Six subjects were monitored 
for 2-6 years on each (Figure 3).  
A two-compartment stochastic process model 

A two-compartment stochastic Markov 
model was proposed for hematopoiesis (Figure 
4) (Abkowitz 1996; Catlin 2001; Golinelli 2001).  
All stem cell ‘decisions’ - HSC renewal or 
differentiation, or progenitor cell development, 
are modeled as stochastic outcomes.  As the first 
compartment cannot be observed, it is a ‘hidden’ 
Markov model (Catlin 2001).  Structural and 
parametric inferences for the model are based on 
comparisons to experimental observations of 
progenitor cells in the second compartment 
(described above). 

The model is fully described in 
(Abkowitz 1996; Catlin 2001).  Denote the 
domestic and Geoffrey-type populations of HSC 
in the first compartment by Z(t)=(Zd(t),ZG(t)) and 
of progenitor cells in the second compartment by 
X(t)= (Xd(t),XG(t)) at time t.  The transition 
probabilities for a short time interval (t, t+h) are: 
P(Z(t+h)=z+1|Z(t)=z) = λzh+o(h); P(Z(t+h)=z-
1,X(t+h)=x+1|Z(t)=z,X(t)=x)= νzh+ o(h); and 
P(X(t+h) =x-1|X(t)=s) = µxh+o(h).  The waiting 
time to the next event is exponentially 
distributed with rate r=Z(t)(λ+ν)+X(t)µ; the 
probability the next event is: a birth = Z(t)(λ)/r, 
an emigration = Z(t)(ν)/r, a ‘death’ from the 
second compartment= X(t)(µ)/r.  Apoptosis, 
death of an HSC, is not incorporated to avoid 
identification problems with λ.  The number of 
domestic progenitor cells in a simple random 
sample of size n at time t is given by 
Cd(t)~Bin(n, Xd(t)/(Xd(t)+ XG(t)).       
Goodness-of-fit Features & Distance Measures 
 Consideration of the experimental 
process and observations (Figure 3) suggested 
five distinct observation features, each 
motivating a specific descriptive statistic and 

goodness of fit measure (Abkowitz 1996): (i) an 
early phase of substantial variability in % 
Domestic, i.e., % of clones of d G6PD type, (ii) a 
fairly wide range in % Domestic across the 
observation period, (iii) relative variation in % 
Domestic during first 15 observations following 
week 10, (iv) relative variation in % Domestic 
during the last 15 observations, and (v) 
maintenance of both cell lineages throughout the 
observation period (328 weeks).  Features 1 and 
3 begin on week 10 after transplantation ‘to 
assure that contribution of stem cells, rather than 
more differentiated cells also present in the 
marrow inoculum, were assayed’ (Abkowitz 
1996).  Each features’ summary statistic and 
goodness-of-fit measure are defined below.  
Duration of early variability:  time after 
transplant when variation in % Domestic 
subsides.  A score test of homogeneity in the 
observed percent of d G6PD clones from week j 
to the end of observation is calculated using a 
ratio estimator for the mean percent d G6PD 
over the period.  Initially all observations are 
used (j = 10), then the first observation is 
dropped (j = 14), then the first two observations 
are dropped, etc., until the test returns a p-value 
> 0.05.  The associated week is considered the 
week of subsidence.  dx(xObserved, xSimulated) = the 
p-value from a Kolmogorov-Smirnov (‘KS’) 
two-sample test of distribution equality (Conover 
1999) comparing the six observed duration 
values, xObserved, to 200 simulated values from the 
current model parameterization, xSimulated.   
Range of % Domestic: range of % Domestic 
across the observation period.  dx(xObserved, 
xSimulated) = the p-value from a KS two-sample 
test of distribution equality comparing the six 
observed ranges to 200 simulated values from 
the current model parameterization.   
Relative variation in early phase: Pearson’s 
binomial goodness of fit statistic, a score test of 
homogeneity in observed % Domestic, was 
calculated for the first 15 observations following 
week 10.  dx(xObserved, xSimulated) = the p-value 
from a KS two-sample test of distribution 
equality comparing the six observed values to 
200 simulated values from the current model 
parameterization. 
Relative variation in late phase: same as Relative 
variation in early phase but over the last 15 
observations. 
Extinction of cell lineages: The percentage of 
200 realizations in which one or both cell 
lineages went extinct.  No experimental animals 
had lineage extinctions (Abkowitz 1996), so 
dx(xObserved, xSimulated) = % ExtinctSimulated. 
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Acceptance Thresholds for Structural Inference 
 Each distance measure has an 
associated target value of 0; i.e., the goal of the 
Pareto search is to minimize all components of 
the distance vector (dVarDuration, dRange, dEarlyVar, 
dLateVar, dExtinction).  Acceptance thresholds were 
defined for each goodness-of-fit distance 
measure to judge model structure adequacy.  For 
distance measures using KS tests, i.e., features 1 
– 4, the acceptance threshold was p-value Î [0.1, 
1.0]; for Extinction, the acceptance threshold 
was % ExtinctSimulated £ 10%. 
Pareto Optimization Search details 

Pareto optimization was conducted over 
the feasible parameter space (Table 1) defined by 
(Abkowitz 1996).  The initial number of HSC 
was treated as a parameter, assuming equal 
numbers of both phenotypes.  The evolutionary 
computation algorithm searched for 1000 
generations, using a population size of 100 
parameterizations each generation.  Algorithm 
details are in Ford et al. (2000).  The search took 
5 days on a DellÔ Latitude C840 laptop with 2 
GHz PentiumÔ 4 running Windows XPÔ.  
RESULTS 
The evolutionary computation search revealed 
1850 parameterizations on the Pareto Frontier, 
trading off in there performance among the five 
goodness-of-fit features (Figure 5).  Nineteen 
parameterizations allowed the model structure to 
simultaneously ‘satisfy’ all five acceptance 
thresholds (Table 2).  Thus the model structure is 
acceptable with regards to this set of features, 
distance measures, and thresholds. 
DISCUSSION 

Structural inference using POMAC 
showed that the model structure was acceptable 
with regards to the selected features. Following 
more traditional statistical inference sequencing 
by assessing the model structure strictly at the 
parameterization identified using estimating 
equations (Catlin 2001) suggests  the structure is 
inadequate (Table 2).  In the context of inference 
for process models, this highlights that (i) 
parameter inference methods which condition on 
an acceptable model structure may not be 
utilizing all the relevant process information in 
the data, and (ii) restricting structural inference 
to performance at these particular 
parameterizations may be misleading. 

While developed independently, 
POMAC formalizes the ad hoc parameter 
inference approach of Abkowitz (1996).  Not 
surprisingly, POMAC’s more rigorous search 
improved on their parameter estimates (Table 2) 
with regards to the selected goodness-of-fit 

measures.  The POMAC parameter inferences 
more closely mimic the observed process (Table 
2) than the inference using estimating equations 
(Catlin 2001), even given that only six 
experimental units were available for the KS 
tests used as distance measures.  Importantly, the 
POMAC parameter inferences imply rather 
different biological rates (Table 3).  

Statistical methodology has focused 
primarily on parametric inference, with structural 
inference receiving secondary attention, if at all, 
only after parameter inference (Lehmann 1990; 
Mallows 1998).  This may be due, in part, to the 
methodological power and influence of Fisher  
(1922), which acknowledged the problem of 
structural inference, or model specification, only 
briefly while passing on to parameter inference 
(Mallows 1998).  Fundamentally, they are very 
different problems: conditioning on a proposed 
model structure makes parameter inference 
deductive while assessing the adequacy of that 
model structure is inductive.  “... [I]nductive 
reasoning is more strict than is deductive 
reasoning, since in the latter any item of the data 
may be ignored, and valid inferences may be 
drawn from the rest; … whereas in inductive 
inference the whole of the data must be taken 
into account,” (Fisher 1955 p 77).   

Structural inference is increasingly 
acknowledged in the context of empirical models 
(Chatfield 1995) in terms of model specification 
(e.g., Burnham 1998) or predictive methods of 
handling model structure uncertainty (e.g., 
Raftery 1997).  However, inferential tools for 
mechanistic models remain limited in both 
availability and usage.   

POMAC allows broader usage of 
process information not readily captured by the 
sufficient statistics.  Its central focus on joint 
performance across multiple goodness-of-fit 
criteria provides an effective, formalized means 
of assessing a proposed model structure or 
comparing competing model structures 
(Reynolds 1999).  It provides more appropriate 
inference for process models.   
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FIGURES 

 
Figure 1.  Structural and parametric inference 
sequences and information sources.  Top - 
classical statistics assumes the model structure, 
f(y, θ) is correct, deriving estimators for the 
unknown parameters θ based on minimal 
sufficient statistics t summarizing the relevant 
information in the observations y.  Remaining 
sample information may allow for formal 
goodness-of-fit testing of the proposed model 
structure via investigation of f(y|t) (Sprott 2000).  
Bottom – POMAC first assesses the adequacy of 
model structure f() with respect to {y, the 
features chosen as goodness-of-fit criteria, their 
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associated distance measures and thresholds}.  If 
f() is adequate, then parameter inference occurs. 
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Figure 2.  If the dots are the two-component 
goodness-of-fit vectors (dx, dy) for 15 different 
model parameterizations assessed with regards to 
their ability to reproduce process features x and 
y, and the objective is to simultaneously 
minimize both distance measures dx, dy, then the 
Pareto Frontier consists the parameterizations 
associated with the points denoted ‘*’.  If each 
distance’s acceptance threshold is di Î [0,0.1] 
(dashed lines), then the model structure is 
inadequate as no parameterization allows the 
model to simultaneously satisfy both criteria. 
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Figure 3.  Observed sequences of % progenitor 
cells with d G6PD phenotypes (‘% Domestic’) 
following experimental treatment for 6 feline 
subjects (Abkowitz et al 1996; for treatment 
details see ???). 
  

 
Figure 4.  Schematic of two-compartment 
hematopoeisis stochastic model, with HSC (left 
compartment) renewal rate λ, rate of 
differentiation to progenitor compartment ν, and 
progenitor (right compartment) differentiation 
rate µ.  Model details are summarized in the text. 
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Figure 5. Pairwise projection scatterplots of the 
Pareto Frontier revealed by the evolutionary 
computation optimization.  The objective was to 
maximize the first four components (KS p 
values) while minimizing the last (extinction 
rate).  ‘Acceptable’ simulations have values of 
the first four components ³ 0.10 and £ 0.10 for 
the last.  See Table 2. 
 
Figure 6.  Realizations of Pareto Optimal 
parameterization (row X of Table 2) (top) versus 
realizations using estimating equation-derived 
parameterization (row Z, Table 2) (Catlin 2001). 
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Table 1.  Parameter search ranges (Abkowitz 
1996) and minimum step size for evolutionary 
optimization search algorithm (Reynolds 
1997).  See Figure 4 and text for model and 
parameter description.     

Parameter Zd(0)= 
ZG(0) 

ν  λ/ν ν/µ 

Minimum 5 0.0167 1.1 0.1 
Maximum 50 0.35 2.0 2.0 
Minimum 
Step Size 

2 0.02 0.05 0.1 
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Table 2.   Pareto Frontier parameterizations that meet the acceptance thresholds (rows 1 – 19) 
compared to the parameterization identified in (Abkowitz 1996), ‘NM’, and the closest 
parameterization estimate from  (Catlin 2001).    Parameters (columns 1 – 6, see Figure 4): Zd(0) – 
initial number of each type of HSC, ν – HSC emigration rate, λ – HSC renewal rate, µ – progenitor 
commitment rate.  Goodness-of-fit distance measures (columns 7 – 11, see text):  Duration – p-value 
from KS test of duration of early variation phase, Range – p-value from KS test of range of % 
Domestic, Early Variance – p-value from KS test of early phase variance of % Domestic, Late 
Variance – p-value from KS test of late phase variance of % Domestic, Extinct – number of 200 
simulations that had one or both HSC types go extinct.  The acceptance thresholds were p-value Î 
[0.10, 1.00] and £ 20 extinctions.        

Zd(0) ν λ/ν λ/µ λ µ Duration Range Early 
Variance 

Late 
Variance 

Extinct 

5 0.057 1.85 0.5 0.1054 0.1140 0.1324 0.4998 0.1814 0.384 9 
5 0.057 1.85 0.6 0.1054 0.0950 0.1067 0.4954 0.1849 0.622 17 
5 0.057 1.8 0.7 0.1026 0.0814 0.1113 0.7793 0.1192 0.6855 20 
5 0.057 1.95 0.5 0.1112 0.1140 0.1381 0.6360 0.1352 0.3926 12 
5 0.057 1.95 0.6 0.1112 0.0950 0.1296 0.7204 0.1189 0.4937 12 
5 0.057 2.00 0.6 0.1140 0.0950 0.1485 0.7513 0.1262 0.5518 17 
7 0.057 1.65 1.0 0.0940 0.0570 0.1010 0.6429 0.1211 0.6589 18 
7 0.057 1.70 1.5 0.0969 0.0380 0.1243 0.2813 0.1942 0.5504 9 
7 0.057 1.85 0.3 0.1054 0.1900 0.2992 0.2144 0.1246 0.3466 13 
7 0.057 1.90 0.5 0.1083 0.1140 0.1091 0.6865 0.1114 0.6200 4 
7 0.057 1.90 0.7 0.1083 0.0814 0.1037 0.8178 0.2211 0.4316 10 
7 0.057 1.95 0.5 0.1112 0.1140 0.1465 0.8672 0.1159 0.4412 3 
7 0.077 1.90 0.2 0.1463 0.3850 0.1986 0.1162 0.1114 0.1913 4 
9 0.057 1.55 0.7 0.0884 0.0814 0.1306 0.9468 0.1306 0.4316 8 
9 0.057 1.85 0.5 0.1054 0.1140 0.1512 0.8276 0.1277 0.4222 1 
9 0.057 1.85 0.8 0.1054 0.0712 0.1205 0.4906 0.1930 0.8101 2 
9 0.057 1.95 0.9 0.1112 0.0633 0.1189 0.2012 0.1885 0.7576 1 

11 0.057 1.90 0.5 0.1083 0.1140 0.2126 0.6826 0.1061 0.6935 1 
11 0.057 1.95 0.5 0.1112 0.1140 0.1325 0.4571 0.1352 0.7244 0 

NM 
15 

0.08 1.25 0.533 0.1000 0.1493 0.02 0.83 0.11 0.34 6 

EE 
15 

0.1676 1.15 0.565 0.1927 0.3411 0.006 0.74 0.29 0.003 39 

 

Table 3.  Hematopoiesis process rates (weeks per event) according to parameter inference using 
POMAC, an ad hoc simulation study (Abkowitz 1996), and estimating equations (Catlin 2001).  The 
simulation-based inferences, which more closely mimic the observations (Table 1) suggest much 
slower biological processes.  

Source Zd(0) HSC Renewal HSC Emigration Progenitor 
Committment 

POMAC 5 9.49 17.54 8.77 
POMAC 11 8.99 17.54 8.77 
Abkowitz (1996) 15 10 12.5 6.70 
Catlin (2001) 15 5.19 5.96 2.93 
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