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Synopsis

Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms.
Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples.
This is commonly done by inspecting the bootstrap confidence interval of the contribution of interest. This method
has a number of statistical deficiencies, including almost zero power to detect small contributions even if the
population has perfect identifiability. We introduce a more powerful method based on the likelihood ratio test
and compare both methods in a simulation demonstration using a 17 population baseline of sockeye salmon,
Oncorhynchus nerka, from the Kenai River, Alaska, watershed. Power to detect a nonzero contribution will vary
with the population(s) identifiability relative to the rest of the baseline, the contribution size, mixture sample size,
and analysis method. The demonstration shows that the likelihood ratio method is always more powerful than the
bootstrap method, the two methods only being equal when both display 100% power. Power declines for both
methods as contribution declines, but it declines faster and goes to zero for the bootstrap method. Power declines
quickly for both methods as population identifiability declines, though the likelihood ratio test is able to capitalize on
the presence of ‘perfect identification’ characteristics, such as private alleles. Given the baseline-specific nature of
detection power, researchers are encouraged to conduct a priori power analyses similar to the current demonstration
when planning their applications.

Introduction

Mixed stock analysis (MSA) is used to estimate the rel-
ative contributions of distinct populations in a mixture
of organisms. This is an important tool in fisheries man-
agement and research, with genotypes commonly used
as natural markers to distinguish major populations or
stocks (e.g. genetic stock identification) (Begg et al.
1999, Shaklee et al. 1999, Pearce et al. 2000). Other
characteristics commonly used in fisheries include par-
asite assemblages (Urawa et al. 1998, Moles & Jensen
2000), scale patterns (Marshall et al. 1987), morpho-
metrics and meristics (Fournier et al. 1984), artificial
tags such as thermal marks, coded wire tags, or fin clips
(Ihssen et al. 1981).

Increasingly, MSA is used to judge the presence
or absence of specific populations in specific mixture
samples. For example, management of an interception
fishery may be heavily influenced by the presence or
absence, in the harvest or bycatch, of a specific pop-
ulation that is threatened, weakened, or otherwise of
special interest.

MSA can overestimate the contributions of popu-
lations that actually contribute little, or nothing, to
a mixture (Pella & Milner 1987). Managers and
researchers therefore face two questions when using
MSA to judge the absence of a specific population in
a mixture sample. Q1: What method should be used
to test if a specific population is absent from the mix-
ture and just receiving a nonzero estimate due to bias?
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Q2: What is the method’s power to detect a contribu-
tion of x% of the population from a mixture sample of
size N?

Testing Population As absence is equivalent to test-
ing for a nonzero contribution: H0: θ = 0 versus HA:
θ > 0, where θ is Population As contribution to the
mixture. The most common test assesses the one-sided
lower 95% bootstrap confidence interval for θ : if the
interval’s limit is >0, the test rejects H0 at a significance
level of 0.05 and the population is deemed ‘present’. If
the interval’s limit is 0, the observations present insuf-
ficient evidence to reject H0 at 0.05 and the population
contribution is deemed ‘statistically indistinguishable
from zero’ (Seeb & Crane 1999).

This method has a number of statistical flaws, some
subtle (Reynolds & Templin in press), some more
obvious. Most glaring is the method’s low statistical
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power for detecting small contributions in applica-
tion. Consider an ideal marker and an ideal population:
a gene for which Population A is fixed for an allele
that is unique among the other populations in the base-
line, that is, a private allele. For illustration, we briefly
ignore the impact of sampling the mixture and speak
directly of the contribution in the mixture sample.
Population A is perfectly identifiable, so a mixture
sample of size N containing N times θ individuals
from Population A will produce a nonzero contri-
bution estimate, θ̂ > 0. Even with reasonably sized
mixture samples, if θ is small, say θ < 0.05, then
there is a positive probability that a bootstrap resam-
ple will not have any individuals from Population A;
for that resample θ̂ resample = θ resample = 0.0 (Appendix 1,
Part 1). The probability of this occurring increases as
θ decreases to 0. Considering the roughly 1 000
resamples required for an adequate bootstrap confi-
dence interval (Davison & Hinkley 1997, p. 156), this
small probability of a resample ‘without Population A’

can lead to a moderate probability that the lower con-
fidence interval will have a limit of 0 and therefore
fail to detect the nonzero contribution (Appendix 1,
Part 2). While this probability of a 0 lower limit is
ameliorated somewhat by considering the full pro-
cess – random sampling from the mixture followed
by bootstrap resampling from the random sample
(Appendix 1, Part 3), yet even with perfect identifi-
ability the bootstrap confidence interval method has
only little to moderate power to detect small contribu-
tions at common sample sizes (Table 1). Most impor-
tantly, as demonstrated below, the method’s power
is drastically reduced in application, where perfect
identifiability is the rare exception. A more powerful
alternative, using a likelihood ratio test, is introduced
below.

We briefly review the standard MSA model and
estimation method, conditional maximum likelihood
estimation (Millar 1987, Pella & Milner 1987), develop
the likelihood ratio test, and describe how to estimate
P values using Monte Carlo simulation. The method
is demonstrated in a simulation study of mixtures of
sockeye salmon (Oncorhynchus nerka) from the Kenai
River, Alaska. The likelihood ratio test and the con-
fidence interval approach are compared in terms of
their power to detect a nonzero contribution from a
specific population or group of populations. The com-
parison demonstrates how to conduct a priori power
analyses for a given baseline, a specific stock of inter-
est, and a range of stock contributions and mixture
sample sizes. Alternative approaches using individual
assignment methods are discussed.

The likelihood ratio test is more powerful than the
bootstrap confidence interval, though both methods
display lower power than desired. Both methods lose
power as population identifiability and contribution
decline, but the bootstrap method loses power faster

Table 1. Power to detect nonzero, perfectly identifiable, contributions in MSA using the bootstrap confidence
interval method, as a function of true population contribution to the original mixture (θ ) and mixture sample
size. In applications with less than perfect identifiability, power will be much lower (see Figure 3).

θ Mixture sample size

50 75 100 150 200 300 350

0.10 0.85 0.97 1.00 1.00 1.00 1.00 1.00
0.05 0.40 0.66 0.83 0.97 0.99 1.00 1.00
0.04 0.28 0.50 0.69 0.90 0.97 1.00 1.00
0.03 0.16 0.32 0.49 0.76 0.90 0.99 1.00
0.02 0.06 0.15 0.25 0.48 0.68 0.90 0.95
0.01 0.01 0.03 0.06 0.14 0.24 0.47 0.58

Calculations are based on 1000 nonparametric bootstrap resamples and the one-sided lower 95% percentile
bootstrap confidence interval (Davison & Hinkley 1997). Calculation details are in Appendix 1.
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and has zero power in some scenarios. The likelihood
ratio method retains a nonzero power in all scenarios.
In the absence of perfect identifiability, the likelihood
ratio method’s low power limits application to those
problems involving small to moderate-sized baselines
of potentially contributing populations.

Methods

The finite mixture model

The following model describes mixtures of contri-
butions from finitely many source populations (see,
e.g. Millar 1987 or Pella & Milner 1987). Although
the presentation assumes discrete characteristics are
observed on each individual, such as a genotype,
this is not essential; the model holds for continuous
characteristics as well.

Let N individuals be randomly sampled from a
mixture of J populations. Let the jth population con-
tribute an unknown proportion θj ≥ 0 to the mixture,
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�θj = 1; ��� = (θ1, . . ., θJ). If the characteristic mea-
sured on the ith sample individual is denoted by xi,
then the probability of observing the sample X =
{x1, x2, . . ., xn} is

Pr(X |���,���) =
n∏

i=1

Pr(xi |���,���)

=
n∏

i=1

{
J∑

j=1

θjPr(xi |πππ j)

}
(1)

where πππ j is a column vector of parameters specifying
the probability density function for the characteris-
tic in population j, and ��� is the matrix [πππ 1|· · ·|πππ J].
For a discrete characteristic with k possible outcomes,
πππ j = (π

j
1, . . ., π

j
k), π

j
i ≥ 0,

∑
i π

j
i = 1, the vec-

tor of multinomial probabilities. This assumes that
the set {Pop.1, . . ., Pop. J} includes all potentially
contributing populations (see Smouse et al. 1990).
Expanding the Pr(xi |πππ j) terms allows for multivariate
characteristics.

Estimation

Estimating the mixture proportions, ���, requires infor-
mation regarding the (possibly multivariate) char-
acteristic probability density function, πππ j, for each
contributing population. This is generally available
in the form of a sample from each baseline popu-
lation. In most fisheries applications researchers fix

the nuisance parameters, πππ j, at their estimates from
the baseline samples, π̂ππ j (Millar 1987). Maximum
likelihood is then used to estimate the unknown ��� con-
ditional on πππ j = π̂ππ j. This conditioning is justified by
the small amount of information on πππ j in the mixture
sample, relative to the baseline sample (Milner et al.
1981). Recently developed Bayesian methods utilize
this information, which may be an important consider-
ation when analyzing related mixture samples collected
through space or time (Pella & Masuda 2001).

Identifiability of a stock in a mixture requires, among
other things (Pella & Milner 1987), that the probability
density functions of the characteristics,πππ j, differ across
the contributing populations (Redner & Walker 1984).
Characteristics commonly used in fisheries include par-
asite assemblages (Urawa et al. 1998, Moles & Jensen
2000), scale patterns (Marshall et al. 1987), morpho-
metrics and meristics (Fournier et al. 1984), artificial
tags such as thermal marks, coded wire tags, or fin clips
(Ihssen et al. 1981), and increasingly, genetic markers
(Seeb & Crane 1999, Ruzzante et al. 2000).

Uncertainty in the mixture proportion estimates, �̂��,
arises from sampling uncertainty in both the mix-
ture and the population baselines samples. In practice,
these sampling uncertainties can be accounted for by
nonparametric bootstrap resampling from the mix-
ture sample and parametric bootstrap resampling from
the baseline characteristic distributions, π̂ππ j. Bootstrap
resampling of the baseline samples increases the width
of the resulting confidence intervals, reducing the
power to detect nonzero contributions. The following
demonstration only resamples the mixture sample.

Testing population absence

Assume a sample is taken from a mixture consisting
of contributions from a known set of baseline pop-
ulations, with specific interest in testing the absence
of Population A, H0: θA = 0. The likelihood ratio
test compares the likelihood of the observed sample
under the general model, in which Population A con-
tributes, to the likelihood under the null model, in which
Population A does not contribute (that is, θA = 0). The
likelihood ratio test statistic, conditional on πππ j = π̂ππ j, is

LR = L({θ1, θ2, . . ., θJ} | X, �̂��)

L({θ ′
1, θ

′
2, . . ., θ ′

A = 0, . . ., θ ′
J} | X, �̂��)

=
∏n

i=1

{∑J
j=1 θj Pr(xi | π̂ππ j)

}
∏n

i=1

{ ∑J
j=1
j�=A

θ ′
j Pr(xi | π̂ππ j)

} (2)
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with {θ1, . . ., θJ} and {θ ′
1, . . ., θ

′
J} replaced by their con-

ditional maximum likelihood contribution estimates
under their respective models. The observed ratio,
LRobs, is calculated by fitting the mixture sample using
the full baseline (the general model, the numerator),
then fitting the mixture sample using the reduced base-
line with Population A dropped to force θA = 0, (the
null model, the denominator). The test can be extended
to the joint contribution of a specific group of popula-
tions, H0: θA1 = θA2 = · · · θAv = 0 versus Ha: one or
more of {θA1, . . ., θAv} > 0.

If Population A has a unique characteristic, relative
to the other baseline populations, that also occurs in
the mixture sample, the likelihood under the reduced
baseline will be zero, giving a likelihood ratio of ∞.
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Commonly used MSA software (Debevec et al. 2000)
assigns such individuals to an ‘unknown’ baseline com-
ponent, clearly identifying the nonzero contribution of
Population A.

Completing the test requires comparing the observed
ratio, LRobs, to its expected distribution under H0. There
are two ways to estimate this distribution.

Null reference distribution method 1:
asymptotic theory

In theory, the null hypothesis can be tested by compar-
ing −2 times ln(LRobs) to its asymptotic distribution
under the null model, a χ 2 with degree of freedom equal
to the number of populations being simultaneously
tested for zero contribution (Stuart et al. 1999). The
conditions underlying this asymptotic result do not hold
when other populations in the baseline fail to contribute
to the mixture (Stuart et al. 1999). As this is often the
case in fisheries genetic stock identification problems
(Millar 1987), the asymptotic results are frequently
unreliable. Even when all populations are expected to
have nonzero estimates, experience has shown that the
asymptotic results may remain unreliable.

Null reference distribution method 2: Monte
Carlo simulation

The null reference distribution can be approximated by
Monte Carlo simulation under H0, conditional on ���0

(Davison & Hinkley 1997, p. 138). The value of���0 will
generally not be known prior to analysis and must be
estimated from fitting the null model. Estimate���0 from
the observed mixture sample by fitting model (1) using
the reduced baseline, giving�̂��0. Then simulate R sets of

N observations from model (1) using the estimated null
mixture proportions, �̂��0, and the baseline population
characteristic densities �̂��. Take each set of simulated
observations and fit model (1) using the full baseline
(Population A included), giving an estimate �̂��

∗ r
. Take

each set of simulated observations and fit model (1)
using the reduced baseline (no Population A included),
giving an estimate �̂��

∗ r

0 . For each r, calculate and record
the likelihood ratio (Equation (2)), LR∗ r .

This process gives a sample of size R, {LR∗ r:
r = 1, . . ., R}, from the unknown null reference distri-
bution. Calculate the observed likelihood ratio, LRobs,
by fitting the general and restricted models to the
actual mixture sample and plugging the estimates
into Equation (2). An approximate P value for the
test is given by

(
1 + ∑

r I(LR∗ r ≥ LRobs)
)
/(1 + R)

(Davison & Hinkley 1997, p. 141), where the indica-
tor function I( ) takes the value one when the argument
is true and zero otherwise. Generally, R in the range
1000–5000 provides sufficient precision (Davison &
Hinkley 1997, sec. 4.2.5).

Uncertainty in the conditional values of the nui-
sance parameters, π̂ππ j, can be incorporated into the
Monte Carlo simulation approach by parametric boot-
strap resampling from each π̂ππ j before constructing the
null mixture during each of the R simulation rounds.
The resulting null reference distribution will actually
be a mixture of null reference distributions, one for each
resampled baseline. This resampling will increase the
dispersion in the null reference distribution and hence
potentially overestimate the tail areas of interest. For
ease of comparison, the following demonstration does
not include resampling of the baseline estimates.

Demonstration

The two methods were compared in terms of their
power to detect a nonzero population contribution.
The simulation study used an allozyme baseline of
19 markers for the sockeye salmon populations of
Kenai River, Alaska (collection and analysis details in
Seeb et al. 2000, nomenclature following Shaklee et al.
1990): mAAT-1∗, mAAT-2∗, mAH-1,2∗, mAH-4∗, sAH∗,
ALAT∗, G3PDH-1,2∗, GPI-A∗, GPI-B1,2∗, sIDHP-1∗,
LDH-B2∗, sMDH-A1,2∗, PEPA∗, PEPC∗, PEPB-1∗,
PEPD-1∗, PEPLT∗, PGM-1∗, PGM-2∗. To investi-
gate how population identifiability influences detection
power, we explored three population sets of declining,
though relatively high, identifiability.
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Kenai River sockeye baseline

The Kenai River is the major producer of sockeye
salmon in Cook Inlet, Alaska, supporting a commer-
cial fishery in the inlet, a personal use fishery at the
river mouth, and a recreational fishery within the river
itself (Figure 1). The river fisheries are managed to
allow a set range of individuals to reach the spawning
grounds. Resource managers are interested in detecting
the presence of specific populations at different times
during the fishing season.

The Kenai River baseline consists of seventeen pop-
ulations. Geography (Figure 1) and genetic diversity
(Figure 2), followed by extensive simulation analy-
ses, were used to define five regions, or population
aggregates, that were reliably identified in mixture
estimation (Seeb et al. 2000). A region had to demon-
strate a contribution estimate of 90% or more, averaged
over 500 bootstrap resamples, from simulated mixture
samples of 400 genotypes, where each mixture sam-
ple was drawn uniformly from the populations within
the region of interest, and each genotype was para-
metrically bootstrapped from its population of origin’s
allele frequency estimates. Five regions were iden-
tified (Figures 1 and 2): Upper Russian River (two
populations), Hidden Creek, Trail Lakes (three popula-
tions), Tern Lake, and Kenai/Skilak (10 populations).

Three scenarios were investigated: detecting the highly
identifiable Upper Russian River region, the moder-
ately identifiable Trail Lakes region, and the somewhat
less identifiable Tern Lake region.

The Upper Russian River drainage occurs above a
waterfall, which acts as a partial barrier to upstream
movement. The populations spawning above the falls
are relatively genetically distinct (Seeb et al. 2000),
though they do not exhibit any private alleles at the
allozyme markers considered. The Railroad Creek
population in the Trail Lakes region exhibits a private
allele at mAH-1,2∗ (relative frequency 0.013); the Tern
Lake population exhibits a private allele at mAH-4∗

(relative frequency 0.01).

Simulated mixtures

For each reporting region of interest, mixture
samples of genotypes from 200 individuals were
simulated over a range of population contri-
butions, θRegion of interest = {10%, 5%, 4%, 3%, 2%, 1%}.
For Upper Russian River or Trail Lakes, θRegion of interest

was evenly split among the region’s populations. The
remaining populations in the baseline evenly con-
tributed the rest of the mixture. A contribution from a
given population was simulated by randomly generat-
ing a genotype from that population’s allele frequencies

Skilak Lake Kenai Lake

Cook Inlet Hidden
Lake

105 miles

Russian 
River

Trail 
Lakes

Tern 
Lake

N

Alaska

Figure 1. Major sockeye salmon producing lake systems of the Kenai River watershed, Cook Inlet, Alaska. Each labeled lake system
constitutes a reporting region in the baseline (Figure 2) with the exception of Skilak and Kenai Lakes, which are combined into one region.
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      (94%)

Figure 2. UPGMA tree of populations in the Kenai River sockeye salmon baseline, using Cavalli-Sforza and Edwards genetic distance
(described in Weir 1996) on 19 allozyme markers (see text for details). The populations are aggregated into five reporting regions for MSA,
where a reporting region is the smallest set of populations that achieves, on average, a 90% or greater contribution estimate for simulated
mixtures generated strictly of individuals from the populations themselves (‘100% simulations’) (see Seeb et al. 2000 for details). The
region labels also give the mean contribution estimate for each region’s 100% simulations. The Kenai/Skilak sites are located along the
reach between the two lakes (Figure 1).

for each of the 19 allozyme markers. Baseline allele
frequencies are available in Seeb et al. (2000). Fifty
mixture samples were simulated for each combination
of region of interest and contribution level.

Analyses

Each mixture sample was analyzed to estimate: the
reporting region contributions under both the full and
reduced baseline models, the one-sided 95% lower per-
centile bootstrap confidence interval for θRegion of interest

under the full baseline model, and all quantities
required to conduct the likelihood ratio test of H0:
θRegion of interest = 0 versus HA: θRegion of interest > 0. The
bootstrap confidence interval used B = 1000 resam-
ples; for equal numerical accuracy in tail estimation,

the Monte Carlo approximation to the null reference
distribution used R = 1000 simulations.

The bootstrap and likelihood ratio test were com-
pared in terms of their power to detect the nonzero
contribution of the region of interest. For a given
scenario – (method and region of interest and contri-
bution), power was estimated as the percentage of the
50 simulated mixture samples for which the method
detected a nonzero contribution from the region of
interest. Detection was defined as: bootstrap method –
nonzero limit lower limit on the one-sided 95%
confidence interval when rounded to two significant
digits; likelihood ratio – P value ≤0.05 or nonzero
contribution assignment to the ‘unknown’ category
when fitting the mixture using the reduced base-
line model. Baseline allele frequencies were not
resampled.
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Mixture samples were generated using S-Plus 2000
(Insightful, Inc., Seattle, WA, U.S.A.) and locally writ-
ten programs. Mixture analyses were conducted using
the freeware package SPAM 3.5 (Reynolds 2001).

Demonstration results

The likelihood ratio test was as or more powerful than
the bootstrap confidence interval method in testing
population absence (Figure 3), detecting at least every
contribution the bootstrap method detected. Equality
occurred only when both methods displayed 100%
power. Both methods displayed less than ‘ideal’ power
(Figure 3 vs. Table 1 for the bootstrap confidence inter-
val method; Figure 3 vs. 100% for the likelihood ratio
method). The likelihood ratio method always displayed
positive power.

Even under the most optimistic scenario (perfect
identifiability), the discrete nature of bootstrap resam-
pling drives the confidence interval method’s detec-
tion power to near zero for very small contributions,

θ ≤ 2%, and common sample sizes (Table 1). In prac-
tice, the method displays a drastically reduced power
that quickly drops to very low levels for even relatively
sizeable contributions, θ ≤ 5%, for any populations
with less than extremely high identifiability (Figure 3).

Both methods lost power as the region of interest’s
identifiability declined or the true contribution declined
(Figure 3). The likelihood ratio method’s power did not
decline as quickly as that of the bootstrap confidence
interval method (Figure 3).

Discussion

Increased usage of MSA has increased demand for
methods of detecting small nonzero contributions from
a specific population, and hence for distinguishing,
to the extent possible, such contributions from mere
biased estimates for an absent population. The likeli-
hood ratio test is a more powerful method than the cur-
rent bootstrap confidence interval approach. It detected
every contribution the bootstrap method detected, and

Likelihood Ratio
Bootstrap CI

0.0

0.5

1.0
Upper Russian

0.0

0.5

1.0
Trail Lakes

0.0

0.5

1.0
Tern Lake

1% 3% 5% 10%

Contribution

P
o
w

e
r

Power Comparison

Figure 3. Power to detect nonzero contributions, by method, for each investigated region of interest. The likelihood ratio test displays
higher power than the bootstrap confidence interval method for detecting a specific region’s contribution, regardless of which specific
region (panel), or contribution level (%) (x axis). The likelihood ratio is able to maintain ideal power to detect even two individuals out
of 200 (Russian River panel). While both methods lose power with decreasing identifiability of the population(s) of interest (refer to
Figure 2), the likelihood ratio method is able to retain a positive, albeit small, power at every scenario; the power of the bootstrap method
quickly goes to zero in all but the high identifiability situations. Fifty mixtures of 200 individuals were simulated for each contribution
level by region of interest combination; see text for details. Power estimates are the proportion of each scenario’s 50 simulated mixtures
in which the method detected the contribution.
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more (Figure 3), while maintaining a positive detection
power in every scenario.

The increase in power of the likelihood ratio test
over the bootstrap confidence interval is not surprising.
The bootstrap’s usefulness for generating confidence
intervals stems from its almost complete absence of
parametric assumptions. In the case of MSA, however,
the parametric assumptions associated with the mixture
model and Hardy–Weinburg equilibrium are gener-
ally not contentious. Accepting these assumptions,
which is already implicit in using standard methods of
MSA estimation, lets one employ traditional paramet-
ric methods of parameter testing and their associated
gain in power.

Further, using the bootstrap confidence interval for
a parameter test actually entails more subtle statistical
assumptions that, in this application, are known to be
false. One must assume the contribution estimate is a
pivotal statistic (see Lunneborg 2000), and one must
accept the arithmetic difference as a useful measure
of distance between compositional data vectors (see
Aitchison 1992).

The likelihood ratio test’s increase in power, relative
to the bootstrap confidence interval method, varies with
both the identifiability of the population(s) of inter-
est relative to the rest of the baseline and the number
of observations the population actually contributes to
the mixture sample. When the populations in a region
of interest are highly identifiable, both methods are
capable of 100% power even for moderately small con-
tributions (Russian River, Figure 3). In these situations,
the likelihood ratio method retains 100% power at every
contribution level.

As the population(s) of interest becomes increas-
ingly similar to other members of the baseline, the
few individuals actually contributed by the popula-
tion(s) of interest may be adequately explained as
having originated from the similar populations. When
these similar populations are themselves contributing
to the mixture, such as during the Tern Lake scenarios
where the Kenai/Skilak region contributes a relatively
large portion of the mixture, the principle of parsi-
mony underlying the likelihood ratio test will lead to
absorption of the individuals from the population(s) of
interest into that component contributed by the similar
populations. For example, at low-contribution levels,
the few observations from Tern Lake appear to be eas-
ily absorbed into the already substantial Kenai/Skilak
region contribution.

This absorption is avoided if the population(s) of
interest has either sufficiently distinct characteristics

that allow clear detection of even a single contribu-
tion (e.g. private alleles or the Russian River scenario –
Figures 2 and 3), or has a large enough contribution to
the mixture sample such that the likelihood ratio test
is able to detect the signal in the sample’s joint dis-
tribution of characteristics (Figure 3). It is sobering to
see how easily a contribution can be absorbed, that is,
how low the power to detect a nonzero contribution
can be (Figure 3, Trail Lakes). The power demon-
strated here, with a baseline of only 17 populations,
may decrease even more as baseline size increases.

Normal standards of mixture analysis identifiability,
that is, the performance on 100% simulations, do not
appear to directly relate to expected power in detect-
ing small contributions. For example, relative to Trail
Lakes, Tern Lake has a lower correct contribution esti-
mate from its 100% simulations yet it appears to exhibit
a higher power of detectability when testing for popula-
tion absence. This may be an artifact of the simulation
method: the Trail Lakes contribution is simulated as
equal portions from all three component populations.
Relative to the single population contribution from
Tern Lake, this partitioning of the Trail Lakes con-
tribution lessens any population-specific contribution,
weakening the regional signal.

The likelihood ratio test is very sensitive to pri-
vate alleles due to the conditional likelihood estimation
method. If one is confident that the private allele is,
indeed, a population-specific marker, then this makes
for a very sensitive test. However, if the private allele
is likely an artifact of limited sampling of highly
polymorphic markers, this sensitivity may mislead.
A substantial portion of the Trail Lakes and Tern
Lake contribution detections involved such rare alleles
(Table 2). The current demonstration does not allow
us to judge whether or not a contribution would have

Table 2. Detections of contribution as a result of private alle-
les (left) compared with the total detections of contribution
using the likelihood ratio method (right), out of 50 simulations
per scenario.

Region Contribution (%)

10 5 4 3 2 1

Trail lakes 13/32 11/21 4/11 5/9 0/7 1/3
Tern lake 22/49 6/33 8/26 9/25 6/17 0/7

The likelihood ratio method detects the presence of even a single
individual, regardless of mixture sample size, if that individual
displays a characteristic unique to its source population. The
likelihood ratio method detected every contribution from the
Upper Russian River, even though it has no private alleles.
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been detected in the absence of a rare allele, that is,
strictly by the signal inherent in the joint distribu-
tion of characteristics contributed by the population(s)
of interest. The Russian River results clearly demon-
strate that the likelihood ratio method does not require
private alleles to detect contributions (Figure 3). The
impact on detection of a given ‘private allele’ would
be revealed by repeating the analysis with the allele in
question recoded as a common allele, that is, by binning
alleles.

One may consider abandoning MSA for this question
and using an analysis that directly assigns each obser-
vation in the mixture sample to the ‘most probable’
population of origin. This can lead to a less powerful
test. Conditional maximum likelihood-based individ-
ual identification methods (e.g. Cornuet et al. 1999,
Banks & Eichert 2000) analyze each observation
independently. Since they ignore the information in
the mixture sample’s joint distribution of character-
istics, the methods cannot provide a more power-
ful test of absence than the MSA likelihood ratio
method, and generally will be less powerful. In con-
trast, Bayesian methods of MSA that estimate, for
each observation and each population, the probability
the observation came from that population, do utilize
the information in the mixture sample’s joint distri-
bution of characteristics (Pella & Masuda 2001). For
the question of interest, such Bayesian methods will
likely have comparable power to the MSA likelihood
ratio.

The Bayesian method provides two other appeal-
ing features for the question under consideration. First,
Bayesian MSA will provide a direct estimate of the
distribution of any specific population’s mixture con-
tribution, θ . This allows the researcher to directly assessAQ: Pls

check
symbol
‘θ ’.

the Prob(θ > 0) for that population. Further, one can
explore whether a large Prob(θ > 0) arises because
of a couple of highly distinguishable observations, or
simple due to the collective weight of a large number
of observations each of which displays some possibil-
ity of having originated from the population of interest.
Explorations of this application of Bayesian methods
are currently in progress.

Regardless of which method one utilizes to assess
population absence, one should repeat the demonstra-
tion process illustrated here to assess the method’s
power. Such a priori analyses allow one to determine
the sample size required to detect a given contribu-
tion with a given power, as well as compare methods
in a specific context. Note that posterior power analy-
ses, while unfortunately rather common, are generally

uninformative and, therefore, misleading (Hoenig &
Heisey 2001). A priori power analysis methods in
the general context of MSA are discussed elsewhere
(Reynolds 2001).
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Appendix 1

Ideal power to detect nonzero contributions using boot-
strap confidence intervals.

Part 1. Assume that the population of interest,
Population A, contributes a proportion 0 < θ < 1
of uniquely identifiable individuals to the mixture and
that N individuals are randomly and independently
sampled from the mixture. For example, consider
red balls (Population A) randomly mixed with blue
balls (Population B), in proportion θ to 1 − θ , in
an infinite barrel. N balls are randomly selected as
the mixture sample. A one-sided lower 95% con-
fidence interval is constructed from 1000 bootstrap
resamples using the percentile method (Lunneborg
2000).

Let k be the number of individuals from
Population A in the original mixture sample, k ∼
binomial(N, p = θ ). Then Prob(no Population A indi-
viduals in one resample | k) = Prob(no red balls
in random sample, with replacement, of original
N balls) = (1 − k/N)N = ν.

AQ: Pls
check
symbol
‘ν’.Part 2. Let X be the number of times out of 1000

resamples in which no red balls are found. X is a
binomial random variable with N = 1000 trials and
‘success’ probability = ν. Then the probability a confi-
dence interval calculated using the one-sided 95% per-
centile method includes 0 is the probability that 50 or
more of the resamples will contain no red balls, i.e. that

AQ: Pls
check
symbol
‘≥’.

X ≥ 50.

Prob(X ≥ 50)=1 − Prob(X < 50)

=1−
49∑

X=0

(
1000

X

)
νX(1 − ν)1000−X
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So Prob(CI calculated using one-sided 95% percentile
method does not include 0)

Prob(X < 50)

= 1 −
[

1 −
49∑

X=0

(
1000

X

)
νX(1 − ν)1000−X

]

=
49∑

X=0

(
1000

X

)
νX(1 − ν)1000−X

Part 3. The power to detect Population As nonzero
contribution θ to the mixture, using the bootstrap

confidence interval method, is
N∑

k=0

(Power | k, N)Prob(K = k | θ, N)

=
N∑

k=0

(
49∑

X=0

(
1000

X

)
νX(1 − ν)1000−X

)

× Prob(K = k | θ, N)

=
N∑

k=0


 49∑

X=0

(
1000

X

)((
1 − k

N

N)X(
1 − k

N

)N
)1000 − X




×
(

N
k

)
θ k(1 − θ)N−k


