
ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 1 of 19

 MANUAL FOR PARETOEVOLVE,
EVOLUTIONARY COMPUTATION SOFTWARE FOR MULTI-OBJECTIVE OPTIMIZATION

Joel H. Reynolds1, Marianne C. Turley2, Rie Komuro3, Maureen C. Kennedy4

1 U.S. Fish & Wildlife Service, Refuges, Anchorage, AK, Joel_Reynolds@fws.gov
2U. S. Forest Service, Portland, OR
3Bioengineering Institute, University of Auckland, Auckland, New Zealand
4 Quantitative Ecology & Resource Management, University of Washington, Seattle, WA

Version 1.0, DRAFT

Suggested Reference:
Reynolds, J. H., M. C. Turley, R. Komuro, M. C. Kennedy. 2008. Manual for ParetoEvolve,

evolutionary computation software for multiobjective optimization. Version 1.0, 6 Oct
2008. http://faculty.washington.edu/joel/Software.hmtl,

The latest version of this document can be found at:
http://faculty.washington.edu/joel/Software.hmtl

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 2 of 19

CONTENTS
Introduction ...2
What is ParetoEvolve? ..3

This manual does:..5
This manual does not:..5

ParetoEvolve Source Code..5
Brief Overview of ParetoEvolve’s Search Process ...6
How computationally complex can the model be?..7
Example Model ...7
Preparing the Model Executable..9
Preparing the ParetoEvolve code ..11
Running the ParetoEvolve code ..16
Understanding the output from ParetoEvolve ...16
Miscellaneous Notes..18

More information...18
References ...19

INTRODUCTION

This document details the steps required to estimate the Pareto frontier of a process-based

simulation model using the optimization program ParetoEvolve. The Pareto frontier summarizes

the optimal tradeoffs in simultaneous performance across multiple criteria (Figure 1). It is the

central information summary used in model assessment and the Pareto Optimal Model

Assessment Cycle (see Reynolds and Ford 1999). The Pareto frontier is usually estimated more

efficiently using optimization methods than Monte Carlo simulation.

The user must supply the simulation model as a stand alone executable program. ParetoEvolve

requires that this user-supplied code read input files, run model simulations, and write output

files as described below (see

PREPARING THE Model).

Figure 1. Feasible space (black circles and red
squares) and Pareto frontier (red squares) for a
two criteria minimization problem (e.g., minimize
both criteria). The feasible space is that part of
the objective space (Criterion 1, Criterion 2) that
can result from a parameterization of the
underlying model. The Pareto frontier is the
tradeoff surface summarizing how ‘improvement’,
minimization in this case, of one criterion is
counterbalanced by worsening performance in the
other.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 3 of 19

WHAT IS PARETOEVOLVE?

ParetoEvolve is an evolutionary computation optimization program. It was specifically

developed for estimating the Pareto frontier of process-based simulation models, but can be used

for any multi-objective optimization problem. As far as ParetoEvolve is concerned, your

simulation model is just another optimization problem. Even so, ParetoEvolve was written with

certain algorithmic features that specifically support model assessment, such as its handling of

binary error measures (see below) and memory structure based on Pareto Groups (Reynolds and

Ford 1999, Komuro et al. 2007) (Figure 2).

Figure 2. Often there is insufficient data

to justify a precise target value for

judging the model’s ability to reproduce a

specific characteristic. In this case one

can define an interval of acceptable

outcomes, e.g., “Criterion 1 predictions <

1.0 are acceptable”, creating a binary

error measure. Binary error measures

partition the Pareto frontier into Pareto

Groups – parameterizations that, while

resulting in distinct outcomes, lead to the

same assessment with regards to the

binary error measures. If the error

intervals for each criterion are ‘< 1 is acceptable’ (dashed lines), then the red squares form the Pareto

frontier and can be partitioned into two Pareto Groups – one with six parameterizations that adequately

simulate Criterion 1 but fail on Criterion 2 and one with one parameterization that simulates Criterion 2 but

fails on Criterion 1.

Evolutionary computation optimization uses the concepts of natural selection and genetic

diversity to evolve solutions to optimization problems (Michalewicz 1996, Deb 2001). Such

algorithms use a population-based search in contrast to traditional (analytical) mathematical

optimization methods that calculate the objective value associated with a single parameterization

then seek a next trial parameterization value with better performance (Figures 3, 4). Each stage

(‘generation’) of a population-based search method evaluates a set of parameterizations,

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 4 of 19

producing a set of objective values. A fitness is assigned to each parameterization, and the

fitness values are used to probabilistically selected ‘parent’ parameterizations to ‘breed’ and

create ‘offspring’ forming the next generation of parameterizations (Figure 4). This process

continues, ultimately evolving optimal solutions.

Figure 3. Traditional mathematical optimization

methods, e.g. Newton-Raphson iteration, evaluate a

single parameterization (xi) at a time, each step seeking

a new parameterization that further improves (here,

minimizes) the objective function, f(x). A plausible

sequence of trial values is illustrated: xi, x2,…, x6. In

contrast, population-based optimization evaluates a set

of parameterization each step, then grades their

performance for deciding on how to best select the next

set of parameterizations.

Figure 4. Simplified flowchart of a population-based search algorithm. The key components are the
definition of fitness for evaluating each parameterization, the definition of the selection process for picking
parents, and the definition of the breeding process for generating a new population of parameterizations from
the parents.

Evaluate Parameterizations

Initialize Population (Generation 0)

Assign Fitness to each Parameterization

Select Parent Parameterizations for
Breeding next Generation (based on
relative Fitness)

Any
Parameterization(s)
satisfy the criteria?

No

Yes
Stop

Gen = GenMax
No

Yes

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 5 of 19

Numerous algorithms have been proposed in this large, active field of research (see Deb 2001 for

an introduction). ParetoEvolve is based on a modification of the Non-dominated Sorted Genetic

Algorithm (NSGA) (Srinivas and Deb 1994). The algorithm details are described in the code’s

internal documentation and are not presented here.

This manual does:
- outline the modifications required for both the user-supplied model code and ParetoEvolve to

prepare each for use,

- briefly summarize the available run-time arguments for calling ParetoEvolve.

This manual does not:
- fully detail the optimization algorithm; please peruse the ParetoEvolve source code and its

internal documentation or read Komuro et al. (2007)1.

- fully explain evolutionary optimization algorithms. Please see, for example, Deb (2001) for a

review of this burgeoning field.

- explain the Pareto Optimal Model Assessment Cycle; please see Reynolds and Ford (1999),

Komuro et al. (2006), and Komuro et al. (2007).

PARETOEVOLVE SOURCE CODE

ParetoEvolve is written in the C programming language and consists of four source files and

three header files. These need to be edited as described below and compiled to build the

executable program. The original code was created in MS Visual C++ but does not specifically

contain any function calls unique to that environment (as far as we know).

The model executable referred to below is the user-supplied executable code, which has to do

much more than just simulate the process. It must be written so that when it is called it (i) reads

in the input file of parameterizations created by ParetoEvolve, (ii) for each parameterization,

runs the simulation model and calculates the resulting summary characteristics from the model

output (the ‘criteria vector’), and (iii) writes the parameterizations and their criteria vectors to an

output file. These requirements are detailed below.

1 The algorithm presented in Komuro et al (2007) includes an elitist component that is not used in the version of
ParetoEvolve described in this manual.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 6 of 19

Figure 5. Simplified flowchart for the optimization program ParetoEvolve. ParetoEvolve generates each
population of parameterizations then passes them as a set to the user-provided simulation model program
(green box). The model code has to read in and run each parameterization, calculating its performance with
regard to the selected characteristics (the criteria vectors, assuming there are multiple characteristics being
assessed), and pass the information back to ParetoEvolve. The optimization program then evaluates the
results and implements all the other steps. Information is passed between ParetoEvolve and the model code
via writing and reading specially formatted text files.

BRIEF OVERVIEW OF PARETOEVOLVE’S SEARCH PROCESS

The multi-criteria optimization software ParetoEvolve estimates a model’s Pareto Frontier (and

associated Pareto Optimal Set) by an iterative process (Figure 5):

1. ParetoEvolve generates a population of feasible parameterizations, writes them to a text

file (model ‘input file’), the calls the model executable.

2. The model executable then reads in each parameterization from the text file, simulates

the process with the parameterization, calculates the simulation’s summary

Read in Population of Parameterizations, {X};
Run simulation Model using each X;
Calculate Criteria Vector for each X.

Initialize Population (Generation 0)

Evaluate Criteria Vectors, Calculate
Assessment Vectors

Assign Fitness to each Parameterization

Update Pareto Frontier estimate

Select Parent Parameterizations & Breed
next Generation (selection based on
relative Fitness)

Any
Parameterization(s)

simultaneously satisfy all
criteria?

No

Yes
Stop

Gen = GenMax

No

Yes

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 7 of 19

characteristics and resulting assessment criteria values, then writes each

parameterization and its associated assessment criteria to a second text file (model ‘ouput

file’) (Reynolds and Ford 1999).

3. ParetoEvolve reads in the output file, evaluates each parameterization’s criteria vector to

form an assessment vector, calculates the Pareto Frontier and Pareto Optimal Set of the

population of parameterizations and assessment vectors (Reynolds and Ford 1999,

Komuro et al. 2007), and uses that information to breed a new population of

parameterizations (the next generation of the evolutionary optimization search).

4. The process then repeats Step 1 and the cycle continues for another generation until

either (i) a parameterization is found that simultaneously satisfies all the criteria or (ii)

the user-defined maximum number of generations has passed. The Pareto frontier is

estimated from all the evaluations and returned by the algorithm (the Historic Pareto

frontier rather than just the last generation’s frontier).

Thus before using ParetoEvolve you must first:

1. Prepare your model code to interact with ParetoEvolve and

2. Prepare ParetoEvolve to interact with your model code.

HOW COMPUTATIONALLY COMPLEX CAN THE MODEL BE?

Running ParetoEvolve generally entails 10,000s to 1,000,000s of model simulations, depending

on the choices of population size and maximum generation number. The necessary minimum

values for these two controls are model-dependent and hence unknown. From our experience we

suggest population sizes of 100-200, depending on the number of unknown parameters, and a

minimum of a couple thousand generations. These demands should be considered in the context

of available computing resources to judge applicability of ParetoEvolve to a particular model.

Note that the model simulation step is the bottleneck and that simulating a population of

parameterizations is inherently parallelizable if you write the model executable to take advantage

of multiple networked machines.

EXAMPLE MODEL

The steps required in preparing the model executable code and the ParetoEvolve code are

illustrated using the example of a model of the hourly growth of the leading shoot of a Sitka

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 8 of 19

spruce (Picea sitchensis (Bong.) Carr.) tree. The underlying motivation for the model and the

results of its assessment and revision are detailed in Komuro et al. (2006, 2007a, and 2007b).

Figure 6. Observed hourly shoot growth (expansion and contraction) by Julian date (see Komuro et al.
2006).

Extension and contraction of a shoot were automatically measured every hour (Figure 6) using

an electro-mechanical sensor (Milne et al. 1977). A model (Figure 7; see Komuro et al. 2006 for

details) was proposed for the functional dependence of the observed expansion and contraction

on current and recent solar radiation, temperature, and transpiration calculated using the

Penman-Monteith equation (Monteith et al. 1965).

Figure 7. Hourly shoot growth, St, modeled as a function of current and recent hourly mean temperature, Tt,
solar radiation, Rt, and change in water deficit, ∆∆∆∆iD (Komuro et al. 2006). The coefficients xi are the
unknown model parameters. Water deficit is estimated as the difference between estimated uptake from the
soil, Ui, and loss through evapo-transpiration, Wi.

The model was assessed with regard to twenty four characteristics capturing mean rates of

growth during four time periods each day (Figure 8): early morning (hours 2--6), late morning

Average temperature
for the past 24h

Total growth for
the previous day Average temperature

for the past 48h–24h
Total radiation for
the past 72h–48h

Total radiation for
the past 48h–24h

24 48 48 72 24
*

1 2 3 4 5
1 25 25 49 1

24 24t t k t k t k t k t k
k k k k k

S x T x T x R x R x D S− − − −
= = = = =

� � � � � � � � � �= ⋅ − ⋅ + ⋅ + ⋅ − ⋅∆ ⋅� � � � � � � � � �
� � � � � � � � � �
� � � � �

with 1 6 1t t t t t t tD D D W U W x D− −∆ ≡ − = − = − ⋅

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 9 of 19

(8--12), afternoon (12--16), and late evening (20--24). These represent, respectively, the pre-

dawn expansion period when water deficit is lowest; the late morning period of maximum

contraction; the afternoon when recovery from contraction starts; and late evening when

maximum expansion occurs. Comparisons were quantified as (Predicted mean growth -

Observed mean growth) during each four hour period, thus assessing both timing and magnitude.

Figure 8.
Observed hourly growth data with assessment periods highlighted (dark green). The model was assessed
with regard to mean growth rates in each of four time periods each day, see Komuro et al. (2006, 2007a,
2007b).

PREPARING THE MODEL EXECUTABLE

The model executable must be able to

(i) Read in a text file of parameterizations, one per row. The pathway and name of the text file

are defined by the user in setting up the ParetoEvolve code (MODEL_INPUT_FILE

variable, set in UserSettings.h), so must the number of parameterizations in each file

(the ‘population size’; POP_SIZE, set in UserSettings.h) and the number (NUMPARAMS,

set in UserSettings.h) and name (pnames, set in UserArrays.h) of each parameter.

The model code must read in either a fixed number of rows (the population size) or,

better, an unspecified number of rows - i.e., read in and simulate each row

(parameterization) until the end of the file.

The parameterization text file will start with a row of parameter names then list the

parameterizations as fields separated by a white space. The following example is from

assessing the shoot growth model. The model has six parameters (x1, x2, x3, x4,

x5, x6):

x1 x2 x3 x4 x5 x6

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 10 of 19

 0.000000 0.001000 0.043000 0.047000 0.174000 0.371000

 0.000000 0.019000 0.070000 0.036000 0.159000 0.539000

 0.005000 0.004000 0.034000 0.051000 0.253000 0.787000

...

(ii) Run the simulation model with each parameterization (this may involve multiple simulations

per parameterization if the model is stochastic).

(iii) Calculate the summary characteristics (objectives) that were chosen for assessing model

performance and evaluate them with regard to the chosen criteria, creating the criteria

vector (Reynolds and Ford 1999; Komuro et al. 2006).

For example, the executable for the shoot growth model runs the simulation with a given

parameterization, uses the predicted hourly shoot growth to calculate the mean growth

rate during each of the four periods for each day of the simulation (i.e., the summary

characteristics), then combines this with the observed growth rates to calculate each

periods’ criterion value: Predicted mean growth - Observed mean growth.

(iv) Create an output file with one line per parameterization, listing the parameterization then

the criteria vector. The pathway and name of the file are defined by the user in setting up

the ParetoEvolve code (CRIT_OUT_CALL; UserSettings.h), as are the number

(NUMCRITERIA; UserSettings.h) of objectives and their names (cnames;

UserArrays.h).

The first row of the file should contain the parameter names and objective names.

NAMES must not include blank spaces between characters. The row must report the

parameter settings THEN the criteria values.

For example, the following output is from assessing the shoot growth model on just the

days 179-181 (Komuro 2006). There are six parameters (x1, x2, x3, x4, x5, x6)

and twelve criteria assessing the goodness of fit of the predicted growth time series (d1,

d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12). The simulation summaries

from the first three parameterizations are shown.

x1 x2 x3 x4 x5 x6 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 11 of 19

0.000000 0.001000 0.043000 0.047000 0.174000 0.371000 -0.070371 0.017149 -

0.252480 0.139678 -0.075626 0.281741 0.097565 0.302846 -0.119141 0.269034 -

1.033098 0.233234

0.000000 0.019000 0.070000 0.036000 0.159000 0.539000 -0.004016 0.326310

0.249490 -0.197787 -0.289778 0.318527 0.355739 0.386018 -0.291224 0.654089 -

0.201839 -0.212053

0.005000 0.004000 0.034000 0.051000 0.253000 0.787000 -0.148511 0.002888 -

0.010412 0.053456 -0.331739 0.283286 0.356075 0.256863 -0.674833 0.152905 -

0.400107 -0.162460

…

After making sure the model executable satisfies these requirements, recompile it and record the

drive location of the executable file.

PREPARING THE PARETOEVOLVE CODE

The user must modify the ParetoEvolve code to define

(i) the number of generations and population size to use in the search (in UserSettings.h);
/****************** UserSettings.h ********/

…

/***/

/****** OPTIMIZATION CONTROL SETTINGS ******/

/***/

 /***** SEARCH SIZE AND DURATION *****/

#define POP_SIZE 100 /* Number of parameterizations per generation */

#define GEN_NUM 1000 /* Number of Generations to evolve solution */ …

The user needs to experiment to decide how many generations are sufficient for

convergence as it will be problem dependent. From our experience, we suggest at least

1000 or more generations and population sizes of at least 100.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 12 of 19

Table 1. Values to be modified by the user in order to adapt ParetoEvolve for the user-defined program.

File Name Description
UserSettings.h NUMPARAMS number of parameters (decision variables)
 NUMCRITERIA number of objectives (assessment criteria)
 GEN_NUM number of generations to let the solution

search evolve
 POP_SIZE number of individual parameterizations in the

population for each generation
 SYST_CALL pathway and name of the user-supplied

executable that calculates objective values for
each parameterization (i.e., the model)

 MODEL_INPUT_CALL pathway and name to use when creating the
parameter input file

CRIT_OUT_CALL pathway and name of the model output file
(created by the user-supplied model)

CRIT_COPY_CALL operating system command to save a copy of
the current generation’s criteria output file.

FRONTIER_CALL pathway and name of file for archiving the
non-dominated Pareto frontier estimates.
WARNING: the path must exist (i.e., folders
and subfolders already created) in order for
ParetoEvolve to write these output files.

BINARY flag for whether the error measures are binary
(1) or continuous (0)

 GEN_TO_PRINT frequency for printing current results to files
UserArrays. pnames[NUMPARAMS][11] array of parameter names
 cnames[NUMCRITERIA][11] array of objective names
 psearch[NUMPARAMS][3] search ranges for each parameter (min, max,

step size)
 assessinfo[NUMCRITERIA][2] target values for each objective—for

continuous errors the first is the target value,
the second is not utilized; for binary errors the
first is the lower bound of the target range, the
second is the upper bound of the target range

(ii) the pathway and filenames for where to locate the model executable (SYST_CALL), where to

place the model input file (MODEL_INPUT_CALL), where to locate the model output file

(CRIT_OUT_CALL), where to intermittently copy the model output file created during the

search (CRIT_COPY_CALL), and the pathway to the directory used to store intermittent

copies of the current Pareto frontier estimate during the search (WARNING: create the

directory before running ParetoEvolve). The intermittent copies of the current

population results and the current Pareto frontier estimate are written every X generation,

where X is the value defined for the constant GEN_TO_PRINT in the file

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 13 of 19

UserSettings.h.

/********* UserSettings.h **********************/

…

/***/

/****** PATH AND FILENAMES for model executable and files ******/

/***/

 /* model executable.*/

#define SYST_CALL "c:\\Tree\\criteria\\Debug\\criteria"

/* model input file (created by ParetoEvolve) EDIT PATH, NOT FILENAME!*/

#define MODEL_INPUT_CALL "c:\\Tree\\input.txt"

/* model output file (read by pareto_evolve) EDIT PATH, NOT FILENAME!*/

#define CRIT_OUT_CALL "c:\\Tree\\crit.out"

/***/

/****** FILENAMES for recording intermediate status of search.******/

/***/

/* System call to create a permanent copy of the current model output

file. The root filename in the 'destination' path will be appended with

the current generation number. E.g., 'crit.out10*/

#define CRIT_COPY_CALL "copy c:\\Tree\\crit.out c:\\Tree\\crit"

/* Path and root filename for storing intermediate Pareto Frontier

Archives. The root filename will be appended with the current

generation number. ('Historical Pareto Frontier' = cumulative elitist

archive of search.)

#######

WARNING:

The path must exist, ParetoEvolve cannot create it.

I.e., create the necessary folders and subfolders where you want

ParetoEvolve to put the output files before running the code.*/

#define FRONTIER_CALL "C:\\TREE\\ParetoSets\\Paretoset"

The model input and output locations must match those in the model code. Under the Windows

operating system, the copy command is ‘copy’; under Unix/Linux it is ‘cp’ (e.g., in

CRIT_COPY_CALL).

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 14 of 19

 (iii) the parameter names (pnames), their feasible search ranges (psearch) and minimum search

increment, and the criteria names (cnames) and target values or acceptable ranges

(assessinfo) (in UserArrays.h):
/************** UserArrays.h ********************/

…

/* PARAMETER NAMES to be used in printing out search results */

 /* NAMES are LIMITED to 10 characters!! ADD ELEMENTS AS NEEDED.*/

char pnames[NUMPARAMS][11] = {"x1","x2","x3","x4","x5","x6"};

 /* CRITERIA NAMES to be used in printing out search results */

 /* NAMES are LIMITED to 10 characters!! ADD ELEMENTS AS NEEDED.*/

char cnames[NUMCRITERIA][11] = {"d1", "d2", "d3", "d4", "d5", "d6",

"d7", "d8", "d9", "d10","d11", "d12"};

/***** SEARCH RANGES AND SPECIFICS ******/
 /* This array should have a 3 component row-vector for each
parameter. The first element is the MINIMUM value of that parameter's
search range, the second component is the MAXIMUM value of the search
range, and the third component is the MINIMUM STEPSIZE for the parameter.
E.g., '{0.0, 0.4, 0.001}' implies feasible search values of 0.0, 0.001,
0.002, 0.003, ..., 0.399, 0.400; (400 possible search values for this
parameter).
The first row is associated with the first parameter in pnames[],
the second row with the second parameter, etc.
ADD ELEMENTS AS NEEDED.*/
double psearch[NUMPARAMS][3] = {
 /* {Min, Max, Min Step}, */
 {0.0, 0.4, 0.001}, /* search for param x1 */
 {0.0, 0.1, 0.001}, /* search for param x2 */
...};

double assessinfo[NUMCRITERIA][2] = {
 /* BINARY? {Min, Max}. CONTINUOUS? {Target, trash} */
 {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41},
 {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41},
 {-0.41,0.41}, {-0.41,0.41}
 };

...

The minimum and maximum value and minimum step size are used to define a grid of potential

values for each parameterization. The user must be sure that each increment is an integer

step. That is, (max - min)/increment must be an integer. In this example, the parameter

search range for x1 is (0, 0.4) with a minimum step size of 0.001, coded as {0.0, 0.4, 0.001}.

If the search uses a continuous error measure, the user must specify the objective targets where

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 15 of 19

the first number specifies that target and the second number is ignored. If the search is to use a

binary error measure, the user must specify the objective target ranges where the first number

specifies the minimum of a range and the second number specifies the maximum. The objectives

are all evaluated using binary error measures (BINARY = 1 below). The acceptable interval for

the first criteria, d1, is [-0.41, 0.41]. This is an unusual example in that the criteria all use the

same target range.

(iv) the number of parameters (NUMPARMS), the number of objectives (NUMCRITERIA), the type of

discrepancy measure used to assess each criterion (binary or continuous) (BINARY), and

how frequently to record the current search results (GEN_TO_PRINT) (in UserSettings.h).
…

#define NUMPARAMS 6 /* number of parameters in model being assessed */

#define NUMCRITERIA 12 /* number of criteria used in assessment */

…

#define BINARY 1 /* =1 if all discrepancy measures are binary,

 =0 if all are continuous */

#define GEN_TO_PRINT 500 /* how often to print out intermediate Pareto

 Frontier Archives ('Historic Pareto Frontiers'). */

#define GEN_TO_PRINT 25 /* how often to record current search results */

…

If the search uses binary error measures, a criterion value is assessed as to whether or not it falls

within that user-specific acceptable range (step iii above). If so, it is assigned a value of 1, if not

then it is assigned a value of 0. If the error measures are continuous, an individual's assessment is

quantified by the coordinate distance between its criterion result and a criterion's target value

(specified in step iii above).

(v) If necessary (e.g., long pathnames) revise the array dimensions for critname and

paretofilename in ParetoEvolve.h and pareto_main.c

After making these changes to the ParetoEvolve code, the user must recompile all of the files

(ParetoEvolve.h, UserSettings.h, UserArrays.h, pareto_main.c, pareto_update.c, pareto_breed.c,

pareto_misc.c) to create the optimization search executable.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 16 of 19

RUNNING THE PARETOEVOLVE CODE

Open up a DOS window (Windows OS) or terminal window (Unix, Linux), move to the

directory containing the ParetoEvolve.exe file, and enter either:

• ParetoEvolve.exe

to start the search at generation 0 and run through the maximum number of generations

(GEN_NUM);

• ParetoEvolve.exe 5

for example to start the search at generation 5 and run through the maximum number of

generations (GEN_NUM). ParetoEvolve.exe will look for the CRIT_OUT_CALL file and read

it in, assuming it is the output from the 5th generation’s search.

• ParetoEvolve.exe 5 120

for example to start the search at generation 5 and run through generation 120, stopping

after generation 120 (which is assumed less than GEN_NUM). ParetoEvolve.exe will look

for the CRIT_OUT_CALL file and read it in, assuming it is the output from the 5th

generation’s search. It will stop after having run the model simulations through the 120th

generation of parameterizations.

The model’s approximate Pareto Frontier and Pareto Optimal Set will be given in the final
FRONTIER_CALL file.

UNDERSTANDING THE OUTPUT FROM PARETOEVOLVE

The output files saved by the CRIT_COPY_CALL command should be investigated for obvious

signs of problems in the parameterization search, such as stagnation in the population members.

The refinement of the search’s Pareto Frontier estimates can be investigated by exploring the

Pareto Frontier files created in the folder set in the PARETO_PATH argument defined in step (ii)

above. The files are named ParetosetX, where X is a whole multiple of the GEN_TO_PRINT

value defined in step (iv) above.

Each ParetosetX file consists of variable length sections, one for each Pareto Group or set of

parameterizations which produce the same assessment vector (Reynolds and Ford 1999). When

continuous error measures are used, each parameterization is (generally) its own group; when

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 17 of 19

binary error measures are used, groups may contain many parameterizations. This is discussed

further in Reynolds and Ford (1999) and Reynolds and Golinelli (2004).

Each Group starts with the same marker row,
 -999999.999 Assessment Vector 999999.999,

followed by a row listing the criteria names then a row listing the group’s common assessment

vector (evaluated criteria error measures) (Reynolds and Ford 1999). This is followed by

another marker row (see below), a row of the parameter names and criteria names, then a list of

each parameterization in the group, one per row, along with their original criteria vectors. For

example, the following Pareto Frontier file contained a group that satisfied all but the criteria

focused on each day’s last time period (d4, d8, d12) using binary error measures as the

assessment vector was

(1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0) =

(True, True, True, False, True, True, True, False, True, True, True, False) =

(Satisfied, Satisfied, Satisfied, Unsatisfied,…).

The beginning of one of the Pareto Optimal parameterizations from that group is shown.

Pareto Frontier:

-999999.999 Assessment Vector 999999.999

 d1 d2 d3 d4 d5 d6

 d7 d8 d9 d10 d11 d12

 1.00 1.00 1.00 0.00 1.00 1.00

 1.00 0.00 1.00 1.00 1.00 0.00

=============== Simulations ===============

 x1 x2 x3 x4 x5 x6 d1 d2 d3 d4 d5 d6

 d7 d8 d9 d10 d11 d12

 0.35 0.090 …

The separators (‘-999999.999 Assessment Vector 999999.999‘) allow for automatic file

parsing using grep or awk-type commands.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 18 of 19

MISCELLANEOUS NOTES

ParetoEvolve assumes that all parameters are 'independent' and that the feasible search space is

simply the Cartesian product of the individual parameter's search ranges. If this is not true, i.e.,

there are constraints or explicit relations among the feasible parameter values, then the model

code must either:

• have it's input section written in terms of 'independent' parameters from which the other

parameters are explicitly calculated (with the constraints being implicitly incorporated

into the transfer between parameter spaces, e.g. ParetoEvolve's � the model's parameter

space), or

• check the feasibility of each parameterization generated by ParetoEvolve and, when an

infeasible parameterization is found, either convert it into a feasible parameterization

(somehow) or set it's criteria vector to some absolute worse value so that, implicitly, the

infeasible parameter space is abandoned by the evolutionary optimization.

The latter strategy should be avoided when possible so to minimize computer effort wasted on

defining the feasible search space.

ParetoEvolve assumes all parameters are floats (or doubles). When this is not true, the model

code should read in floats then recast individual parameters to other types as necessary.

It will be available via the MCmodeler interface (Steele-Feldman and Reynolds 2007) at

http://faculty.washington.edu/joel/Software.html in late 2008. That version eliminates the need

for user modification and recompiling of ParetoEvolve, but restricts uses to models with 20 or

fewer parameters and 20 or fewer model assessment criteria or outputs, nor does it support the

use of run-time arguments discussed above.

More information
Further documentation, updates and examples can be found at:

http://faculty.washington.edu/joel/index.html under Model Assessment or Software.

ParetoEvolve README Last Edited: 6-Oct-08

Joel_Reynolds@fws.gov 19 of 19

REFERENCES

Deb, K. 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, Inc., New York, New York.

Komuro, R., Ford, E. D., and Reynolds, J. H. 2006. The use of multi-criteria assessment in

developing a process model. Ecological Modelling 197 (3-4): 320-330.

Komuro, R., Reynolds, J. H., and Ford, E. D. 2007. Using multiobjective evolutionary

algorithms to assess biological simulation models. In S. Obayashi et al. (eds): EMO
2007, Lecture Notes in Computer Science vol 4403. Springer-Verlag, Berlin, pp 560-574.

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.).

Springer, New York, New York.

Reynolds, J. H. and Ford, E. D. 1999. Multi-criteria assessment of ecological process models.

Ecology 80 (2): 538-553.

Reynolds, J. H. and Golinelli, D. 2004. Multi-criteria inference for process models: structural

and parametric inference for a stochastic model of feline hematopoeisis. In 2004 Joint
Statistical Meeting Proceedings, American Statistical Association, pp 2978-2986.

Srinivas, N., and K. Deb. 1994. Multi-objective function optimization using non-dominated

sorting genetic algorithms. Evolutionary Computation Journal 2 (3): 221-248.

Steele-Feldman, A., and J. H. Reynolds. 2007. MCmodeler: a model assessment interface.

Available at http://faculty.washington.edu/joel/Software.html in late 2008.

