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INTRODUCTION 

This document details the steps required to estimate the Pareto frontier of a process-based 

simulation model using the optimization program ParetoEvolve.  The Pareto frontier summarizes 

the optimal tradeoffs in simultaneous performance across multiple criteria (Figure 1).  It is the 

central information summary used in model assessment and the Pareto Optimal Model 

Assessment Cycle (see Reynolds and Ford 1999).  The Pareto frontier is usually estimated more 

efficiently using optimization methods than Monte Carlo simulation. 

 

The user must supply the simulation model as a stand alone executable program.  ParetoEvolve 

requires that this user-supplied code read input files, run model simulations, and write output 

files as described below (see  

PREPARING THE Model ). 

 

Figure 1.  Feasible space (black circles and red 
squares) and Pareto frontier (red squares) for a 
two criteria minimization problem (e.g., minimize 
both criteria).  The feasible space is that part of 
the objective space (Criterion 1, Criterion 2) that 
can result from a parameterization of the 
underlying model.  The Pareto frontier is the 
tradeoff surface summarizing how ‘improvement’, 
minimization in this case, of one criterion is 
counterbalanced by worsening performance in the 
other. 
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WHAT IS PARETOEVOLVE? 

ParetoEvolve is an evolutionary computation optimization program.  It was specifically 

developed for estimating the Pareto frontier of process-based simulation models, but can be used 

for any multi-objective optimization problem.  As far as ParetoEvolve is concerned, your 

simulation model is just another optimization problem.  Even so, ParetoEvolve was written with 

certain algorithmic features that specifically support model assessment, such as its handling of 

binary error measures (see below) and memory structure based on Pareto Groups (Reynolds and 

Ford 1999, Komuro et al. 2007) (Figure 2). 

 

Figure 2.  Often there is insufficient data 

to justify a precise target value for 

judging the model’s ability to reproduce a 

specific characteristic.  In this case one 

can define an interval of acceptable 

outcomes, e.g., “Criterion 1 predictions < 

1.0 are acceptable”, creating a binary 

error measure.  Binary error measures 

partition the Pareto frontier into Pareto 

Groups – parameterizations that, while 

resulting in distinct outcomes, lead to the 

same assessment with regards to the 

binary error measures.  If the error 

intervals for each criterion are ‘< 1 is acceptable’ (dashed lines), then the red squares form the Pareto 

frontier and can be partitioned into two Pareto Groups – one with six parameterizations that adequately 

simulate Criterion 1 but fail on Criterion 2 and one with one parameterization that simulates Criterion 2 but 

fails on Criterion 1.  

 

Evolutionary computation optimization uses the concepts of natural selection and genetic 

diversity to evolve solutions to optimization problems (Michalewicz 1996, Deb 2001).  Such 

algorithms use a population-based search in contrast to traditional (analytical) mathematical 

optimization methods that calculate the objective value associated with a single parameterization 

then seek a next trial parameterization value with better performance (Figures 3, 4).  Each stage 

(‘generation’) of a population-based search method evaluates a set of parameterizations, 
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producing a set of objective values.  A fitness is assigned to each parameterization, and the 

fitness values are used to probabilistically selected ‘parent’ parameterizations to ‘breed’ and 

create ‘offspring’ forming the next generation of parameterizations (Figure 4).  This process 

continues, ultimately evolving optimal solutions. 

Figure 3.  Traditional mathematical optimization 

methods, e.g. Newton-Raphson iteration, evaluate a 

single parameterization (xi) at a time, each step seeking 

a new parameterization that further improves (here, 

minimizes) the objective function, f(x).  A plausible 

sequence of trial values is illustrated: xi, x2,…, x6.  In 

contrast, population-based optimization evaluates a set 

of parameterization each step, then grades their 

performance for deciding on how to best select the next 

set of parameterizations. 

 

 
Figure 4.  Simplified flowchart of a population-based search algorithm.  The key components are the 
definition of fitness for evaluating each parameterization, the definition of the selection process for picking 
parents, and the definition of the breeding process for generating a new population of parameterizations from 
the parents. 
 

Evaluate Parameterizations 

Initialize Population (Generation 0) 

Assign Fitness to each Parameterization 

Select Parent Parameterizations for 
Breeding next Generation (based on 
relative Fitness) 

Any 
Parameterization(s) 
satisfy the criteria? 

No 

Yes 
Stop 

Gen = GenMax 
No 

Yes 
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Numerous algorithms have been proposed in this large, active field of research (see Deb 2001 for 

an introduction).  ParetoEvolve is based on a modification of the Non-dominated Sorted Genetic 

Algorithm (NSGA) (Srinivas and Deb 1994).  The algorithm details are described in the code’s 

internal documentation and are not presented here. 

 
This manual does: 
- outline the modifications required for both the user-supplied model code and ParetoEvolve to 

prepare each for use, 

- briefly summarize the available run-time arguments for calling ParetoEvolve. 

 

This manual does not: 
- fully detail the optimization algorithm; please peruse the ParetoEvolve source code and its 

internal documentation or read Komuro et al. (2007)1. 

- fully explain evolutionary optimization algorithms.  Please see, for example, Deb (2001) for a 

review of this burgeoning field. 

- explain the Pareto Optimal Model Assessment Cycle; please see Reynolds and Ford (1999), 

Komuro et al. (2006), and Komuro et al. (2007). 

 

PARETOEVOLVE SOURCE CODE 

ParetoEvolve is written in the C programming language and consists of four source files and 

three header files.  These need to be edited as described below and compiled to build the 

executable program.  The original code was created in MS Visual C++ but does not specifically 

contain any function calls unique to that environment (as far as we know).  

 

The model executable referred to below is the user-supplied executable code, which has to do 

much more than just simulate the process.  It must be written so that when it is called it (i) reads 

in the input file of parameterizations created by ParetoEvolve, (ii) for each parameterization, 

runs the simulation model and calculates the resulting summary characteristics from the model 

output (the ‘criteria vector’), and (iii) writes the parameterizations and their criteria vectors to an 

output file.  These requirements are detailed below. 

                                                           
1 The algorithm presented in Komuro et al (2007) includes an elitist component that is not used in the version of 
ParetoEvolve described in this manual. 
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Figure 5.  Simplified flowchart for the optimization program ParetoEvolve.  ParetoEvolve generates each 
population of parameterizations then passes them as a set to the user-provided simulation model program 
(green box).  The model code has to read in and run each parameterization, calculating its performance with 
regard to the selected characteristics (the criteria vectors, assuming there are multiple characteristics being 
assessed), and pass the information back to ParetoEvolve.  The optimization program then evaluates the 
results and implements all the other steps.  Information is passed between ParetoEvolve and the model code 
via writing and reading specially formatted text files. 
 

BRIEF OVERVIEW OF PARETOEVOLVE’S SEARCH PROCESS 

The multi-criteria optimization software ParetoEvolve estimates a model’s Pareto Frontier (and 

associated Pareto Optimal Set) by an iterative process (Figure 5):   

1. ParetoEvolve generates a population of feasible parameterizations, writes them to a text 

file (model ‘input file’), the calls the model executable. 

2. The model executable then reads in each parameterization from the text file, simulates 

the process with the parameterization, calculates the simulation’s summary 

Read in Population of Parameterizations, {X}; 
Run simulation Model using each X;  
Calculate Criteria Vector for each X. 

Initialize Population (Generation 0) 

Evaluate Criteria Vectors, Calculate 
Assessment Vectors 

Assign Fitness to each Parameterization 

Update Pareto Frontier estimate 

Select Parent Parameterizations & Breed 
next Generation (selection based on 
relative Fitness)  

Any 
Parameterization(s) 

simultaneously satisfy all 
criteria? 

No 

Yes 
Stop 

Gen = GenMax 

No 

Yes 
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characteristics and resulting assessment criteria values, then writes each 

parameterization and its associated assessment criteria to a second text file (model ‘ouput 

file’) (Reynolds and Ford 1999).  

3. ParetoEvolve reads in the output file, evaluates each parameterization’s criteria vector to 

form an assessment vector, calculates the Pareto Frontier and Pareto Optimal Set of the 

population of parameterizations and assessment vectors (Reynolds and Ford 1999, 

Komuro et al. 2007), and uses that information to breed a new population of 

parameterizations (the next generation of the evolutionary optimization search).   

4. The process then repeats Step 1 and the cycle continues for another generation until 

either (i) a parameterization is found that simultaneously satisfies all the criteria or (ii) 

the user-defined maximum number of generations has passed.  The Pareto frontier is 

estimated from all the evaluations and returned by the algorithm (the Historic Pareto 

frontier rather than just the last generation’s frontier). 

 

Thus before using ParetoEvolve you must first: 

1. Prepare your model code to interact with ParetoEvolve and 

2. Prepare ParetoEvolve to interact with your model code. 

 

HOW COMPUTATIONALLY COMPLEX CAN THE MODEL BE? 

Running ParetoEvolve generally entails 10,000s to 1,000,000s of model simulations, depending 

on the choices of population size and maximum generation number.  The necessary minimum 

values for these two controls are model-dependent and hence unknown.  From our experience we 

suggest population sizes of 100-200, depending on the number of unknown parameters, and a 

minimum of a couple thousand generations.  These demands should be considered in the context 

of available computing resources to judge applicability of ParetoEvolve to a particular model.  

Note that the model simulation step is the bottleneck and that simulating a population of 

parameterizations is inherently parallelizable if you write the model executable to take advantage 

of multiple networked machines. 

EXAMPLE MODEL  

The steps required in preparing the model executable code and the ParetoEvolve code are 

illustrated using the example of a model of the hourly growth of the leading shoot of a Sitka 
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spruce (Picea sitchensis (Bong.) Carr.) tree.  The underlying motivation for the model and the 

results of its assessment and revision are detailed in Komuro et al. (2006, 2007a, and 2007b). 

 

Figure 6.  Observed hourly shoot growth (expansion and contraction) by Julian date (see Komuro et al. 
2006). 
 

Extension and contraction of a shoot were automatically measured every hour (Figure 6) using 

an electro-mechanical sensor (Milne et al. 1977).  A model (Figure 7; see Komuro et al. 2006 for 

details) was proposed for the functional dependence of the observed expansion and contraction 

on current and recent solar radiation, temperature, and transpiration calculated using the 

Penman-Monteith equation (Monteith et al. 1965).  

 

Figure 7.  Hourly shoot growth, St, modeled as a function of current and recent hourly mean temperature, Tt, 
solar radiation, Rt, and change in water deficit, ∆∆∆∆iD (Komuro et al. 2006).  The coefficients xi are the 
unknown model parameters.  Water deficit is estimated as the difference between estimated uptake from the 
soil, Ui, and loss through evapo-transpiration, Wi. 
 
The model was assessed with regard to twenty four characteristics capturing mean rates of 

growth during four time periods each day (Figure 8): early morning (hours 2--6), late morning 
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(8--12), afternoon (12--16), and late evening (20--24).  These represent, respectively, the pre-

dawn expansion period when water deficit is lowest; the late morning period of maximum 

contraction; the afternoon when recovery from contraction starts; and late evening when 

maximum expansion occurs.  Comparisons were quantified as (Predicted mean growth - 

Observed mean growth) during each four hour period, thus assessing both timing and magnitude. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.         
Observed hourly growth data with assessment periods highlighted (dark green).  The model was assessed 
with regard to mean growth rates in each of four time periods each day, see Komuro et al. (2006, 2007a, 
2007b). 
 
PREPARING THE MODEL EXECUTABLE  

The model executable must be able to  

(i) Read in a text file of parameterizations, one per row.  The pathway and name of the text file 

are defined by the user in setting up the ParetoEvolve code (MODEL_INPUT_FILE 

variable, set in UserSettings.h), so must the number of parameterizations in each file 

(the ‘population size’; POP_SIZE, set in UserSettings.h) and the number (NUMPARAMS, 

set in UserSettings.h) and name (pnames, set in UserArrays.h) of each parameter.  

The model code must read in either a fixed number of rows (the population size) or, 

better, an unspecified number of rows - i.e., read in and simulate each row 

(parameterization) until the end of the file.   

The parameterization text file will start with a row of parameter names then list the 

parameterizations as fields separated by a white space.  The following example is from 

assessing the shoot growth model.  The model has six parameters (x1, x2, x3, x4, 

x5, x6): 

x1  x2  x3  x4  x5  x6  
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 0.000000  0.001000  0.043000  0.047000  0.174000  0.371000  

 0.000000  0.019000  0.070000  0.036000  0.159000  0.539000  

 0.005000  0.004000  0.034000  0.051000  0.253000  0.787000  

... 

(ii) Run the simulation model with each parameterization (this may involve multiple simulations 

per parameterization if the model is stochastic).  

(iii) Calculate the summary characteristics (objectives) that were chosen for assessing model 

performance and evaluate them with regard to the chosen criteria, creating the criteria 

vector (Reynolds and Ford 1999; Komuro et al. 2006). 

For example, the executable for the shoot growth model runs the simulation with a given 

parameterization, uses the predicted hourly shoot growth to calculate the mean growth 

rate during each of the four periods for each day of the simulation (i.e., the summary 

characteristics), then combines this with the observed growth rates to calculate each 

periods’ criterion value: Predicted mean growth - Observed mean growth. 

(iv)  Create an output file with one line per parameterization, listing the parameterization then 

the criteria vector.  The pathway and name of the file are defined by the user in setting up 

the ParetoEvolve code (CRIT_OUT_CALL; UserSettings.h), as are the number 

(NUMCRITERIA; UserSettings.h) of objectives and their names (cnames; 

UserArrays.h).   

The first row of the file should contain the parameter names and objective names.  

NAMES must not include blank spaces between characters.  The row must report the 

parameter settings THEN the criteria values. 

For example, the following output is from assessing the shoot growth model on just the 

days 179-181 (Komuro 2006).  There are six parameters (x1, x2, x3, x4, x5, x6) 

and twelve criteria assessing the goodness of fit of the predicted growth time series (d1, 

d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12).  The simulation summaries 

from the first three parameterizations are shown. 

 

 

x1  x2  x3  x4  x5  x6  d1  d2  d3  d4  d5  d6  d7  d8  d9  d10  d11  d12   
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0.000000 0.001000 0.043000 0.047000 0.174000 0.371000 -0.070371 0.017149 -

0.252480 0.139678 -0.075626 0.281741 0.097565 0.302846 -0.119141 0.269034 -

1.033098 0.233234  

0.000000 0.019000 0.070000 0.036000 0.159000 0.539000 -0.004016 0.326310 

0.249490 -0.197787 -0.289778 0.318527 0.355739 0.386018 -0.291224 0.654089 -

0.201839 -0.212053  

0.005000 0.004000 0.034000 0.051000 0.253000 0.787000 -0.148511 0.002888 -

0.010412 0.053456 -0.331739 0.283286 0.356075 0.256863 -0.674833 0.152905 -

0.400107 -0.162460  

… 

After making sure the model executable satisfies these requirements, recompile it and record the 

drive location of the executable file. 

 

PREPARING THE PARETOEVOLVE CODE  

The user must modify the ParetoEvolve code to define  

(i) the number of generations and population size to use in the search (in UserSettings.h); 
/****************** UserSettings.h ********/ 

… 

/*********************************************************************/ 

/****** OPTIMIZATION CONTROL SETTINGS ******/ 

/*********************************************************************/ 

    /***** SEARCH SIZE AND DURATION *****/ 

#define POP_SIZE 100   /* Number of parameterizations per generation */ 

#define GEN_NUM 1000   /* Number of Generations to evolve solution */ … 

 

The user needs to experiment to decide how many generations are sufficient for 

convergence as it will be problem dependent.  From our experience, we suggest at least 

1000 or more generations and population sizes of at least 100. 
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Table 1. Values to be modified by the user in order to adapt ParetoEvolve for the user-defined program. 

File Name Description 
UserSettings.h NUMPARAMS number of parameters (decision variables) 
 NUMCRITERIA number of objectives (assessment criteria) 
 GEN_NUM number of generations to let the solution 

search evolve 
 POP_SIZE number of individual parameterizations in the 

population for each generation 
 SYST_CALL pathway and name of the user-supplied 

executable that calculates objective values for 
each parameterization (i.e., the model)  

 MODEL_INPUT_CALL pathway and name to use when creating the 
parameter input file 

CRIT_OUT_CALL pathway and name of the model output file 
(created by the user-supplied model) 

CRIT_COPY_CALL operating system command to save a copy of 
the current generation’s criteria output file. 

FRONTIER_CALL pathway and name of file for archiving the 
non-dominated Pareto frontier estimates. 
WARNING: the path must exist (i.e., folders 
and subfolders already created) in order for 
ParetoEvolve to write these output files. 

 

BINARY flag for whether the error measures are binary 
(1) or continuous (0) 

 GEN_TO_PRINT frequency for printing current results to files 
UserArrays. pnames[NUMPARAMS][11] array of parameter names 
 cnames[NUMCRITERIA][11] array of objective names 
 psearch[NUMPARAMS][3] search ranges for each parameter (min, max, 

step size) 
 assessinfo[NUMCRITERIA][2] target values for each objective—for 

continuous errors the first is the target value, 
the second is not utilized; for binary errors the 
first is the lower bound of the target range, the 
second is the upper bound of the target range 

 
 
 

 

(ii) the pathway and filenames for where to locate the model executable (SYST_CALL), where to 

place the model input file (MODEL_INPUT_CALL), where to locate the model output file 

(CRIT_OUT_CALL), where to intermittently copy the model output file created during the 

search (CRIT_COPY_CALL), and the pathway to the directory used to store intermittent 

copies of the current Pareto frontier estimate during the search (WARNING: create the 

directory before running ParetoEvolve).  The intermittent copies of the current 

population results and the current Pareto frontier estimate are written every X generation, 

where X is the value defined for the constant GEN_TO_PRINT in the file 



ParetoEvolve README  Last Edited: 6-Oct-08  

Joel_Reynolds@fws.gov  13 of 19 

UserSettings.h. 

 
/*********  UserSettings.h **********************/ 

… 

/*********************************************************************/ 

/****** PATH AND FILENAMES for model executable and files ******/ 

/*********************************************************************/ 

    /* model executable.*/ 

#define SYST_CALL "c:\\Tree\\criteria\\Debug\\criteria" 

/* model input file (created by ParetoEvolve) EDIT PATH, NOT FILENAME!*/ 

#define MODEL_INPUT_CALL "c:\\Tree\\input.txt" 

/* model output file (read by pareto_evolve) EDIT PATH, NOT FILENAME!*/ 

#define CRIT_OUT_CALL "c:\\Tree\\crit.out" 

 

/*********************************************************************/ 

/****** FILENAMES for recording intermediate status of search.******/ 

/*********************************************************************/ 

/* System call to create a permanent copy of the current model output 

file.  The root filename in the 'destination' path will be appended with  

the current generation number.  E.g., 'crit.out10*/ 

#define CRIT_COPY_CALL "copy c:\\Tree\\crit.out  c:\\Tree\\crit" 

 

/* Path and root filename for storing intermediate Pareto Frontier 

Archives.  The root filename will be appended with the current 

generation number. ('Historical Pareto Frontier' = cumulative elitist 

archive of search.) 

####### 

WARNING:  

The path must exist, ParetoEvolve cannot create it. 

I.e., create the necessary folders and subfolders where you want  

ParetoEvolve to put the output files before running the code.*/ 

#define FRONTIER_CALL "C:\\TREE\\ParetoSets\\Paretoset" 

The model input and output locations must match those in the model code.  Under the Windows 

operating system, the copy command is ‘copy’; under Unix/Linux it is ‘cp’ (e.g., in 

CRIT_COPY_CALL). 
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 (iii) the parameter names (pnames), their feasible search ranges (psearch) and minimum search 

increment, and the criteria names (cnames) and target values or acceptable ranges 

(assessinfo) (in UserArrays.h):  
/************** UserArrays.h ********************/ 

… 

/* PARAMETER NAMES to be used in printing out search results */ 

   /* NAMES are LIMITED to 10 characters!! ADD ELEMENTS AS NEEDED.*/ 

char pnames[NUMPARAMS][11] = {"x1","x2","x3","x4","x5","x6"}; 

 

   /* CRITERIA NAMES to be used in printing out search results */ 

   /* NAMES are LIMITED to 10 characters!! ADD ELEMENTS AS NEEDED.*/ 

char cnames[NUMCRITERIA][11] = {"d1", "d2", "d3", "d4", "d5", "d6", 

"d7", "d8", "d9", "d10","d11", "d12"}; 

 

/***** SEARCH RANGES AND SPECIFICS ******/ 
      /* This array should have a 3 component row-vector for each 
parameter. The first element is the MINIMUM value of that parameter's 
search range, the second component is the MAXIMUM value of the search 
range, and the third component is the MINIMUM STEPSIZE for the parameter.  
E.g., '{0.0, 0.4, 0.001}' implies feasible search values of 0.0, 0.001, 
0.002, 0.003, ..., 0.399, 0.400; (400 possible search values for this 
parameter). 
The first row is associated with the first parameter in pnames[],  
the second row with the second parameter, etc.  
ADD ELEMENTS AS NEEDED.*/ 
double psearch[NUMPARAMS][3] = { 
      /* {Min, Max, Min Step}, */   
      {0.0, 0.4, 0.001},   /* search for param x1 */ 
      {0.0, 0.1, 0.001},   /* search for param x2 */ 
...}; 

  
 

double assessinfo[NUMCRITERIA][2] = { 
   /* BINARY? {Min, Max}. CONTINUOUS? {Target, trash} */ 
      {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41},  
      {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41}, {-0.41,0.41},  
      {-0.41,0.41}, {-0.41,0.41} 
   }; 

... 
 

The minimum and maximum value and minimum step size are used to define a grid of potential 

values for each parameterization.  The user must be sure that each increment is an integer 

step. That is, (max - min)/increment must be an integer.  In this example, the parameter 

search range for x1 is (0, 0.4) with a minimum step size of 0.001, coded as {0.0, 0.4, 0.001}. 

 

If the search uses a continuous error measure, the user must specify the objective targets where 



ParetoEvolve README  Last Edited: 6-Oct-08  

Joel_Reynolds@fws.gov  15 of 19 

the first number specifies that target and the second number is ignored. If the search is to use a 

binary error measure, the user must specify the objective target ranges where the first number 

specifies the minimum of a range and the second number specifies the maximum.  The objectives 

are all evaluated using binary error measures (BINARY = 1 below).  The acceptable interval for 

the first criteria, d1, is [-0.41, 0.41].  This is an unusual example in that the criteria all use the 

same target range. 

 

(iv) the number of parameters (NUMPARMS), the number of objectives (NUMCRITERIA), the type of 

discrepancy measure used to assess each criterion (binary or continuous) (BINARY), and 

how frequently to record the current search results (GEN_TO_PRINT)  (in UserSettings.h). 
… 

#define NUMPARAMS 6   /* number of parameters in model being assessed */ 

#define NUMCRITERIA 12    /* number of criteria used in assessment */ 

… 

#define BINARY 1   /* =1 if all discrepancy measures are binary,  

    =0 if all are continuous */ 

#define GEN_TO_PRINT 500 /* how often to print out intermediate Pareto  

   Frontier Archives ('Historic Pareto Frontiers'). */ 

#define GEN_TO_PRINT 25 /* how often to record current search results */ 

… 

If the search uses binary error measures, a criterion value is assessed as to whether or not it falls 

within that user-specific acceptable range (step iii above).  If so, it is assigned a value of 1, if not 

then it is assigned a value of 0. If the error measures are continuous, an individual's assessment is 

quantified by the coordinate distance between its criterion result and a criterion's target value 

(specified in step iii above). 

 

(v) If necessary (e.g., long pathnames) revise the array dimensions for critname and 

paretofilename in ParetoEvolve.h and pareto_main.c 

 

After making these changes to the ParetoEvolve code, the user must recompile all of the files 

(ParetoEvolve.h, UserSettings.h, UserArrays.h, pareto_main.c, pareto_update.c, pareto_breed.c, 

pareto_misc.c) to create the optimization search executable.   
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RUNNING THE PARETOEVOLVE CODE  

Open up a DOS window (Windows OS) or terminal window (Unix, Linux), move to the 

directory containing the ParetoEvolve.exe file, and enter either: 

• ParetoEvolve.exe   

to start the search at generation 0 and run through the maximum number of generations 

(GEN_NUM); 

• ParetoEvolve.exe  5 

for example to start the search at generation 5 and run through the maximum number of 

generations (GEN_NUM).  ParetoEvolve.exe  will look for the CRIT_OUT_CALL file and read 

it in, assuming it is the output from the 5th generation’s search. 

• ParetoEvolve.exe  5 120 

for example to start the search at generation 5 and run through generation 120, stopping 

after generation 120 (which is assumed less than GEN_NUM).  ParetoEvolve.exe will look 

for the CRIT_OUT_CALL file and read it in, assuming it is the output from the 5th 

generation’s search.  It will stop after having run the model simulations through the 120th 

generation of parameterizations.  

The model’s approximate Pareto Frontier and Pareto Optimal Set will be given in the final 
FRONTIER_CALL file. 

 

UNDERSTANDING THE OUTPUT FROM PARETOEVOLVE 

The output files saved by the CRIT_COPY_CALL command should be investigated for obvious 

signs of problems in the parameterization search, such as stagnation in the population members.  

 

The refinement of the search’s Pareto Frontier estimates can be investigated by exploring the 

Pareto Frontier files created in the folder set in the PARETO_PATH argument defined in step (ii) 

above.  The files are named ParetosetX, where X is a whole multiple of the GEN_TO_PRINT 

value defined in step (iv) above. 

 

Each ParetosetX file consists of variable length sections, one for each Pareto Group or set of 

parameterizations which produce the same assessment vector (Reynolds and Ford 1999).  When 

continuous error measures are used, each parameterization is (generally) its own group; when 
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binary error measures are used, groups may contain many parameterizations.  This is discussed 

further in Reynolds and Ford (1999) and Reynolds and Golinelli (2004). 

 

Each Group starts with the same marker row,  
                                   -999999.999 Assessment Vector 999999.999,  

followed by a row listing the criteria names then a row listing the group’s common assessment 

vector (evaluated criteria error measures) (Reynolds and Ford 1999).  This is followed by 

another marker row (see below), a row of the parameter names and criteria names, then a list of 

each parameterization in the group, one per row, along with their original criteria vectors.  For 

example, the following Pareto Frontier file contained a group that satisfied all but the criteria 

focused on each day’s last time period (d4, d8, d12) using binary error measures as the 

assessment vector was 

(1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0) =  

(True, True, True, False, True, True, True, False, True, True, True, False) =  

(Satisfied, Satisfied, Satisfied, Unsatisfied,…).   

The beginning of one of the Pareto Optimal parameterizations from that group is shown.   

 

Pareto Frontier: 

-999999.999 Assessment Vector 999999.999  

   d1   d2   d3   d4   d5   d6 

   d7   d8   d9   d10   d11   d12 

 

   1.00   1.00   1.00   0.00   1.00   1.00 

   1.00   0.00   1.00   1.00   1.00   0.00 

=============== Simulations ===============  

  x1  x2  x3  x4  x5  x6  d1  d2  d3  d4  d5   d6 

   d7  d8  d9  d10  d11  d12 

 0.35 0.090 … 

 

 

The separators (‘-999999.999 Assessment Vector 999999.999‘) allow for automatic file 

parsing using grep or awk-type commands. 
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MISCELLANEOUS NOTES  

ParetoEvolve assumes that all parameters are 'independent' and that the feasible search space is 

simply the Cartesian product of the individual parameter's search ranges. If this is not true, i.e., 

there are constraints or explicit relations among the feasible parameter values, then the model 

code must either: 

• have it's input section written in terms of 'independent' parameters from which the other 

parameters are explicitly calculated (with the constraints being implicitly incorporated 

into the transfer between parameter spaces, e.g. ParetoEvolve's � the model's parameter 

space),  or 

• check the feasibility of each parameterization generated by ParetoEvolve and, when an 

infeasible parameterization is found, either convert it into a feasible parameterization 

(somehow) or set it's criteria vector to some absolute worse value so that, implicitly, the 

infeasible parameter space is abandoned by the evolutionary optimization. 

The latter strategy should be avoided when possible so to minimize computer effort wasted on 

defining the feasible search space. 

 

ParetoEvolve assumes all parameters are floats (or doubles). When this is not true, the model 

code should read in floats then recast individual parameters to other types as necessary. 

 

It will be available via the MCmodeler interface (Steele-Feldman and Reynolds 2007) at 

http://faculty.washington.edu/joel/Software.html in late 2008.  That version eliminates the need 

for user modification and recompiling of ParetoEvolve, but restricts uses to models with 20 or 

fewer parameters and 20 or fewer model assessment criteria or outputs, nor does it support the 

use of run-time arguments discussed above. 

 

More information 
Further documentation, updates and examples can be found at: 

http://faculty.washington.edu/joel/index.html under Model Assessment or Software. 
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