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ABSTRACT: High-resolution profiles of vertical velocity obtained from two different surface-following autonomous plat-
forms, Surface Wave Instrument Floats with Tracking (SWIFTs) and a Liquid Robotics SV3 Wave Glider, are used to
compute dissipation rate profiles e(z) between 0.5 and 5 m depth via the structure function method. The main contribution
of this work is to update previous SWIFT methods to account for bias due to surface gravity waves, which are ubiquitous
in the near-surface region. We present a technique where the data are prefiltered by removing profiles of wave orbital ve-
locities obtained via empirical orthogonal function (EOF) analysis of the data prior to computing the structure function.
Our analysis builds on previous work to remove wave bias in which analytic modifications are made to the structure func-
tion model. However, we find the analytic approach less able to resolve the strong vertical gradients in e(z) near the sur-
face. The strength of the EOF filtering technique is that it does not require any assumptions about the structure of
nonturbulent shear, and does not add any additional degrees of freedom in the least squares fit to the model of the struc-
ture function. In comparison to the analytic method, e(z) estimates obtained via empirical filtering have substantially re-
duced noise and a clearer dependence on near-surface wind speed.
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1. Introduction

Turbulence in the ocean surface boundary layer modulates
the exchange of heat, momentum, and gases between the ocean
and atmosphere. Our understanding of the chemical and energy
balance across the air–sea interface is predicated on a careful ac-
counting of turbulent dissipation rate e(z) in the upper ocean
(Belcher et al. 2012). While e(z) often obeys classic “law of the
wall” boundary layer scaling within the mixed layer and under
steady wind forcing conditions [e(z) ~ z21], energetic surface
processes such as wave breaking, Langmuir turbulence, and
convective overturns can lead to strong near-surface (upper
1–10 m) enhancement and intermittency which is difficult to
predict (Terray et al. 1996). For example, studies on the impact
of breaking surface waves have shown e(z) may increase as rap-
idly as z22, but a wide range of values have been reported
(Gerbi et al. 2009; Thomson et al. 2016; Gemmrich 2010; Esters
et al. 2018). Other processes can suppress near-surface mixing,
such as diurnal surface heating (Sutherland and Melville 2015).
An added difficulty lies in referencing stationary measurements
to a moving sea surface (Thomson et al. 2016). Recent advances
in the application of autonomous surface-following platforms
have shown them to be a promising tool for measuring e(z) in
the very near surface under a wide range of forcing conditions
(e.g., Thomson 2012; Grare et al. 2021; Hughes et al. 2021). How-
ever, instrument motion and strong wave orbital velocities often
make it difficult to isolate turbulence in the surface-following ref-
erence frame. To that end, this manuscript provides an update

to the methodology employed by Thomson (2012) to estimate
e(z) from high-resolution (HR) acoustic Doppler current profiler
(ADCP) data obtained with Surface Wave Instrument Floats with
Tracking (SWIFTs). We seek to remove previously unaccounted
for bias in the estimate of e(z) due to platform motion and waves,
as well as expand the application of our methodology to
ADCP data collected from a Liquid Robotics SV3 Wave
Glider (Thomson et al. 2018).

Estimates of dissipation rate have commonly been derived
from ADCP data using Fourier analysis of high-frequency ve-
locity time series due to past difficulty in achieving high-spatial-
resolution measurements. That method requires the assumption
of a steady background velocity which moves isotropic turbulence
past the instrument, thereby converting time series to spatial se-
ries (the well-known “frozen-field” assumption). An advective
velocity is particularly difficult to define in the near surface due
to the presence of surface waves, strong wind driven shear and
other energetic surface currents. Recent advancements in the ap-
plication of pulse-to-pulse coherent methods of measuring veloc-
ity with ADCPs have enabled high-spatial-resolution velocity
measurements (“HR” mode; Shcherbina et al. 2018), which can
be used to estimate dissipation rate without needing to define an
advective velocity (Gargett 1999). This is particularly advanta-
geous for application to Lagrangian platforms, which are subject
to significant wave-induced motion with respect to the water
(Zippel et al. 2018).

Here we follow the structure function (SF) method of Wiles
et al. (2006), which treats profiles of velocity as independent
realizations of the spatial structure of turbulence, with no coher-
ent relation to the profile observed before or after. The method
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consists of least squares fitting (LSF) the second-order velocity
structure function D(r) to a theoretical model derived from
Taylor and Kolmogorov scaling theories, D(r) ~ er2/3. The
model is assumed to be valid over some limited range of scales r
within the inertial subrange. The SF method has typically been
applied to velocity data obtained with bottom-mounted and
moored ADCPs (e.g., Mohrholz et al. 2008; Lucas et al. 2014;
Sutherland and Melville 2015; McMillan et al. 2016; Scannell
et al. 2017; Guerra and Thomson 2017), while applications in the
very near surface have been rarer. Gemmrich (2010) estimated
e(z) in the surface 1 m by applying the SF method to ADCP data
collected from a ship-mounted frame. More recently, Thomson
(2012), Thomson et al. (2016), and Zippel et al. (2018) used the
SF method to estimate e(z) in the surface 0.5 m from upward-
looking pulse-coherent ADCPs mounted on SWIFT drifters.

The inherent challenge of the SF method is to isolate turbu-
lence from nonturbulent velocities. Unlike Fourier spectral
methods, which differentiate between these signals in frequency
and wavenumber space, nonturbulent velocity gradients contrib-
ute to D(r) at each scale. In the upper ocean, surface gravity
waves are the most common source of bias. Recently, Scannell
et al. (2017) introduced an analytic modification to the model of
the inertial subrange structure function to account for wave
bias. The authors demonstrated that the wave contribution goes
as r2, and can theoretically be separated from the turbulent
component by introducing a third term in the model propor-
tional to r2. They validated this modified SF method using veloc-
ity data collected with ADCPs moored at ;20, 30, and 50 m
depth, well outside the region of active wave breaking. No esti-
mates were made close to the surface because the broadband
ADCPs lacked the necessary resolution and their uplooking con-
figuration caused strong acoustic reflections in the shallowest
bins. The authors averaged over each 3-m profile to produce
time series of e at each ADCP depth. In the near surface, we are
interested in resolving vertical structure as e(z) can vary many or-
ders of magnitude over a few meters (Thomson et al. 2016). Pre-
vious studies utilizing the SF method to estimate e(z) using
SWIFT drifters did not attempt to correct for bias due to surface
waves (Thomson 2012; Thomson et al. 2016; Zippel et al. 2018).
Zippel et al. (2018) used cross-spectra between velocity data
and an onboard IMU to remove bias due to platform motion.
However, the platform motion turns out to be a secondary
concern in the SF method as the motion mostly affects time-
domain calculations.

In this manuscript we present updates to the methodology
used by Thomson (2012), Thomson et al. (2016), and Zippel
et al. (2018) to compute dissipation from pulse-coherent HR
ADCP data obtained in the near surface with SWIFT drifters.
We refine the structure function algorithm, introduce a new
method to account for bias due to nonturbulent shear, and ex-
pand the application to data collected with a surface-following
SV3 Wave Glider. In contrast to previous SWIFT studies, the
data used here are in a downward-looking orientation and
span ;0.5–5 m depth. The increased profile range enables a
clear picture of the impact of wave bias on the structure function
in close proximity to the surface. Our updated methodology
builds upon the method introduced by Scannell et al. (2017) to
account for wave bias; however, we explore an alternative in

which low-mode wave profiles computed from empirical orthog-
onal functions (EOFs) of the data are removed prior to comput-
ing the structure functions. This new approach is motivated by
our desire to resolve the vertical structure of dissipation rate,
which we expect to predominantly follow law-of-the-wall scaling
(z21), except close to the surface, where e(z) may be impacted
by wave effects. Resolving e(z) necessitates small averaging win-
dows and thus limits the number of points included in the least
squares fit. Our results indicate that the empirical method of iso-
lating turbulent velocity produces similar results to the analytic
method introduced by Scannell et al. (2017), but with signifi-
cantly reduced noise and lower mean-square percent error be-
tween the model and the data. Most importantly, these new
dissipation estimates exhibit a clear dependence on near-surface
wind speed over the broader SWIFT and Wave Glider datasets.
This effect is heavily obscured by noise in the estimate obtained
via the analytically modified SF method.

We begin with an overview of the inertial subrange struc-
ture function theory in section 2, followed by a description of
the data in section 3. In section 4, we describe our methodol-
ogy in detail using data from a single ADCP burst to illus-
trate. In section 5 we present detailed dissipation estimate
results from that burst, and then apply our methodology to
the broader mission data from both platforms. In section 6 we
discuss the results and explore sensitivity to choices made in the
processing. In section 7 we summarize and give recommendations
for analysis.

2. Theory

In the absence of analytic descriptions of turbulence, ocean-
ographers presently rely on a statistical model put forward by
Taylor (1937) and Kolmogorov (1941). This model is predi-
cated on the existence of an “inertial subrange” in which the
rate of kinetic energy transfer between different scales of mo-
tion (e) is a constant independent of scale and viscosity. From
this assumption, Taylor used dimensional analysis to argue
e ~ u(r)3r21 in the inertial subrange, where u(r) is the charac-
teristic velocity of turbulent eddies at scale r.

The method used to estimate e(z) in this study relates Taylor’s
theoretical scaling to measurements of the second-order velocity
structure function, D(z, r)5 h[u(z2 r/2)2 u(z1 r/2)]2i, i.e.,
the ensemble-average squared velocity difference over a separa-
tion scale r centered at vertical position z. If the energy at depth
z and scale r is predominately due to turbulent eddies, Taylor’s
scaling suggests

D(z, r) 5 C2
n e(z)2/3r2/3: (1)

Here C2
n is a constant empirically determined to be ;2.1

(Wiles et al. 2006). Dissipation rate can then be estimated by
least squares fitting the observed velocity structure function at
each depth to a linear function of the form

D(r) 5 Ar2/3 1 N (2)

and taking e(z)5 [A(z)/C2
n ]3/2. The model intercept N gives

the uncertainty in u2, assumed to be proportional to the in-
strument noise at each depth.
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This model of inertial subrange turbulence holds approxi-
mately in the deep ocean away from boundaries and in the
presence a steady mean flow, but near the surface there are
likely high-frequency, nonturbulent velocity gradients which
contribute to D. The most likely source of bias is energetic
surface gravity waves with small vertical decay scales (i.e.,
short waves). Waves may also indirectly contribute to bias if
the wave-induced platform motion is significant in the pres-
ence of otherwise steady background shear. Scannell et al.
(2017) recently developed an analytic framework to account
for wave bias in D(r): if nonturbulent velocity gradients are
sufficiently linear on the spatial scales of interest, their contri-
bution to the structure function will go as r2. This modified
model of the structure function accounts for both turbulent
and nonturbulent contributions by the addition of a third term:

D(r) 5 Ar2/3 1 B(r2/3)3 1 N: (3)

The original relationship between e and A is preserved, and
e(z) may be determined in the same fashion by fitting the ob-
servedD(r) to Eq. (3) at each depth.

3. Data

To demonstrate the robustness of the SF method of estimat-
ing turbulence from ADCP data collected in a surface-following
reference frame, we apply the method to data obtained with
two different platforms: SWIFTs (Thomson 2012) and a Liquid
Robotics SV3 Wave Glider (Hine et al. 2009; Thomson et al.
2018). The SWIFTs and Wave Glider were equipped with the
same ADCPs (Nortek Signature 1000), but operated under very
different environmental conditions. The SWIFTs were deployed
in the Southern California Bight in late March 2017 during the
Office of Naval Research “Langmuir Circulation” Departmental
Research Initiative (LC-DRI) field experiment. TheWave Glider
was deployed in the Southern Ocean in November 2019 during
a 4-month survey of the Antarctic Circumpolar Current fronts
within Drake Passage. We apply our methodology to subsets of
the data collected away from strong fronts and during periods
with near-surface wind speeds less than 15 ms21, such that we
expect dissipation rates to be primarily a function of wind speed.

a. ADCP configuration

The Nortek Signature 1000 has four slanted beams operat-
ing in broadband mode, and a fifth vertical beam which oper-
ates in an interleaving pulse-coherent HR mode (Figs. 1a,c).
Only the fifth beam is used to compute dissipation rate, so we
do not discuss the broadband data further in this manuscript.
In HR mode, a pair of coherent short pulses separated by a
lag time much longer than the pulse duration is emitted each
ping (a “pulse pair”). Along-beam velocity is then a function
of the phase of the complex correlation of the pulse-pair
echo, lag time, the carrier frequency of the pulses, and the lo-
cal sound speed [Eq. (1) in Shcherbina et al. 2018]. Although
the precise temporal and spatial resolution is user defined,
HR mode is designed to produce profiles of along-beam ve-
locity with bin sizes of a few centimeters at frequencies
greater than 1 Hz. For this study, ADCPs on both platforms

were configured to sample in 0.04 m bins at 8 Hz over 8-min
“bursts” (Table 1). The range of the center beam in HR mode
was 5.12 m as configured on the SWIFTs, and 3.84 m on the
Wave Glider. The depth of the transducer on both platforms
was 0.2 m. Combined with a blanking distance of 0.1 m, the
effective depth ranges of the ADCPs were 0.3–5.42 m and
4.14 m on the SWIFTs and Wave Glider, respectively. The
ADCPs on board the SWIFTs were configured to burst sam-
ple every 12 min. The ADCP on board the Wave Glider was
configured to burst sample at the top of every hour.

Prior to analysis, velocity data were quality controlled by
removing velocity spikes which occur due to phase ambiguity
inherent in the pulse-pair coherence method of determining
velocity (Shcherbina et al. 2018). Spikes are identified in each
ping using a threshold maximum deviance from a 1-m median
filtered profile, and compose anywhere from 10% to 80% of
the data depending on the environmental conditions (i.e., high-
or low-scattering environments). In addition to removing indi-
vidual data spikes, entire pings are removed if the standard

FIG. 1. Instrument schematics for the (a) SWIFT drifters and
(c) Liquid Robotics SV3 Wave Glider, as well as (b) along-beam
velocity frequency spectra computed from a single 8-min burst of
data obtained from a SWIFT-mounted Signature 1000 ADCP. Profile
ranges were 5.12 and 3.84 m on the SWIFT and SV3, respectively.
ADCP depth bins were 0.04 m on both platforms. Velocity frequency
spectra in (b) are colored by range from the transducer (red colors
are closer), and the black dotted curve shows the spectra of the instru-
ment vertical velocity (i.e., platform motion). The black dashed line
gives an example theoretical slope for turbulent velocity spectra, here
corresponding to e 5 1024 m2 s23 and assuming an advective velocity
of 0.25 m s21 (the drift velocity of the SWIFT). Velocity variance at
all depths is dominated by a broadband peak around 0.5 Hz due to
surface gravity waves and instrument noise dominates frequencies
greater than 1 Hz. Energy increases with distance from the transducer
because velocity here is relative to the ADCP/SWIFTmotion.
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deviation of the filtered velocity profile exceeds 0.01 m s21, typi-
cally a symptom of excessive spiking. Additional details of the
despiking routine are given in appendix A.

b. Example data

An example 2 min of quality-controlled ADCP data from
a single 8-min burst obtained from a SWIFT drifter is given in
Fig. 2. Instrument orientation (pitch and roll), acoustic back-
scatter amplitude and pulse-pair correlation are shown in ad-
dition to the along-beam velocity. The tilt of the instrument
varies up to 308, but with a standard deviation angle from the
vertical of just 108 (Fig. 2a). Corresponding vertical displace-
ments are 1 m at the base of the profile, though we note this
does not affect the along-beam bin spacing. Acoustic back-
scatter amplitude is highest near the transducer and charac-
terized by strong intermittency every ;20–30 s (Fig. 2b).
Weaker pulses in amplitude with a period of about 1 s are due
to the SWIFT bobbing at its natural frequency. Pulse-pair echo
correlation is 85% on average, but randomly drops below 50%
over an entire profile (Fig. 2c). Pings with correlation dropout
are typically characterized by a high percentage of data spikes
and are discarded in our despiking routine (appendix A). In this
example 10% of all pings in the burst are discarded. Along-
beam velocity is O(0.1) m s21 due to a combination of waves
and instrument bobbing (Fig. 2d). However, a simple 1-m

moving Hann window filter applied to each velocity profile re-
veals clear fine-scale structure in the data (Fig. 2e). The high-
passed velocity is O(0.01) m s21, an order of magnitude weaker
than the ambient waves.

Velocity frequency spectra computed from the example
burst data are dominated by waves, platform motion, and
noise (Fig. 1b). Spectra are plotted as a function of range from
the transducer (colored lines), and the spectrum of vertical in-
strument velocity obtained from an onboard inertial motion
unit is overlaid in black (i.e., platform motion). Spectra at
each depth are dominated by a broadband peak from 0.1 to
1 Hz due to surface gravity waves. Because velocities mea-
sured by the ADCP are relative to the motion of the SWIFT,
energy increases with distance from the transducer due to
wave shear. This depth dependence disappears around 1 Hz,
the natural frequency of the SWIFT, as vertical platform mo-
tion with respect to the water (i.e., bobbing) introduces a
strong relative velocity independent of distance from the
transducer. We note that the use of frequency spectra to esti-
mate dissipation rate would require both the removal of wave
velocities from the data and an accurate characterization of an
advective velocity for each depth bin. However, even if wave
velocities could be fully characterized, the ping-to-ping hori-
zontal and vertical displacement of each ADCP bin due to the
strong platform motion (up to 1 m at the base of the profile)

TABLE 1. ADCP configurations as deployed on the SWIFTs and Liquid Robotics SV3 Wave Glider.

Signature 1000 burst sampling configurations

Platform Bin size (m) Range (m) Depth (m) Rate Hz) Duration (min)

SWIFT 0.04 5.12 0.2 8 8
Wave Glider 0.04 3.84 0.2 8 8

FIG. 2. Example ADCP data collected from a SWIFT drifter. Shown are (a) instrument pitch and roll, (b) backscatter amplitude,
(c) pulse-pair correlation, (d) along-beam velocity, and (e) 1-m high-passed along-beam velocity. The velocity data have been despiked
(appendix A). Surface gravity waves and the bobbing of the SWIFT at its natural frequency dominate the along-beam velocity variance,
but fine-scale structure is evident in the high-passed data. Only 2 min of the 8-min burst are shown here for clarity.
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likely violates the coherence of the turbulent velocity observa-
tions in time. This motivates treating velocity profiles as inde-
pendent spatial measures of the turbulence, rather than as
temporal data. We discuss problems with using spectral meth-
ods further in appendix B.

4. Methodology

In this section we provide a detailed description of the meth-
odology used to compute e(z) from HR pulse-coherent ADCP
velocity data, using the example burst data shown above to illus-
trate. We begin by computing EOFs of the data, which we use to
filter out wave orbital motions. We demonstrate that a few of
the most energetic EOFs have characteristics of surface gravity
waves, while the weaker EOFs have characteristics of inertial
subrange turbulence. We then describe the algorithm used to
compute the second-order velocity structure functions at each
depth and compare characteristics of structure functions derived
from the unfiltered velocity, EOF filtered velocity, and a spatial
high-pass filtered velocity. We follow with details of the least
squares fitting algorithm, and present quality metrics available to
assess the validity of the subsequent dissipation rate estimates.

a. Empirical wave filtering

As described in section 2, nonturbulent wave orbital velocities
can contribute substantially to the total observed shear near the
surface and create bias in dissipation rates estimated from the
velocity structure function. Here we describe a method to sepa-
rate wave orbital velocities from the turbulent signal using
EOFs of the data. EOF analysis can be a useful tool to describe
the dominant statistical patterns of variability within a set of ob-
servations (Hannachi et al. 2007). The primary goal of EOF
analysis is to reduce the data into a few “modes” that contain a
bulk of the observed variance. EOFs are eigenvectors (E) of the
data–data covariance matrix (C) with corresponding eigenval-
ues (e) defined by the familiar eigenvector equation

CEi 5 eiEi, (4)

where i 5 1 … N, the number of data vectors (each of equal
length M). Here, the data are the vertical velocities obtained
each during each ADCP burst, an N 3 M matrixW′, such that
N is the number of ADCP bins and M is the number of pings.
A time-mean velocity profile (W0, N 3 1) is removed from the
data prior to computing the covariances (i.e., W′ 5 W 2 W0).
Thus, C is the N 3 N matrix of temporal covariances be-
tween all possible ADCP bin pairs, with N associated ei-
genvectors (Ei) and eigenvalues (ei). For each EOF, Ei is
an N 3 1 unit vector giving relative magnitude at each ver-
tical position, and ei is a scalar giving the fractional vari-
ance of the data contained in that EOF. Because C is
symmetric, the Ei are orthogonal. Finally, the time-varying
amplitude (ai) of each EOF can be obtained by projecting
Ei back onto the original velocity data,

ai 5 ET
i W

′, (5)

and the original data may be reconstructed from the EOFs as

W 5 ∑
N

i51
Eiai 1 W0: (6)

From Eq. (6) it is clear that EOF analysis restructures the data
as a linear superposition of vertical modes with time varying am-
plitude. For example, the vertical structure and variance of the
three most energetic EOFs of the example burst velocity data
(section 3) are shown in Fig. 3. These EOFs resemble low-mode
harmonics with no, one, and two zero crossings. Subsets of
EOFs can be used to reconstruct specific features of interest in
the data. We emphasize that EOFs are statistical, rather than
true physical, modes and that they are orthogonal by definition.
We discuss subsequent strengths and limitations of the EOF de-
composition in section 6b.

Full inspection of all EOFs of the example burst data reveal
the most energetic EOFs have characteristics expected of sur-
face gravity waves, while all lower energy EOFs have character-
istics of inertial subrange turbulence (Fig. 4). The first EOF
contains 97% of the velocity variance (e1 5 0.97). As noted
above, its eigenvector (E1) is a profile with no zero crossings
and elevated shear near the surface (blue lines in Figs. 3 and
4a). The power spectrum of its time varying amplitude (a1) is
dominated by a broadband peak from 0.1 to 1 Hz, consistent
with motion spectra obtained from the onboard IMU (Fig. 4c).
As expected for surface gravity waves, the vertical wavenumber
spectrum of the first EOF has a strong peak at the lowest wave-
numbers and very little comparative energy at wavenumbers
higher than ;1 m21 (Fig. 4d). The second and third EOFs are
similarly low mode, with one and two zero crossings, and their
frequency spectra are dominated by energy in the wave band
(green and magenta lines, respectively, in Figs. 3 and 4). In con-
trast to these first three EOFs, frequency spectra of all subse-
quent EOFs are comparatively flat with no peaks in the wave
band (yellow–purple gradient colors in Fig. 4). Their vertical

FIG. 3. Three most energetic EOFs of along-beam velocity com-
puted from the example burst velocity data (Fig. 2). Shaded re-
gions indicate standard deviation of the EOF at each depth. The
black horizontal bar in each plot is equal to 0.05 m s21 to show the
different absolute magnitudes of the EOFs (note the change across
each plot).
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wavenumber spectra are dominated by broadband peaks at pro-
gressively higher wavenumbers, consistent with an increasing
number of zero crossings in each eigenvector. A striking feature
of these higher-mode EOFs is that their energy decreases as
;k25/3, a hallmark of inertial subrange turbulence (black dashed
lines in Fig. 4d).

We proceed to construct empirical wave profiles using the
first three EOFs, which have characteristics of surface gravity
waves (we explore sensitivity of our results to this choice in
section 6b). The reconstruction is achieved by multiplying the
eigenvectors of these EOFs by their time varying amplitudes
and adding them together [Eq. (6), only using i 5 1:3]. The re-
sultant wave profiles are then subtracted from the data to isolate
the turbulent component of velocity (Figs. 4e,f, respectively).
Turbulent velocities are O(0.01) m s21, with coherent structures
of variable size which persist up to tens of seconds.

It is evident that removing the low-mode empirical wave
profiles from the data is similar in effect to performing a spa-
tial high-pass filter. Figure 5 compares the two methods of fil-
tering using an example profile. The two filtered velocity
profiles exhibit the same fluctuations at small scales, but there
are O(1) m gradients present in the EOF-filtered velocity
(red; w*), which were removed by the high-pass spatial filter
(cyan; w1), particularly near the surface. As will be shown in
the next section, this means the spatial filter places an upper
limit on the separation scales used to fit the velocity structure
function to Eq. (2).

b. Ensemble-average structure functions

Here we provide a general description of how an “ensemble-
averaged” second-order velocity structure function D(r) is com-
puted from velocity data. This algorithm applies to all versions
of velocity, filtered or unfiltered. The first step in the process is
to generate an N 3 N matrix dWj of velocity differences be-
tween all possible data-pair combinations from each of the M
velocity profiles. HereM is the number of pings in the ensemble
(i.e., burst) and j 5 1 … M. As in section 4a, N is the number
of ADCP range bins. If each velocity profile is an N 3 1 vector
wj, then dWj 5 (wj 2 w′

j ), an N 3 N antisymmetric matrix. We
attempt to account for any data spikes which have not been fil-
tered during the initial QC process by removing points from the
ensemble outside five standard deviations from the mean of the
distribution (i.e., standard deviation in dWj along the M dimen-
sion). The separation scale and mean vertical position of each
data pair in dWj are given by the N 3 N matrices R 5 z 2 z′

and Z 5 (z 1 z′)/2, respectively, where z is the N 3 1 vector of
ADCP bin depths. Next, a single N 3 N burst-averaged struc-
ture function matrix is obtained by taking the mean over the
ensemble of dW2

j , i.e., D(z, r)5 (1/M)∑M
j51dW

2
j . Note that

while dWj are antisymmetric, the squaring of dWj implies
D(z, r) is a symmetric matrix. Finally, Z is used to bin D(z, r)
and R to the original ADCP bin depths. This step yields a struc-
ture function vector D(r) and scale vector r at each depth in the
profile. Hereafter, we drop the explicit dependence on r from

FIG. 4. Empirical orthogonal functions (EOFs) of the example burst data. Shown are the (a) EOF eigenvectors, (b) percent velocity var-
iance described by each EOF, (c) power spectral density of the time varying amplitude of each EOF, and (d) and wavenumber spectra of
each EOF. In (a) and (b) and and (c) and (d) only the first 30 and 64 EOFs are shown for clarity, respectively. The black dotted line in
(c) is the instrument motion spectra, as in Fig. 1b. The first three EOFs have characteristics of surface gravity waves, with low vertical wave-
numbers and broadband frequency peaks in the wave band [blue, green, and magenta bars and lines in (a)–(d)]. Subsequent EOFs have rel-
atively flat frequency spectra, and broadband peaks in wavenumber spectra at progressively higher wavenumbers as their energy decreases.
The slope produced by these descending peaks corresponds to k25/3, consistent with inertial subrange turbulence. The first three EOFs are
used to reconstruct (e) wave profiles, which are then removed from the data to reveal (f) the EOF-filtered turbulent velocity.
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the notation, simply using D to signify the (vector) structure
functions used to estimate dissipation rate at each depth.

Consistent with the k25/3 wavenumber distribution of the tur-
bulent EOFs, structure functions derived from the EOF-filtered
velocity (denoted D*) increase with separation scale as ;r2/3 up
to 1 m, where they exhibit local maxima (Fig. 6a). The maxima
may reflect an upper limit to the inertial subrange, but is likely
impacted by our choice of which EOFs to remove when isolat-
ing w*. Velocities D* are overall strongest near the surface and
decrease with depth; D* in the shallowest few bins have slopes
slightly steeper than r2/3. At the maximum possible separation
scale at each depth, D* are much steeper than r2/3. These scales
necessarily include the ADCP bins closest to the transducer. It
is possible those bins contain instrument noise which has not
been adequately filtered by our despiking routine or that they
retain some wave shear. Alternatively, near-surface turbulence
may not conform to the isotropic assumptions of Kolmogorov
theory. Structure functions derived from the high-pass filtered
velocity (denotedD1) are similar toD* (Fig. 6b).D1 exhibit an
r2/3 dependence at fine scales, decrease in magnitude with depth
and increase rapidly at the greatest separation scales. However,

D1 have a uniform local maxima at r 5 0.5 m, which has been
imposed by the spatial filter.

Structure functions computed from the unfiltered velocity
(denotedD) exhibit no local maxima and are steeper than r2/3

throughout, but with similar overall depth dependence to the
prefiltered velocity structure functions (Fig. 6c). Slopes of D
are slightly steeper than r2/3 at small separation scales and ap-
proach r2 with increasing scale (black dashed line) as pre-
dicted by Scannell et al. (2017). In theory, D is expected to be
a linear combination of these two components at all scales,
and thus separable by applying Eq. (3) in lieu of Eq. (2).
However, the similarity between r2 and r2/3 at fine scales em-
phasized by Fig. 6c foreshadows limitations on the application
of Eq. (3) when using small fitting ranges.

The divergence of D* and D1 from r2/3 at separation scales
of ;1 and 0.5 m, respectively, emphasizes the importance of
limiting the range of scales included in the least squares fit. In-
cluding scales which are too large will likely result in an un-
derestimate of the dissipation due to the decreased slope in
D* and D1 induced by their local maxima. Further, a major
strength of the structure function method is the ability to

FIG. 5. (a) Example velocity profile produced by a single ADCP ping compared with a 1 m smoothed profile and
the empirical wave profile computed from the first three EOFs of the example burst data (black, cyan, and red lines,
respectively) and (b) the corresponding high-pass and EOF-filtered velocity profiles for this ping. Differences between
the two methods of filtering are strongest near the surface, where the spatial high-pass filter underestimates the near-
surface shear of the wave.
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obtain localized estimates of dissipation rate. An increase in
the separation scale at any depth necessarily reduces vertical
resolution, and risks performing the LSF over a range in
which e is not uniform. This is especially important close to
the ocean surface, where vertical gradients in dissipation are
expected to be strongest. The reason to consider including
greater separation scales when fitting Eq. (2) or Eq. (3) to the
structure function is to reduce error in the fit (by increasing
the number of points). The impact of varying the maximum
separation scale used in the LSF is explored in section 6c.

c. Least squares estimate of dissipation rate

As described in section 2, we compute profiles of dissipa-
tion from each ADCP burst by least squares fitting the struc-
ture function at a given depth to the model D 5 Ar2/3 1 N
[Eq. (2)], with an option to include a third term to account for
nonturbulent wave orbital shear analytically [Br2 in Eq. (3)].
The fit is performed over positive r only, as the structure func-
tion is the same for positive and negative separation scales.
The LSF should be limited to a range of scales assumed to be
within the inertial subrange, but the practical considerations
described in the previous section suggest stricter limits are
likely necessary. A least squares estimate of dissipation within
each depth bin is then given by e 5 (A/C2

n )3/2, where C2
n is a

constant empirically determined to be ;2.1 (Wiles et al.
2006).

A consideration when performing the LSF is the effective
resolution of the resulting dissipation rate profile. The resolu-
tion is in part dictated by the size of the depth bins used to
convert the matrix D(z, r) into N vectors D(r) (see previous
section). This is not to be confused with the choice of fitting
range (i.e., which r are used in the LSF at each depth), al-
though both will impact the resolution of the profile. Here we
use vertical bins which correspond to the original ADCP bin
size in an effort to preserve the vertical resolution of the

velocity data, and limit the LSF fitting range to r # 0.16 m.
This means there are four points included in the fit at each
depth. Our choice of fitting range is somewhat arbitrary, ex-
cept that visual inspection of the structure functions (Fig. 6)
suggests they deviate from the Kolmogorov model at higher
separation scales. Four points provide an overdetermined fit
to Eq. (2), and thus an estimate of the MSPE. When least
squares fitting D to Eq. (3), we increase the fitting range to
r # 0.24 m to account for the additional degree of freedom in
the modified model. This maintains the same proportion of
data to unknowns as when using Eq. (2). We explore the im-
pact of varying rmax in section 6c.

d. Quality metrics

To help gauge the validity of each dissipation rate estimate
we compute three quality metrics. The first is a best-fit power
law to the velocity structure function, D ~ rn. The power law
is obtained by performing a linear regression on the loga-
rithms of r and D [i.e., on log(D) 5 n log(r) to obtain n]. This
metric (n) is used to evaluate how closely the observed struc-
ture function conforms to the Kolmogorov model [Eq. (2)], in
which n 5 2/3. The second metric is the estimate of ADCP
noise given by the second term in Eq. (2), N5 2s2

N . We ex-
pect s2

N to be no greater than the a posteriori estimate derived
by Shcherbina et al. (2018), which is proportional to the in-
verse pulse-pair correlation squared [their Eq. (11), denoted
here as s2

S18]. The third quality metric is the mean-square per-
cent error (MSPE) of the LSF to Eq. (2), given by

MSPE 5 h dm 2 d
dm

[ ]2i (7)

at each depth. Here d and dm are the observed data used in the
LSF and the subsequent model data, respectively. The angle

FIG. 6. Second-order velocity structure functions D(r) plotted against separation scale (here given as r2/3) as computed from the
(a) EOF-filtered velocity (D*), (b) 1 m high-pass filtered velocity (D1), and (c) unfiltered velocity (D), colored by range from the ADCP
transducer (i.e., depth bin). The two filtered velocity structure functions are very nearly proportional to r2/3 at small separation scales,
while the full velocity structure function is steeper than r2/3, approaching r2 beyond r5 1 m.
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brackets indicate an average over all points in the fit. When e is
computed using the analytically modified model [Eq. (3)] these
quality metrics are computed after first removing the resultant
shear term (Br2) from D, and then refitting the Kolmogorov
model [Eq. (2)] to the residual, i.e., toD′ 5 D2 Br2.

5. Results

In this section we present dissipation rate profiles obtained
via the methodology described in section 4. First, we examine
detailed results from the example burst, comparing four
different estimates of e(z). The first three estimates are ob-
tained by least squares fitting the classic Kolmogorov model
[Eq. (2)] to the unfiltered, EOF-filtered, and high-pass filtered
velocity SFs (denoted e, e*, and e1, respectively). We expect e
to be biased due to the retained wave orbital velocities in D.
The fourth estimate is obtained by least squares fitting the

analytically modified SF model [Eq. (3)] to the unfiltered
velocity SF (denoted e′). Table 2 summarizes the different
versions of dissipation rate and how they were calculated. We
follow this detailed examination with dissipation rate esti-
mates from the broader SWIFT and Wave Glider datasets.

a. Profiles of dissipation rate

Profiles of dissipation rate computed by fitting the Kolmogo-
rov model [Eq. (2)] to the two filtered velocity SFs are in close
agreement; e* and e1 decay in proportion to z21, as predicted
by classic law-of-the-wall scaling (red and cyan lines in Fig. 7a).
Values decrease from;1025 m2 s23 at 1 m to;53 1027 m2 s23

at 5 m depth. Above 1 m, e* and e1 decay more rapidly than
z21 away from the surface, increasingly precipitously by an order
of magnitude in the shallowest five bins. In comparison to these
estimates, e computed by fitting Eq. (2) to the unfiltered velocity
SF is biased high, as expected due to the contribution from wave

TABLE 2. Lookup table of the different symbols used to describe e(z) estimates obtained via the different processing methods
described in section 4.

Summary of dissipation rate estimate versions

Symbol Name Method

e Unfiltered LSF Eq. (2) to unfiltered velocity SF (D, derived from w)
e* EOF filtered LSF Eq. (2) to EOF-filtered velocity SF (D*, derived from w*)
e1 High-pass filtered LSF Eq. (2) to HP-filtered velocity SF (D1, derived from w1)
e′ Analytic LSF Eq. (3) to unfiltered velocity SF (D, derived from w)

FIG. 7. (a) Profiles of dissipation rate obtained from least squares fitting the EOF-filtered, high-pass filtered, and unfiltered velocity
structure functions to Eq. (2) (red, cyan, and gray lines), as well as the unfiltered velocity structure function to Eq. (3) (black line). For
comparison, the thin dashed and dotted black lines in (a) are curves corresponding to e ~ z21 and z22, respectively. Also shown are the
corresponding quality metrics: (b) the best-fit power law to each structure function, (c) the estimate of ADCP noise given by the fit, and
(d) the mean-square percent error (MSPE) of the fit. In (c), the absolute value of the ADCP noise estimate is plotted to avoid the problem
of taking a logarithm of a negative value, but negative values are indicated with open circles.
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shear (gray line). The wave-biased estimate also decays more
rapidly than the filtered estimates, approximately z22 over
the entire profile. Dissipation rate computed by fitting the
analytically modified SF model [Eq. (3)] to the unfiltered ve-
locity e′ appears to be unbiased and in close agreement with
e1 and e*, although with discernibly greater along-beam vari-
ance (black line).

At depths greater than 1 m, the best-fit power laws to D*,
D1, and D′ are all very nearly r2/3. Corresponding estimates of
ADCP noise from the LSF are an order of magnitude weaker
than predicted by s2

S18, but increase with depth in proportion to
the inverse burst-mean pulse-pair correlation squared as ex-
pected (black dashed line in Fig. 7c). The adherence of these
metrics to their expected values is quantitatively reflected in the
low MSPE of the LSF to D*, D1, and D′, which is less than
10% below 1 m depth. The three quality metrics suggest our es-
timates of e from all three methods are unbiased below 1 m.

Above 1 m, the quality metrics suggest all versions of e are
unreliable. The best-fit power laws to D* and D1 rapidly
increase toward the surface, approaching r2. These steep SF gra-
dients generate large, nonphysical, negative estimates of the
ADCP noise in the LSF (empty circles Fig. 7). MSPE increases
rapidly above 0.5 m, but only exceeds 10% in the shallowest
four depth bins. The convergence of e* and e1 and their corre-
sponding quality metrics in the upper 1 m to the values given by
fitting the wave-biased D to Eq. (2) suggests that retained wave
shear may be contributing to bias at depths shallower than 1 m.
However, this inference is at odds with the results of applying
the modified SF method, which we expect to account for wave
shear. Instead, the best-fit power law toD′ also increases rapidly
from r2/3 to r2, the corresponding ADCP noise estimate is

negative, and the MSPE exceeds 10%. These characteristics
suggest that the near-surface bias in e is either due to poor
ADCP quality close to the transducer, or that turbulence ob-
served in this depth range does not support the statistical as-
sumptions of Kolmogorov theory.

b. Application to SWIFT and Wave Glider datasets

Application of the structure function methodology to the
broader SWIFT and Wave Glider datasets reveals a clear re-
lationship between dissipation rate and near-surface wind
speed (Figs. 8 and 9). Shown in each are e* derived from the
EOF filtered velocity, colored by 1 m wind speed. As in the
example burst, the three most energetic EOFs of each burst
have been used to construct a wave profile which is removed
from the data. Here we have quality controlled the dissipation
rate estimates by applying a maximum allowed MSPE of 10%.
The primary consequence of this threshold is to remove bins
in the very near surface, although the precise depth above which
the dissipation rates become unreliable varies across individual
profiles. In total there are 347 profiles from the SWIFTs and
388 profiles from theWave Glider.

In both datasets, dissipation rate increases in magnitude with
increasing wind speed and profiles follow ;z21, except very
close to the surface (z , 1 m) where the profiles are steeper.
When referring to vertical profiles, by “steeper” we mean has a
stronger gradient in the vertical. This is clearest at wind speeds
greater than ;5 m s21. Wind speeds ranged from 1 to 12 ms21

in the Southern California Bight, and corresponding e* ranged
from;1029 to 1025 m2 s23 in the upper few meters. Dissipation
estimates corresponding to especially weak winds (less than
5 m s21) are substantially nosier than those corresponding to

FIG. 8. Profiles of dissipation rate obtained by applying the SF method to EOF-filtered velocity data obtained from
SWIFT drifters in the Southern California Bight in March and April of 2017. Profiles of e are colored by 1 m wind
speed. Gray dotted lines show e ~ z21. The forcing conditions during the observation period are summarized by histo-
grams of wind speed (gray), wave age (blue), and Langmuir number (green).
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strong winds, but still exhibit sorting based on wind speed.
Wind speeds in the Southern Ocean ranged from 5 to 15 m s21;
thus, there are no low-wind estimates of dissipation rate in the
Wave Glider dataset. In general, e* estimates from the Southern
Ocean are weaker than those obtained in the Southern Califor-
nia Bight at the same wind speeds. Histograms of wave age sug-
gest that these differences may be due to the comparatively
young seas in the Southern California Bight. Turbulent Lang-
muir numbers, (La*) during both sets of observations were
greater than 1. Here La* is defined as the square root of the

ratio of friction velocity to Stokes drift. Friction velocity has
been estimated from the observed wind speed assuming a classic
drag law, and Stokes drift estimated from the observed peak
wave period and frequency. However, La* were lower on aver-
age in the Southern California Bight and so conditions may have
been more favorable to Langmuir overturning there as well.

Dissipation profiles derived from the high-pass filtered velocity
(e1) are very similar to e*, except in the upper 1 m (Fig. 10b).
We use data from the Southern California Bight to compare the
different methods of estimating e due to the greater range of

FIG. 9. As in Fig. 8, but for the Wave Glider data collected in the Southern Ocean.

FIG. 10. Comparison between the different methods of estimating e over the entire SWIFT dataset obtained in the Southern California
Bight using the (left) EOF-filtered velocity, (center) high-pass filtered velocity, and (right) unfiltered velocity. The two prefiltered esti-
mates are largely the same, with clear wind sorting. The unfiltered estimate is substantially nosier, which obscures much of the wind sort-
ing at depth and at low wind speeds.
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wind speeds observed there. Profiles of e1 are steeper than e*
near the surface, deviating from z21 at increasing depth with de-
creasing wind speed. In contrast to e* and e1, dissipation de-
rived from the unfiltered velocity using the modified SF method
(e′) are considerably nosier and not as neatly sorted by wind
speed (Fig. 10b). There is almost no discernible wind speed
dependence at the base of the profile. The mean MSPE of the
analytically modified LSF to the unfiltered velocity is 12%, com-
pared to 5% for both the EOF-filtered velocity and 1-m high-
pass filtered velocity derived estimates.

6. Discussion

In this section we discuss our results before making final
recommendations for analysis. We compare dissipation estimates
which result from prefiltering the velocity data to remove wave
shear with those from the analytically modified SF method. Our
analysis suggests the former method produces estimates of e(z)
with reduced noise and a clear relationship to local wind speeds
even under weak forcing conditions. We then test the sensitivity
of e* to varying the number of EOFs used to construct an empir-
ical wave profile and discuss limitations of the EOF filtering tech-
nique. Finally, we test the sensitivity of all versions of dissipation
rate to varying the maximum separation scale used in the LSF
(i.e., fitting range). We follow these discussions with a summary
of our methodology and recommendations for analysis.

a. Advantages of prefiltering to remove wave bias

An important result of our analysis is the reduced noise
and clear wind sorting of dissipation profiles derived from ve-
locity data which have been prefiltered to remove wave bias,
compared to those derived from the modified SF method of
Scannell et al. (2017) (Fig. 10). This is likely due to the smaller
fitting range enabled by filtering wave orbital velocities from
the data. First, in the near-surface region we expect e to in-
crease by many orders of magnitude within a few meters,
which limits the range of separation scales over which the
LSF can be performed at any given depth. Distinguishing be-
tween r2 and r2/3 is substantially more difficult at fine scales.
The mean square percent error of fitting r2 against r2/3 is less
than 50% for rmax $ 0.1, but increases exponentially with de-
creasing fitting range (not shown). Second, the analytically
modified LSF is inherently more sensitive to noise due to the
additional degree of freedom introduced by the r2 term.

More generally, the fundamental advantage of prefiltering
techniques is that they are empirical and thus largely agnostic
to the structure of the background flow. For example, the
only assumption in performing the spatial high pass is that
there is a separation in wavenumber space between nonturbu-
lent shear and inertial subrange turbulence, which is consis-
tent with the underlying Kolmogorov theory. This assumption
is likely to fail very close to the surface, as in our example,
where nonturbulent shear is strongest and edge effects of the
filter are felt (Fig. 2e). In a related fashion, the EOF filter tech-
nique rests on the assumption that the dominant modes of vari-
ability are nonturbulent. In the case of surface waves, which
have large vertical wavenumbers compared to the scales of tur-
bulence, this has a similar effect as performing a spatial high

pass. However, the separation in wavenumber space is not a re-
quirement for the EOF filter to be effective. We discuss advan-
tages and limitations of the EOF analysis further in the next
section.

The analytic formulation of the modified SF model is a
strength specifically in the case of nonturbulent shear which is a
straightforward superposition of linear surface gravity waves.
The approximation given by Scannell et al. (2017) that leads to a
structure function of the form r2 is valid within 2% for the range
of waves observed in these two datasets. However, if the back-
ground shear does not conform to the r2 approximation the mod-
ified model will fail to account for bias in the structure function.
This is more likely to occur in the very near surface, due to com-
plex surface phenomena such as wave–current interactions, con-
vective overturns, Langmuir turbulence, and diurnal stratified
shear layers. In summary, the analytically modified SF model
method is likely to perform well at depth in an environment
dominated by approximately linear background shear, and which
enables large fitting ranges. Near the surface, strong gradients in
dissipation rate impose a limitation on the fitting range, which
necessitates an empirical filtering technique that can remove
nonturbulent shear prior to computing the structure function.

b. Sensitivity and limitations of EOF analysis

Surface gravity waves observed by downlooking ADCPs
are well suited for EOF analysis because they are in phase
across the “array” of ADCP depth bins as they propagate
past the instrument. Further, the high resolution of the data
means there are a large number of modes available to de-
scribe the system. The motion of the platform causes the
deepest ADCP bins to be displaced up to 1 m horizontally be-
tween successive pings, but surface gravity waves with peak
frequenciesO(0.1) Hz have wavelengths O(100) m and subse-
quent space–time aliasing is small. Removing a few dominant
modes from the data is akin to removing a strong background
“mean” from each profile, with some near-surface curvature
that is difficult to model analytically (Fig. 5). This is why
EOFs are so similar to the spatial high pass. The “residual” is
obviously not noise despite the bulk of the variance being
contained in the first few EOFs (Fig. 4).

The main weakness in the EOF filtering technique is the
subjective choice of what number of low-mode EOFs to re-
move from the data. In our example burst, frequency spectra
of the EOF amplitudes reveal that only the first three EOFs
have peaks in the wave band, thus providing a natural cutoff
(Fig. 4). Such a detailed examination of the EOFs of each
ADCP burst is not practical for bulk processing. However,
varying the number of low-mode EOFs removed in the filter
in the example burst case suggests that dissipation is likely ro-
bust to the choice between ;2 and 6 EOFs (Fig. 11). The
shape and magnitude of the profile is generally preserved up
to the removal of 10 low-mode EOFs, except for a large de-
crease in e around 0.5 m when more than 6 EOFs are re-
moved (Fig. 11a). In fact, the estimate of e(z) appears to
improve when a few additional EOFs are removed, particu-
larly near the surface where e(z) was initially biased (Fig. 7).
The best-fit power to the filtered velocity structure function
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converges to r2/3 and the estimate of ADCP noise becomes
positive. However, MSPE increases slightly as additional low-
mode EOFs are removed, likely due to the spatial-filter effect
which is a consequence of the EOF sorting in wavenumber
space (i.e., the redness of the wavenumber spectra). The re-
moval of each additional low-mode EOF moves the local maxi-
mum in D* to a smaller scale. The robustness of the dissipation
estimate is not surprising, given the small separation scales used
in the LSF. A fundamental assumption of the SF method of esti-
mating dissipation is that the contribution to the structure func-
tion at each scale is primarily due to turbulent eddies at that
scale, so even unintentional filtering of the largest scale turbulent
velocities should not egregiously alter the results.

Finally, there are conditions under which we might expect the
EOF filtering technique to fail. A weakness of the traditional
EOF analysis is that signals must be in phase across the array
due to the reliance on covariance at zero time lag, and so indi-
vidual EOFs cannot represent the variability of vertically propa-
gating modes (Merrifield and Guza 1990). Strong signals which
propagate rapidly over the course of a burst may not be well de-
scribed by low-mode EOFs, or may require the removal of a
much greater number of low-mode EOFs. A few examples in-
clude internal waves, bubble plumes, and rapidly deepening
shear layers. Potential improvements to the EOF filtering tech-
nique may include exploring alternatives which attempt to miti-
gate these phase-locked limitations, such as complex EOFs
(Merrifield and Guza 1990).

c. Sensitivity to fitting range

To reduce uncertainty in our dissipation rate estimates we
may include more data in the LSF by increasing the maximum

separation scale (rmax) over which the fit is applied in each depth
bin. However, reduced uncertainty comes at the expense of ver-
tical resolution. Other potential issues include exceeding the up-
per limit of the inertial subrange and spreading the influence of
any low-quality ADCP bins. Figure 12 illustrates how the three
different estimates of dissipation rate are impacted by increasing
rmax up to 0.64 m (16 vertical bins). e* decreases by a factor of 2
(except in the upper and lower 1 m of the profile) and develops
O(1) m vertical structure. This is consistent with the correspond-
ing best-fit power toD*, which remains very close to r2/3. In con-
trast, e1 decreases by an order of magnitude uniformly with
depth. Corresponding estimates of ADCP noise and MSPE in-
crease with rmax as the shape of the structure function becomes
progressively shallower than r2/3. These differences between e*
and e1 reflect the different local maxima inD* andD1 (Fig. 6).
The latter occur at a precise separation scale of 0.5 m and so e1

decreases uniformly with increasing rmax. The vertical structure
which appears in e* is due to the variability in the local maxima
of D*. Interestingly, e′ decreases uniformly with increasing rmax

but appears to converge to the value given by the initial esti-
mates of e1 and e* (i.e., using rmax 5 0.16 m). This is consistent
with the best-fit power to D′, which converges to r2/3. In all
cases, the depth ranges influenced by the biased near-surface
bins increases with rmax. These results of varying rmax confirm
that it is prudent to keep the fitting range as small as possible.

7. Summary and recommendations for analysis

The primary contribution of this study is an update to the
methodology of Thomson (2012) to compute profiles of turbu-
lent dissipation rate from pulse-coherent high-resolution (HR)

FIG. 11. Impact of varying the number of low-mode EOFs used to construct the wave profile, which is then removed from the data in
the EOF filtering method. Subplots are as in Fig. 12, but here colored by number of EOFs removed from the data. The estimate of e is ro-
bust to increasing the number of EOFs removed up to;6 for this example burst.
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ADCP data collected using surface-following platforms, building
on the work of Scannell et al. (2017) to account for the bias in
e(z) generated by wave shear in the very near surface. As an
alternative to the modified SF method put forward by those
authors, we isolate the turbulent velocity signal from the wave
orbital velocity using empirical methods. We compare two filter-
ing techniques: a simple spatial filter that removes energy con-
centrated at low wavenumbers, and a modal filter that removes a
time dependent wave profile computed using empirical orthogo-
nal functions (EOFs) of the data. Our results suggest that the
empirical filtering method produces dissipation estimates with

reduced noise compared to the modified SF method, which in
turn reveals a clear relationship to local wind forcing otherwise
obscured by noise at low wind speeds. We attribute the im-
proved performance of the EOF filtering technique to the small
separation scales necessitated by proximity to the sea surface,
which constrains the number of points in the LSF. The ana-
lytic modification introduces an additional term to the struc-
ture function model and is therefore more sensitive to
outliers due to the additional degree of freedom, while large
fitting ranges are required to distinguish between the wave
and turbulent terms. Based on the results of this study, we

FIG. 12. Impact of varying the LSF fitting range, i.e., the maximum separation scale rmax, on (a),(e),(i) dissipation rate, (b),(f),(j) best-fit
power to the structure function, (c),(g),(k) the estimate of ADCP noise produced by the fit, and (d),(h),(l) the MSPE of the fit. Results are
derived from the (a)–(d) EOF-filtered velocity, (e)–(h) high-pass filtered velocity, and (j)–(l) unfiltered velocity. As in Fig. 7a, the dashed
and dotted lines correspond to z21 and z22, respectively. Line colors correspond to rmax, and in all cases, the MSPE increases with rmax.
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recommend the following steps to compute dissipation rate from
bursts of HR velocity data obtained using pulse-coherent mode
on the central beam of a surface-following platform-mounted
ADCP:

1) Despike the data (see appendix A).
• Using an along-beam median high-pass filter, impose
a threshold maximum velocity anomaly equal to half
the phase-wrapping velocity (dependent on the in-
strument configuration; see Shcherbina et al. 2018,
section 2c).

• The best practice is to replace data spikes with NaN, since
the structure function will be robust to missing data.
However, interpolation may be necessary to retain
enough points for an estimate of the EOFs (see step 2).

2) Filter out nonturbulent shear:
(i) Option 1: Remove at least the two most energetic

EOFs of the data.
• The best practice is to examine the EOFs to deter-
mine an appropriate cutoff, though this may be im-
practical for bulk processing.

• Interpolation through data spikes may be helpful
in estimating the low-mode EOFs, but these points
should be removed prior to computing the struc-
ture function.

(ii) Option 2: Perform a spatial high pass to remove low-
mode shear.
This method will likely retain more surface wave
shear with small decay scales in the very near surface
than the EOF filter technique.

3) Compute the second-order velocity structure function
(SF) of the data.
• Produce squared velocity difference matrices for each
along-beam velocity profile and average in time to produce
a single burst-averaged second-order velocity SF matrix
with bin-pair mean depth and separation scale dependence.

• The best practice is to remove points which contain in-
terpolated data prior to averaging. Interpolation is
likely to alter the scale dependence of the subsequent
SF (i.e., by removing energy at bin-scale separation).

4) Least squares fit the theoretical Kolmogorov model of the
SF to the observed SF at discrete depths to obtain e(z).
• Bin the SF matrices by depth and perform a least
squares fit against r2/3 within each bin over a limited
range of separation scales to obtain e(z) from Eq. (2).

• The best practice is to limit the maximum separation
scale included in the fit as much as possible when along-
beam variation in e is expected to be large.

• Some iteration may be required to determine the ideal
fitting range, depending on the desired balance between
resolution and reduced noise in the vertical.

5) Quality control e(z).
• The best practice is to use the mean-square percent er-
ror (MSPE) of the LSF.

• The best-fit power law to the observed SF (D ~ rn) may
also be useful to evaluate how closely the measured tur-
bulence adheres to the Kolmogorov prediction (n 5 2/3),
as well as the noise term in Eq. (2).

Throughout the manuscript we have commented on various
user choices which may impact the results. The most signifi-
cant is fitting range, but others include depth-bin size and
number of EOFs included in the filter (alternatively the scale
of the spatial high-pass filter). An additional sensitivity not ex-
plored in this manuscript are various definitions of the ensem-
ble average, including the median and mean-of-the-log of the
squared velocity differences. An argument may be made that
the latter approach is more appropriate in light of the loga-
rithmic distribution of dissipation scales, particularly in the
near-surface environment (Gargett 1999). We have presented
quality metrics to help evaluate the validity of e(z), but a lin-
gering uncertainty is what thresholds may be appropriate to
apply. For example, in our data a threshold MSPE of 10% ap-
peared organically but there is no inherent physical reason
this value may distinguish between good and poor quality esti-
mates. Although the relationship with local wind forcing pro-
vides confidence in our estimates, further improvements in this
methodology would be significantly enhanced by comparison
with direct in situ measurements of e(z), wave-breaking crest
distributions L(c), or other hydrographic information such as
stratification and horizontal velocity shear which can further
help constrain the values we should expect from our analysis.
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APPENDIX A

Raw Data Quality Control

Strong velocity spikes generate an inextricable bias in the
burst-average structure function due to the squaring of ve-
locity differences. Thus, despiking the velocity prior to anal-
ysis is necessary to reduce bias in the dissipation estimate.
In pulse-coherent mode, along-beam velocity measured by
the ADCP is a function of the phase shift between the
pulse-pair echo with respect to their initial lag time. A well-
known limitation of this method is ambiguity in the velocity
introduced by phase shifts exceeding 2p, i.e., velocities which
exceed a corresponding VR. For the ADCP configuration used
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in this study, VR is ;0.1 ms21. High velocities are susceptible
to “phase wrapping,” which manifests as velocity spikes equal
to plus and minus an integer number of VR. Ambiguity in the
phase shift can also arise when the magnitude of the peak in
lagged pulse-pair correlation (used to identify the phase shift)
is weak. Figure A1 shows the data spikes identified in the ex-
ample burst explored in sections 3 and 4, and their relationship
to pulse-pair correlation. Correlation is generally about 80%,
but low value points are littered throughout and the correla-
tion over an entire ping will occasionally drop abruptly below
50% (Fig. A1a). These dropouts can last for ;1–10 pings (up
to 1 s), during which the velocity is overwhelmed by strong
spiking throughout the profile. It is common practice with
ADCP data to use a minimum allowed correlation to identify
bad data. However, because data spikes in the pulse-coherent
ADCP data are driven by the strength of the velocity as well
as the magnitude of the pulse-pair correlation, the pulse-pair
correlation of each individual data point is not a sufficient pre-
dictor of individual data quality. Instead, spikes are identified
by first removing a 1-m along-beam median filtered velocity
from each profile (MATLAB’s medfilt1, Fig. A1b). Spikes
are flagged as residual velocities which exceed 6VR/2
(Fig. A1c). Figure A1d shows data probability density as a
function of correlation and the 1-m median filtered velocity.
There is a local maximum in the PDF at VR and only a weak
relationship with correlation. Although the relationship be-
tween velocity and correlation is weak for individual bins,
profile-mean correlation is strongly correlated with the along-

beam variance in median-filtered velocity, and thus percent
spikes per profile (R 5 0.85, Figs. A1e,f). We flag bad pings us-
ing a minimum profile-average correlation value of 50%, and
exclude them from further calculations. We do not employ the
2D phase-unwrapping technique of Shcherbina et al. (2018)
here, as that method exploits temporal coherence of adjacent
profiles of velocity. This approach is feasible in that study due
to the neutral buoyancy of the profiling float, while in our study
the strong platform motion of the SWIFT disrupts much of the
temporal coherence. The resulting quality controlled data are
shown in Fig. 2d. In the example burst, 10% of all profiles were
flagged as bad.

APPENDIX B

Spectral Methods

Here we discuss reasons frequency and wavenumber spectra
from a surface-following platform are likely to produce esti-
mates of e(z) with high error, using the example burst to illus-
trate. First, we address the use of frequency spectra. Two main
challenges are 1) properly defining an advective velocity for
a Lagrangian platform and 2) incoherence of the observed tur-
bulent velocity fluctuations in time. The former makes the
frozen-field assumption weak, and the latter smears the energy
in frequency space. Previous authors have dealt with the prob-
lem of defining an advective velocity by obtaining an estimate
of large-scale eddy self-advection from the velocity data (e.g.,

FIG. A1. Example of the despiking routine applied to the pulse-coherent Nortek Signature 1000 ADCP data. Shown are (a) pulse-pair
correlation, (b) residual velocity after a 1 m median filter has been removed, and (c) data spikes, identified as residual velocities greater
than6VR/2. Also shown are probability density functions of the data as a function of (d) residual velocity magnitude vs pulse-pair correla-
tion of each data point, (e) along-beam residual velocity variance vs profile-mean pulse-pair correlation, and (f) percent spikes per profile
vs profile-mean pulse-pair correlation.
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Zippel et al. 2018). However, this method does not account for
advection by wave orbital motions and even if wave orbital ve-
locities are successfully removed from the data, the coherence
problem is likely intractable. Figure B1 shows frequency spec-
tra computed from each ADCP bin in the example burst be-
fore and after wave orbital velocities are removed using the
EOF filtering technique. Waves contribute spurious energy at
all frequencies, which leads to an increase in energy with in-
creasing distance from the transducer even at the high-
frequency end of the spectra (i.e., away from the surface, pale
lines). An increase in dissipation rate away from the surface is
almost certainly not physical. As expected, removing wave or-
bital velocities from the data reverses the direction of increas-
ing energy (now toward the surface, bold lines) and removes
the broadband wave peak centered at 0.4 Hz. However, high-
frequency tails of the residual spectra are much shallower than
f25/3, consistent with smearing in frequency space due to the
motion of the instrument. Tilt angles vary on average by a few
to tens of degrees each ping, corresponding to horizontal

displacement of the ADCP beam by tens of centimeters up to
1 m. Near-surface length scales of turbulence are naturally lim-
ited by proximity to the sea surface to a few meters; thus, hori-
zontal displacement O(0.1) m between pings likely smears a
large portion of the inertial subrange.

Wavenumber spectra may also be used to compute dissipa-
tion rate; however, only a single value of dissipation rate is ob-
tained for an entire profile. Wavenumber spectra are also highly
sensitive to strong data spikes, such as those characteristic of
pulse-coherent ADCP data. This method is thus best suited for
environments where background velocities are weak and the
dissipation rate is expected to be constant over the profile range.
For example, Shcherbina et al. (2018) computed wavenum-
ber spectra with a clear k25/3 dependence using a Signature
1000 mounted on a subsurface Lagrangian float. As noted in
appendix A, in that study the authors employ a “2D phase
unwrapping” despiking technique that cannot be applied
here due to platform motion. As a result, wavenumber spectra
computed from individual velocity profiles in the example burst

FIG. B1. Velocity–frequency spectra computed from the example burst as a function of depth
bin, before and after wave orbital velocities are removed using the EOF filter technique (faded
and bold lines, respectively). Initially, the spectra are contaminated by wave velocities across the
entire resolved frequency range. After the wave velocities are removed, the residual spectra are
much flatter than the expected f25/3 slope (dashed lines) expected for inertial subrange
turbulence.
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fluctuate wildly between an apparent noise floor and a lower
limit that follows ;k25/3 at high wavenumbers (Fig. B2a, thin
gray lines). The resultant burst-averaged wavenumber spectra
are shallower than k25/3 (bold lines).

An alternative method of computing wavenumber spectra is
to take the Fourier transform of the along-beam autocorrela-
tion. This method allows for averaging in time prior to per-
forming the transform and is therefore more analogous to the
structure function method, although it still produces a constant
e instead of a profile. The large N reduces the impact of any
retained spikes and the resultant wavenumber spectrum has a
clear k25/3 dependence at high wavenumbers (Fig. B2b). The
autocorrelation-derived wavenumber spectra emphasizes a ma-
jor strength of the structure function calculation: robustness in
the face of poor data quality. Spectral methods require contin-
uous time series and spikes must be filled in some fashion;
thus, data with a high percentage of spikes are unusable. Be-
cause velocity differences are first averaged in time, structure
functions can be computed even with a low percentage of
“good” data. The quality metrics described in section 4 are
then available to assess the accuracy of subsequent dissipation
estimates.
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