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Abstract—Autonomous surface platforms equipped with pulse-
coherent high-resolution (HR) ADCPs are a promising tool for
measuring turbulence and estimating turbulent dissipation rates,
✏(z), close to the air-sea interface. However, surface gravity waves
generate significant bias in ✏(z) if not sufficiently separated from
the turbulent signal. In a previous study, the authors developed
a method of isolating wave orbital velocities from the data
using empirical orthogonal functions (EOFs). Low-mode EOFs
had characteristics of surface gravity waves, while higher-mode
EOFs had characteristics of turbulence. After filtering empirical
wave profiles constructed from the low-mode EOFs from the
data, resultant ✏(z) were in close agreement with law-of-the-wall
scaling during quiescent conditions. In this study, we further
validate the EOF-filtering technique by comparing EOFs of the
HR ADCP data with those computed from synthetic wave data
which does not contain turbulence. As expected, low-mode EOFs
of the synthetic data are in strong agreement with those of the
real data, while high-mode EOFs reflect only noise due to the
absence of turbulence. Wave profiles constructed from the low-
mode EOFs are then used to quantify the potential for bias in
✏(z) if wave velocities are not sufficiently filtered from the data.

Index Terms—Ocean, turbulence, waves, dissipation, drifters

I. INTRODUCTION

The proliferation of Lagrangian surface platforms combined
with recent improvements in pulse-coherent, high-resolution
acoustic Doppler current profilers (HR ADCPs) have enabled
robust measurements of fine-scale turbulent velocities in the
near surface across an increasingly wide range of forcing
conditions and geographic locations. HR ADCP data is ideal
for estimating the turbulent kinetic energy dissipation rate near
the surface, ✏(z), as it measures the spatial structure of turbu-
lent velocities directly. However, strong shear associated with
surface gravity waves can lead to dissipation rate estimates
which are biased high [1].

Recently, [2] developed an empirical method of filtering
wave orbital velocities from HR ADCP data via empirical or-
thogonal function (EOF) analysis. The method was developed
using turbulence data predominantly obtained with HR ADCPs
mounted on ‘Surface Wave Instrument Floats with Tracking’
(SWIFTs, Figure 1) [3]. The authors demonstrated that low-
mode EOFs of the data had characteristics expected of surface
gravity waves, while higher-mode EOFs had characteristics
of turbulence. Estimates of ✏(z) from an example ADCP
burst filtered using the EOF method were in close agreement

with law-of-the-wall scaling from concurrent measurements of
surface wind speed.

Fig. 1. Version 4 SWIFT drifters (left) schematic and (right) being prepped
for deployment. A Nortek Signature1000 HR ADCP is mounted at the base
of the float in a downlooking configuration. The five beams of the ADCP are
illustrated in green. Graphic courtesy of Joe Talbert and Alex DeKlerk, image
courtesy of Kerstin Bergentz.

Here we present new work to further validate the EOF-
filtering technique of [2]. We compare EOFs of the ADCP data
with those of synthetic velocity data characterized by broad-
band surface gravity waves and no turbulence. As expected,
low-mode (high energy) EOFs of the synthetic data exhibit
characteristics of surface gravity waves and closely resemble
the same EOFs of the real data, while higher-mode (lower
energy) EOFs have characteristics of noise. Unlike EOFs of
the real data, characteristics of inertial subrange turbulence are
absent from these synthetic EOFs. Finally, we demonstrate the
efficacy of the method with new results showing ✏(z) measured
during a strong storm is in strong agreement with law-of-the-
wall scaling predictions.

II. METHODS

A. Structure Function Method

An advantage of HR ADCP data is that ✏(z) may be
estimated from the fine-scale spatial structure of velocity
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directly [4]. Kolmogorov theory gives a simple scaling for
the TKE dissipation rate in the inertial subrange,

✏ / u(r)3/r (1)

where u(r) is the velocity associated with turbulent eddies at
scale r. Dissipation rate at a given location along a path (here
depth, z) may then be related to the second order velocity
structure function, D(z, r) = [u(z + r/2)� u(z � r/2)]2, by

D(z, r) = C2
⌫✏(z)

2/3r2/3 (2)

where C2
⌫ is a constant empirically determined to be 2.1 [5].

The method is then to fit measurements of D at a given
depth and computed over a range of separation scales to
the model D(z, r) = Ar2/3 + N , where the offset N is
proportional to the instrument noise. The model fit then gives
✏(z) = [A(z)/C2

⌫ ]
3/2. Further details of the application of the

method are given in [2].

B. EOF Filtering
The challenge inherent to the structure function method is to

remove non-turbulent shear from the data prior to computing
D(z, r). Near the surface, this means isolating turbulence from
surface waves, which cannot be easily separated by time-
averaging the data. EOFs are well suited to capture the vari-
ance of surface gravity waves, which are coherent in (vertical)
space and typically at least an order of magnitude stronger
than turbulent velocities. EOFs are eigenfuctions of the data-
data covariance matrix, and corresponding eigenvalues give the
percentage of total variance contained in each EOF [6]. The
time varying amplitude of each EOF is obtained by projecting
the eigenfunction back onto the data. In [2] the data-data
covariance matrix is taken to be the covariance between the
velocity timeseries of each possible ADCP bin pair, e.g. the
covariance between w(z = 1 m, t) and w(z = 2 m, t).
EOFs can be interpreted as statistical ‘modes’ of the data,
with the lowest modes (EOFs which contain the most variance)
representing time-varying features which have the most energy
and greatest coherence across the array, here meaning across
ADCP depth bins. Because we expect the signal due to surface
gravity waves to be highly coherent across ADCP depth bins
and an order of magnitude greater than turbulence, the lowest
mode EOFs should contain wave variance only. Filtering these
EOFs from the data then in theory removes the contribution
to shear from waves.

III. DATA

A. SWIFT drifters
Our velocity measurements are collected with SWIFT

drifters (Fig. 1). SWIFTs are designed to measure near-
surface turbulence in a surface following reference frame [3].
Velocities are measured by HR ADCPs mounted in either
an upward or downward looking orientation. SWIFTs are
additionally equipped with an inertial motion unit (IMU) and
global positioning system (GPS) to measure the surface gravity
wave spectrum, a conductivity temperature sensor (CT), and
an anemometer to measure wind speed and other atmospheric

variables. SWIFTs are typically configured to collect raw data
in 8.5 minute ‘bursts’ every 12 minutes. Preliminary burst-
averaged data are telemetered back to a shore-side server via
an onboard iridium satellite modem, and raw data are stored
in an SD card and offloaded after recovery.

B. HR ADCP Data
The current version SWIFTs (version 4, ‘V4’) are equipped

with a Nortek Signature1000 pulse-coherent HR ADCP [7].
The ADCP emits 1 MHz acoustic pulses at a ping frequency
of either 4 or 8 Hz. Velocities are calculated from the doppler
shift of the reflected acoustic signal, with range determined
by the time gating of the signal. Velocities are measured in 4
cm bins down to a few meters depth, up to 5 m depending
on the pulse lag configuration. The SWIFT ADCPs are set to
collect data in 8.5 minute bursts, corresponding to at least ⇠
4000 pings per burst. Phase ambiguity can occur for relative
velocities which exceed a specific known threshold (dependent
on the pulse settings), which results in anomalous data spikes
[8]. Thus excessive spiking can become a problem in the
presence of especially strong velocities. However, Lagrangian
platforms are ideal for the use of HR ADCPs as the platform
moves with the water and therefore measures relative rather
than absolute velocity. Prior to computing dissipation rate, raw
ADCP data are quality controlled to remove spikes following
[2].

Fig. 2. Profiles of relative velocity obtained with a downlooking oriented HR
ADCP mounted on a V4 SWIFT drifter. Profiles span a period of 4 seconds,
and line color indicates the relative timing of each profile. Strong profile-scale
background shear due to wave orbital velocities is apparent in the profiles,
superimposed with fine-scale turbulent fluctuations.

Example profiles of along-beam velocity measured by the
ADCP showcase the superposition of wave orbital velocities
and turbulence in the data (Figure 2). Velocities increase
with distance from the platform as the SWIFT buoy moving
with the waves at the surface. Wave velocities dominate
the profiles, and it is clear that calculating D(z, r) prior to
filtering out wave shear would result in bias with increasing
severity towards the surface. As D(z, r) is a positive definite
quantity, wave bias will produce stronger than actual ✏(z). We
expect low-mode EOFs to reflect the profile shape (i.e. shear)
and variability of these wave velocities, with no variance at
turbulent scales.
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C. Synthetic Wave Data

Fig. 3. Surface gravity wave spectrum measured by the SWIFT used to
generate synthetic wave data (cyan). The spectrum is a composite of the
surface elevation spectrum derived from the onboard IMU vertical acceleration
(grey), and from vertical velocity measured by at the deepest ADCP bin (black
line). Above 1 Hz, the IMU spectra are damped by the SWIFT motion so the
ADCP data are used to create an artificial tail.

Synthetic wave data were generated using surface gravity
wave spectra concurrently measured by the SWIFT (Figure 3).
We obtain surface elevation by double integrating vertical
acceleration measured by the onboard IMU as part of a GPS-
aided motion solution with an extended Kalman filter (EKF)
(grey line). The resultant wave spectrum follows f�4 below
the peak frequency as expected for waves in local equilibrium
with the wind [9]. However the spectrum is damped below 1
Hz, the natural frequency of the buoy. To obtain a full wave
spectrum, we construct an artificial ‘tail’ using the ADCP data.
We estimate vertical displacement by integrating relative verti-
cal velocity in the deepest ADCP bin, which we expect to most
closely reflect the true wave velocity at the surface (black line,
recall the ADCP measures velocity with respect to the buoy
motion). The resultant spectral tail follows f�5 as expected
for high-frequency wind-waves which dissipate locally [10].
A composite spectrum is then constructed by combining the
IMU spectrum below 1 Hz with the ADCP spectrum above
1 Hz. Individual wave components are computed for the full
depth range of the ADCP and over a burst using the equation
for linear surface gravity waves

w(z, t) = �!A!e
kz cos!t+ �! (3)

where ! = 2⇡f is the component frequency, k = !2/g is the
corresponding wavenumber, A! is the component amplitude
given by the spectrum and �! is a random phase. All wave
components are superimposed to create a single wave profile
at each time-step. Finally we project the synthetic wave
velocities into a Lagrangian frame of reference by subtracting
the velocity at z = 0, to reflect motion of the SWIFT with the
waves at the surface and obtain relative velocity.

IV. RESULTS

A. EOF Validation
The purpose of comparing EOFs of the measured ADCP

data with those of the synthetic, wave-only data is to demon-
strate that the low-mode EOFs which were attributed to surface
gravity waves by [2] are indeed representative of waves and
do not contain any variance attributable to turbulence. In other
words, the goal is to confirm that removing low-mode EOFs
from the data sufficiently removes wave velocities and does not
also remove turbulent shear from the data prior to computing
✏(z) (which would lead to an underestimate). If low-mode
EOFs of the data exhibit characteristics of surface gravity
waves, they can be used to construct empirical wave-profiles
and filtered from the data.

Fig. 4. First three EOFs of the real and wave-only synthetic ADCP data
(shaded and dotted lines, respectively). The structure of each EOF is illustrated
using bounds given by its depth-dependent variance. The horizontal black line
over each EOF is 0.05 ms�1 long to indicate the changing magnitude of the
variance.

Low-mode EOFs of the two datasets are in tight agreement,
as expected. Figure 4 compares the first three EOFs of the
real and synthetic data. Shaded regions give the variance of
the real data EOFs, while the overlaid dotted cyan lines give
the variance of the synthetic data EOFs. There is an order of
magnitude difference between the variance of the first EOF
and the next two EOFs, indicated by the changing scale of the
horizontal black bar above each (equivalent to 0.05 ms�1).
The first EOF of both datasets strongly reflects the profile-
scale wave shear apparent in Fig. 2. EOF 1 of the real data
contains 97% of its total variance, while EOF 1 of the synthetic
data contains 99% of its variance. EOFs 2 and 3 reflect the
superposition of waves close to the peak frequency but with
a phase offset, a consequence of the broadband nature of the
wave field in both the real and synthetic data. Importantly,
removal of even just the first EOF would remove 99% of
the wave energy from the synthetic data (as it only contains
waves). Removal of three EOFs from the real data similarly
removes 99% of the wave energy.
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A key result of [2] was that higher-mode EOFs had charac-
teristics of turbulence. The wavenumber spectra of individual
high-mode EOFs were characterized by broadband peaks at
successively higher frequencies but with decreasing energy,
such that they etched out the characteristic k�5/3 slope ex-
pected of inertial subrange turbulence (see their Figure 4).
Higher-mode EOFs of the synthetic data do not exhibit the
same characteristics, as the data does not contain turbulence
(Figure. 5). Instead, wavenumber spectra are characteristic
of noise. There is comparatively no energy contained in the
higher-mode EOFs (note the 20 orders of magnitude range)
and their spectra are effectively flat. It is clear the spectral
characteristics observed by [2] are due to turbulence in the
real data which is absent from the synthetic data.

Fig. 5. Wavenumber spectra of the synthetic EOFs. The first three EOFs are
colored as in Fig. 4, while higher-mode EOFs are colored in yellow-maroon.
Higher-mode spectra are characteristic of noise, as the synthetic data does not
contain turbulence.

B. Dissipation Rate Estimates
Here we briefly review the main result of [2]. If computed

prior to EOF-filtering the data, ✏(z) follows a z�2 decay profile
(Figure. 6, solid-grey and dotted grey lines, respectively).
After filtering, ✏(z) is an order of magnitude weaker near the
surface and decays as z�1, in tight agreement with the law-
of-the-wall scaling prediction derived from concurrent wind
speed measurements (red and grey-dashed lines, respectively).
We note the filtered estimate diverges from law-of-the-wall
scaling in the upper three ADCP bins, giving the appearance
of ‘elevated’ ✏ very close to the surface, to be addressed in the
next section. As noted by [2], wave breaking was not observed
at this time. The success of law-of-the-wall is expected in this
case and provides confidence our estimate of ✏(z) is unbiased
(below ⇠ 0.5 m depth).

C. Quantified Wave Bias
The isolated wave profiles may now be used to quantify

potential bias due to surface gravity waves (i.e. by computing
✏(z) from the filtered-out wave profiles). Profiles of wave
bias estimated from the real and synthetic data are in strong

Fig. 6. Profiles of dissipation rate ✏(z) computed from the unfiltered data
(solid grey line), EOF-filtered data (i.e. turbulent velocities, solid red line),
the filtered-out wave profiles (blue line) and the synthetic wave profiles
(cyan line). The latter two quantify the wave bias in ✏(z) if wave shear is
not sufficiently removed from the data. Also shown are the law-of-the-wall
prediction for ✏(z) which follows z�1 (grey dashed line), as well as decay
profiles corresponding to z�2 (grey dotted line) and z�3 (black dashed line).
The unbiased estimate of ✏(z) closely follows the law-of-the-wall scaling,
while wave bias is an order of magnitude stronger at the surface and decays
as z�3.

agreement, lending further confidence in the EOF-filtering
technique (Fig. 6, blue and cyan lines, respectively). Wave bias
is an order of magnitude stronger than the true dissipation rate
at the top of the profile, and decays as ⇠ z�3 (dashed-black
line). We note wave-bias computed from the real data is a few
times weaker than the synthetic data in the upper few ADCP
bins, actually approaching the filtered ✏(z) values in those bins.
The comparison with the bias derived from synthetic wave
data makes it clear that the apparent ‘elevated’ dissipation in
the upper few bins is actually an artifact of retained wave
bias. This reveals a limitation of the EOF-filtering technique
in separating turbulence from waves in the upper few bins,
likely due to the decreasing scale of wave-shear towards the
surface (i.e. approaching turbulence scales).

D. Discussion
In the example above, the agreement of ✏(z) with law-

of-the-wall scaling is compelling evidence that our results
are unbiased. The law-of-the-wall prediction is derived by
assuming TKE dissipation is balanced by shear production
near the surface, within a layer of constant turbulent stress
proportional to the wind stress. Subsequent scaling gives

✏(z) = (⇢0u⇤)
3/kz (4)

where ⇢0 is the square root of the ratio of air to water
densities (

p
⇢a/⇢w), u⇤ is the air-side friction velocity, k

is the Kolmogorov constant and z is vertical distance from
the surface. There is clear observational support for law-
of-the-wall scaling in the ocean during calm conditions and
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under ice where surface waves are significantly damped (e.g.
[11], [12]). However, previous observational studies have often
found ✏(z) elevated with respect to law-of-the-wall scaling
under stronger forcing conditions (e.g. [13]–[16]). The widely
accepted explanation is that wave breaking drives intense
mixing at the surface, subsequently elevating dissipation rates.
Most studies have found wave-driven ✏(z) to be 1-2 orders
of magnitude greater than law-of-the-wall within about a
significant wave height from the surface and with a decay rate
of ⇠ z�2, although there is a significant degree of variability
across observations.

Our results quantifying potential wave bias in ✏(z) challenge
this interpretation. Note that bias due to background non-
turbulent wave shear being retained in the data is distinct
from the concept of wave-driven elevated dissipation, i.e. due
to real turbulence which is driven by wave breaking. The
profile of dissipation rate computed from the unfiltered data is
suspiciously similar to prior observations of ‘elevated’ wave-
driven ✏(z) (Fig. 6, solid grey line). This result suggests prior
observations may be in all or in part due to underappreciated
wave bias. This inference is reinforced by (EOF-filtered)
dissipation rate estimates during a storm with peak 10-m wind
speeds of 15 ms�1 (Figure. 7). In addition to dissipation rate
(middle), the air-side friction velocity derived from wind speed
measure by the SWIFT (top, black line) and acoustic backscat-
ter amplitude (bottom) are shown for context. Significant wave
height is overlaid in black on ✏(z, t) and acoustic backscatter
to indicate the expected minimum depth of wave-breaking
effects. To compare our observations with law-of-the-wall
predictions, we invert (4) to obtain u⇤(t) from ✏(t) (pink line).
We have limited the calculation to 0.5-2.5 m depth to avoid the
known wave-bias above 0.5 m and a hard-body interference
at ⇠ 3 m depth which occurred late in the record. The u⇤
comparison implies that the observed dissipation rates closely
follow law-of-the-wall scaling, even though there was strong
wave-breaking during the storm (confirmed with concurrent
images obtained from a camera on the SWIFT). Wave effects
were expected down to about 4 m depth at the storm peak,
consistent with elevated acoustic backscatter during the storm
which implies bubble plumes extended to at least the base of
the profile.

There are three plausible explanations for the discrepancy
between our results, which show strong adherence to law-
of-the-wall scaling for dissipation rates during a storm, and
the literature which has found ‘elevated’ dissipation in the
presence of breaking waves. First, as discussed above results
from previous studies may contain underappreciated wave
bias, as suggested by quantification of wave bias in our
analysis. Second, there may be systematic bias in our results
due to processing errors or data quality. The synthetic wave
analysis suggests that EOF filtering at most insufficiently
removes wave bias very close to the surface, so it is unlikely
excess dissipation is being removed during filtering. However,
it is possible strong downwelling during wave breaking events
causes excessive spiking in the pulse-coherent data, and these
ADCP pings are thus selectively removed during quality

Fig. 7. EOF-filtered dissipation rate estimates during a storm with strong
wave breaking. Shown are (top, black line) air-side friction velocity derived
from near-surface wind speed, (middle) dissipation rate and (bottom) acoustic
backscatter amplitude. Significant wave height is overlaid in black on the
latter two to indicate the expected minimum depth of wave effects. Friction
velocity derived from the observed dissipation rate by inverting (4), i.e. law-
of-the-wall scaling, is in close agreement with the observed friction velocity
(pink line). The pink box overlaid on dissipation rate indicates the depth range
used to make the comparison. This result is surprising as wave effects reach
down to at least 4 m, evident in increased acoustic backscatter indicative of
bubble plumes.

control. In a similar fashion, high-void fraction bubble clouds
generated at the instance of breaking may cause occlusion
of the most intense wave-driven turbulence [17]. We note
a preliminary review of the data does not suggest obvious
systematic removal of the data or frequent occlusion.

A third likely contribution to variability in observed ✏(z)
is that differences in sampling methods and indiscriminate
averaging in across these studies obscures the role of inter-
mittency. Laboratory and a limited few high-resolution (i.e.
wave phase resolved) observational studies have found ✏(z)
can vary up to a few orders of magnitude from the instant
of breaking to even a few seconds later, i.e. that wave-
driven ‘elevated’ dissipation is highly intermittent and decays
rapidly in time (exemplified by [18]). Similar intermittency
was observed with SWIFT drifters by [16], though crucially
that study did not account for wave-shear and those results
are almost certainly biased in light of the results presented
here and in [2]. Many previous studies attempting to scale
‘elevated’ dissipation near the surface average observations on
timescales of hours or longer. A recent numerical study by [19]
found that a Lagrangian platform such as the SWIFT drifter
would need to sample for 1000 times the peak wave period to
avoid underestimating wave-driven mixing. Peak wave periods
during the observations in Fig. 7 were ⇠ 10 s, corresponding
to a minimum sampling period of ⇠ 2.7 hours, on par with
the timescale of variability of the wind speed. However, the
storm lasted ⇠ 18 hours so we may still have expected to see
‘elevated’ ✏.
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V. SUMMARY AND CONCLUSION

In this study we have used synthetic wave data to validate
the EOF-filtering technique of [2]. The low-mode EOFs of
both the HR ADCP data and synthetic wave data reflect
surface gravity waves, while only the weaker (higher-mode)
EOFs of the real data reflect turbulence. We have shown low-
mode EOFs can be filtered from the data to produce largely
unbiased estimates of near-surface dissipation. We have quan-
tified the potential for wave bias by computing ✏(z) from the
filtered wave profiles, which demonstrate a striking similarity
to results in the literature showing ‘elevated’ near-surface
dissipation attributed to wave breaking. Application of our
methodology to turbulent velocity data obtained with a SWIFT
drifter during a strong storm reinforces the interpretation
that stronger than law-of-the-wall dissipation rates reported
in the literature may in part result from underappreciated
wave bias. However, intermittency may also play a role in
obscuring strong ✏(z), and may have prevented convergence
on a universal scaling which accounts for enhanced mixing
driven by wave breaking.

To disentangle the influences of wave bias and wave-
breaking intermittency on scalings for near-surface ✏(z), future
studies are needed which expand upon the results of [18]
and [16], measuring near-surface turbulence in the presence
of breaking waves at high temporal resolutions and with
robust removal of wave velocities to eliminate bias. Further
development of the methodology of [2] is also needed to
investigate possible systematic bias towards non-breaking con-
ditions. Currently a limitation of the EOF-filtering method is
the subjective choice of which number of low-mode EOFs
to use in the reconstruction. Expansion of the synthetic wave
data analysis, combined with a sensitivity analysis, to wider
dataset with a broad range of forcing conditions would help
determine an appropriate cutoff empirically. Such a study
should additionally explore any parametric dependence of the
EOFs on wind and wave state variables.
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