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ABSTRACT 
This article describes the model development and 

preliminary progress of an on-going research study on the effects 
of nonlinearities in ocean wave input and power-take-off (PTO) 
control on wave energy conversion system dynamics and 
efficiency. The model system employed and progress on recent 
developments are: (1) nonlinear wave modeling in the ocean, 
generation and propagation in a wave basin, and (2) nonlinear 
PTO control algorithm. An overview of the holistic analytical, 
numerical and experimental research approach/work plan is 
presented. To provide a simple means for analysis, comparison 
and performance evaluation, the WEC-Sim numerical platform 
is used for model implementation and system dynamic 
simulation. Analytical and numerical predictions of the 
nonlinear wave fields in a wave basin using the nonlinear 
Fourier analysis (NLFA) technique and corresponding nonlinear 
wavemaker theory and a plan for future validation using a 
comprehensive series of experimental test data as well as ocean 
wave measurements are described. Efficiency of the nonlinear 
PTO control and a future evaluation work plan by comparing 
numerical simulations with results of WEC model test data under 
corresponding wave conditions of the experimental studies 
without the presence of the WEC system are also presented.    

 
Keywords: Nonlinearity, ocean wave models, wave energy 

conversion, power-take-off control, wave basin experiments, and 
field data. 

 
1 INTRODUCTION 

Marine hydrokinetics in general and wave energy 
conversion (WEC) in particular have been topics of interest since 
the 1970’s and much more intensely studied for the last couple 
of decades. With the support of the US Department of Energy 
(DOE), personnel at the Pacific Marine Energy Center (PMEC) 

have been serving the hydrokinetic research communities since 
2008 by conducting research as well as supporting large-scale 
experiments conducted in the wave basins by researchers around 
the country. Research projects conducted at PMEC including 
environmental conditions, WEC hydrodynamics, power-take-off 
(PTO) modeling, analysis and experimental verification. A 
significant number of the projects centers on the development of 
WEC-Sim, a community software based on relatively simple 
analysis models for preliminary design of WEC systems. 

At PMEC, one of our recently initiated projects focuses on 
the effects of nonlinearity on efficiency of wave energy 
conversion systems. A number of the dominant nonlinear 
hydrodynamic effects such as nonlinear Froude-Krylov and 
viscous forces, and nonlinear effects in the power takeoff (PTO) 
systems such as friction, valve characteristics, fluid 
compressibility, Wheeler stretching at the free surface, nonlinear 
mooring lines, and nonlinear fluid-structure interaction effects, 
etc., over and above the linear analysis already in WEC-Sim have 
either already been incorporated or being developed by WEC-
Sim developers and researchers. The focus of our study is to 
further enhance the WEC-Sim modeling capability in power 
production mode under mild nonlinear seas, specifically on the 
following two nonlinearities: (1) modeling of the wave field 
under moderate and extreme conditions and (2) modeling 
nonlinear power-take-off control systems using a fuzzy control 
strategy. Second- and third-order nonlinear wave theories and 
numerical algorithms will be developed to more accurately 
model the wave excitation forces on the WEC system. This paper 
describes a roadmap for achieving the objectives in the next few 
years. In the project, advanced nonlinear PTO control algorithms 
will be developed. The resulting nonlinear wave input and PTO 
control models will be validated first against existing 
experimental wave basin nonlinear tests and representative WEC 
system test data at the OSU Hinsdale Wave Research Laboratory 
and ocean wave measurements from the SWIFT buoys. 
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Additional nonlinear wave model and WEC system tests will be 
conducted to complement the existing data and fill in the gaps 
needed to thoroughly validate the advanced nonlinear models 
developed in this study. To make the project grounded in 
application and for ease of understanding and reference, we will 
tie the applications of our study to the open-source community 
model WEC-Sim. 

The contents of the rest of the article are as follows. First we 
review literature on nonlinear ocean wave models including the 
nonlinear Schrodinger equation and associated inverse scattering 
transform analytical solution and the higher-order spectral 
method in Section 2. Because the new developments will be 
integrated into WEC-Sim, a brief review of the internal logic and 
algorithms of the open-source code is provided in Section 3. We 
then present the ideas on nonlinear ocean wave models and 
nonlinear PTO control theory and algorithms including 
reinforcement learning and fuzzy logic in Sections 4 and 5, 
respectively. Existing wave, WEC and PTO control basin test 
data and additional new tests to be conducted are described in 
Section 6. The available measured ocean wave data from the 
SWIFT buoys that will be used to validate the nonlinear wave 
and PTO models is summarized in Section 7. Finally, concluding 
remarks on future plans of the project are provided in Section 8. 

 
2 LITERATURE REVIEW 

The study of water wave behavior is perhaps one of the 
oldest research topics in engineering. More complicated 
computational fluid dynamics (CFD) models and large-scale 
experimental facilities have been developed, along the 
advancements in computing resources, mathematical 
developments, and with increasing demand, especially from the 
Energy industry (especially oil and hydrokinetics). In 
comparison, the trend in improvement and developments have 
been much slower for analytical fluid dynamics (AFD), due to 
lack of efficient mathematical tools. Also, highly demanding 
mathematical subjects that are usually involved in AFD, propels 
researchers to take alternative approaches such as computational 
fluid dynamics (CFD). This article first outlines the current status 
of research and application of wave field modeling, analysis, and 
generation, to pave the way to identifying the gaps and 
improvement opportunities.  

The nonlinear Schrödinger (NLS) equation was originally 
derived from the Zakharov equations [1] and it describes the 
1+1D wave dynamics in deep-water conditions. The equation is 
derived through the expansion of the frequencies about a carrier 
frequency to the second order and replacing the interaction term 
with its value at the carrier frequency. 

From a wave analysis point of view, the goal of analyzing 
wave data is to understand the causal loop in which the complex 
hydrodynamic behavior of a wave field forms and is observed. 
One of the most intuitive approach is to decompose the wave 
train into some form of components, which in return would 
simplify the problem in hand. There are many ways to perform 
such transformation, with both linear and nonlinear assumptions, 
or different properties and domains of transformation. The 
domain of transformation is the space on which the transformed 

time (space)-series lie in, for example a frequency (wavenumber) 
or a time (space)-frequency (wavenumber) domain. Also, the 
concept of linearity and nonlinearity are different in data analysis 
than in a wave equation. The most straight forward definition of 
linearity in a transformation is first, if all the input is multiplied 
by some factor, then the transformed components are amplified 
with the same factor. Second, the superposition is allowed for the 
decomposed components. If a transformation does not have any 
of these two characteristics, then it should be considered a 
nonlinear transformation.   

For simplicity, and the fact that wave data are usually 
available in the form of time series, the types of corresponding 
analysis domains would be frequency and time-frequency 
domains. Time information of a frequency domain analysis is 
lost and the resulting spectrum provides information about the 
amplitude or energy distribution over a range of frequencies. 
Since all the information about time is now disregarded, hence, 
the frequencies are assumed to be stationary and in permanent 
form, which would oscillate infinitely, infinite being a measure 
of duration of the recorded time series. In a time-frequency 
analysis the time information of each frequency component is 
being preserved, so each may behave in a stationary or 
nonstationary manner. Among some of the most implemented 
transformations are the linear (fast) Fourier (FFT), Hilbert-
Huang (HHT), and inverse scattering (IST) transformations. 
Since the focus of this study is the implementation of nonlinear 
wave field approximations in WEC-Sim, the analytic IST 
transformation is adopted here. 

Computational fluid dynamics (CFD) is one of the most 
commonly approaches in modeling wave fields, both in open 
ocean and closed basins. CFD owes its popularity to the ease of 
use and usually user friendly interfaces, along with the vast 
amount of output information provided after each simulation. 
The most well-known CFD codes are the Navier-Stokes (NS) 
solvers, which are usually based on one of finite difference (FD), 
finite volume (FV), or finite element (FE) methods. The main 
drawback of using a NS solver is the required computing time, 
which usually takes in order of days and weeks for a thirty 
minutes simulation time. For most of the engineering 
applications, assuming an incompressible, irrotational, and 
inviscid flow is an accurate assumption and such assumptions 
guarantees the existence of a velocity potential and reduces the 
NS equations to Euler equations. Potential flow solvers are much 
faster in comparison to the NS solvers and most of them are 
based on a boundary element or higher order spectral methods. 
A review of a higher order spectral method solver developed by 
LHEEA-ECN (Hydrodynamics, Energetics and Atmospheric 
Environment Laboratory of Ecole Centrale de Nantes) group to 
be implemented in the present study in validation and generation 
of the wave environment is provided in the following paragraph.  

The High-Order Spectral method (HOSM) includes two 
packages, namely HOS-NWT, a numerical wave tank model 
with wavemaking and absorption capabilities, and HOS-Ocean, 
an open boundary solver to approximate wave field 
transformation from an initial state. HOS method owes its 
accuracy and efficiency to the pseudo-spectral approach in the 
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solution procedure and has been proven to be more efficient than 
finite-base discretization models [2], [3]. The solution procedure 
details and formulation of the problem can be found in the 
original works of [4] and [5]. In recent years, there have been an 
increase in implementation of HOS packages that provided a 
large database of validation available and the code can be 
considered mature for engineering practices [3]. Some of the 
applications that could be more appealing to the energy industry 
and deep-water wave modeling are, but not limited to, 
modulational instabilities ([6],[7]) and freak waves ([8], [9], 
[10]). It should be noted that HOSM is a strong nonlinear model 
and can include the wave-wave interactions up to a defined order, 
which is called the order of HOSM. For instance with an order 
of 3 HOSM model, an accuracy equal to that of Zakharov 
equation [1] can be achieved [9]. Further investigation revealed 
that an order 6 HOSM model with formulation of [5] corresponds 
to a nearly fully nonlinear model [11]. 

One of the project goals is to explore and develop nonlinear 
PTO control approaches that not only improves power capture 
compared to simple, traditional linear approaches (e.g., 
damping), but also satisfies additional considerations of ease of 
implementation and application by engineers without a 
theoretical control background, and can be easily implemented 
in WEC-Sim.  A survey of candidate PTO control approaches 
has been conducted, including linearization techniques, phase 
plane (topological) control, describing functions, reinforcement 
learning, and fuzzy control.  Of these candidates, reinforcement 
learning and fuzzy control have been selected for further 
development for inclusion in WEC-Sim. 

WEC-Sim is an established wave energy modeling tool with 
particular application to early stage WEC researchers and 
developers in need of validating their design prior to significant 
investment in physical modeling. As developers advance in TRL, 
a linear modeling approach may no longer be appropriate for the 
needs of this focus group.  WEC-Sim provides a relatively 
friendly workflow and relatively low-cost alternative to 
commercial WEC modeling packages. It provides a six-degree 
of freedom time-domain simulation environment created 
explicitly for WEC design and evaluation. The code is open 
source and developed in the MATLAB/Simulink environment.  
MATLAB, Simulink, Simscape, and Simscape Multibody are 
required to run the basic configuration of WEC-Sim. Additional 
toolboxes may be necessary for more complex modeling 
scenarios. 

The analytical and numerical models described herein are 
mathematical representations of propagating water waves. In this 
context, an analytical model is obtained after the integration of 
the PDE system, where a series of assumptions and 
simplifications have been undertaken, and more importantly, the 
equations have been linearized in such a way that a continuous 
solution of the unknowns (e.g. the surface elevation, pressure 
and/or velocity field) is obtained. Moreover, analytical solutions 
to the nonlinear wave propagation problem have been found 
applying mathematical techniques such as perturbation series, 
where the nonlinearity is considered weak for the series to be 
convergent. 

On the other hand, numerical models are those where the 
equations of motion are solved by applying numerical 
integration techniques, which implies that the governing 
equations have been discretized, and a solution to the unknowns 
is obtained with the same spatial or temporal discretization. The 
primitive governing equations (as well as the boundary 
conditions) can be as complex and nonlinear as required. 
However, domain size and computational time are still the major 
limitations to this approach. The analytical and numerical 
models presented in the previous sections are some of the 
multiple versions of different models solving the propagation of 
water waves. 

Regardless of the complexity of the model, as indicated 
above, some assumptions and simplifications were taken. Even 
for the most general expressions, mass and momentum 
conservation is also an assumption. Therefore, measurements 
and data comparison are required for model calibration and 
validation. Laboratory data is, in general, the preferred source for 
model validation since boundary and initial conditions are 
controlled, the repeatability and, hence, the uncertainty of the 
measurement can be assessed, and the conditions can be 
considered deterministic, i.e. the wave conditions are pre-
defined. 

In the context of physical model testing, experiments carried 
out in the absence of any specimen, model, structure or device, 
are defined as undisturbed wave tests, in the sense that the waves 
propagate without being disturbed by the device. Also known as 
wave calibration tests, these tests are the ones selected to perform 
analytical and numerical model validation of the wave 
propagation. Once the mathematical models have been validated, 
they can be used in the presence of physical models, e.g. wave 
energy converters, where the response of the device is 
investigated. 

Field data are available for validation of time series 
generation and wave maker theory.   The data were collected 
offshore of Oregon (USA) during six extreme wave events with 
significant wave heights exceeding 8 m [13].  Data collection 
used SWIFT buoys, which employ high sampling rates to capture 
wave breaking and other dynamics process [14].  The existing 
field data area well-suited to this project because 1) the wave 
conditions are likely to have strong nonlinearities, and 2) the 
buoys were deployed in pairs separated by a few wavelengths, 
such that coherent wave predictions can be tested.   
 
3 WEC-SIM SYSTEM OVERVIEW 

As the users of WEC-Sim add complexity to their model, 
modeling nonlinear components of the simulation become more 
attractive. The WEC-Sim developers have already implemented 
non-linear hydrostatic restoring and Froude-Krylov forces as an 
option. They also suggest other parts of the model where 
nonlinearities could be introduced.  

Non-linear hydrostatic restoring and Froude-Krylov forces 
are particularly appropriate for bodies where the wetted surface 
changes with time.  WEC-Sim can, in each time step, recalculate 
the wetted surface and the corresponding hydrostatic and 
Froude-Krylov force to be applied.   
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Other body related nonlinear components which can be 
applied in WEC-Sim are a quadratic drag force and Morison 
element terms. The values for these parameters are typically 
heuristic and determined experimentally, through free decay and 
forced oscillation tests. Additionally, nonlinear PTO and 
mooring systems can be implemented in WEC-Sim. There are 
non-linear elements in the PTO-Sim module which can be 
applied. 

Fundamentally, WEC-Sim solves an equation of motion in 
six-degrees of freedom as follows: 

 
𝑚𝑚�̈�𝑋 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) + 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐹𝐹𝑣𝑣(𝑡𝑡) + 𝐹𝐹𝑀𝑀𝑀𝑀(𝑡𝑡) + 𝐹𝐹𝐵𝐵(𝑡𝑡)

+ 𝐹𝐹𝑚𝑚(𝑡𝑡)                                                              (1) 
` 
where 𝑚𝑚 is the mass matrix, �̈�𝑋 is the acceleration vector of the 
device, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) is the wave excitation force and torque, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) 
is the force and torque vector resulting from wave radiation, 
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the power take off force and torque vectors, 𝐹𝐹𝑣𝑣 is the 
viscous force terms, 𝐹𝐹𝑀𝑀𝑀𝑀(𝑡𝑡) is the Morison element force and 
torque vector, 𝐹𝐹𝐵𝐵(𝑡𝑡) is the net buoyancy restoring force and 
torque vector, and 𝐹𝐹𝑚𝑚 is the force and torque vector resulting 
from the mooring connection.  Implementation of nonlinearities 
can be realized in any of these terms to improve their prediction 
of a real-system analysis. 

The focus of this project will be on improving the 
capabilities of WEC-Sim to include more nonlinear capabilities.  
Primary areas of contribution include nonlinear wave input, 
mooring response, and PTO control as addressed in other 
sections of this paper.  The plan is to integrate these 
enhancements into the main WEC-Sim distribution, following 
the system set up by the WEC-Sim code developers.  The code 
is hosted on GitHub, and a process of forking a version of the 
code and then submitting a pull request to the creators will be 
taken.  Wave generation enhancements could potentially be 
added directly to the wave class, whereas mooring and control 
additions could be added as WEC-Sim modules.  Alternatively, 
if deemed necessary, code written in another programming 
language such as C++ or Python could be coupled to WEC-Sim.  
An example of this is the MoorDyn mooring simulator (written 
in C++) which couples with WEC-Sim. 

WEC-Sim is a powerful modeling tool for WEC researchers 
and developers.  Although appropriate as is for most 
applications, the code could benefit from more non-linear 
treatment of many aspects of the code.  Efforts will be focused 
on improving the non-linear implementation of input wave 
conditions, mooring analysis, and control approaches. 

In general, considering three steps of WEC-Sim operation, 
namely preprocessing, time domain analysis, and the post 
processing and visualization, only the improvement in the frame 
of time domain analysis are included in the current study. To this 
end, some necessary details of the analysis procedure is 
presented here. All the steps of the analysis are considered based 
on the linear hydrodynamics coefficients and linear analysis 
except for the following parts. A weekly nonlinear approach [15] 
is adopted to capture above still water level, represented by 𝐷𝐷, 

wave properties, which is ignored by linear wave theory, by 
starching the z-coordinate to the instantaneous water level as: 

 

𝑧𝑧∗ =
𝐷𝐷(𝐷𝐷 + 𝑧𝑧)
𝐷𝐷 + 𝜂𝜂

− 𝐷𝐷                               (2) 

Also, the mooring force computations are nonlinear, 
considering the implementation of MoorDyn package in WEC-
Sim. So, it can be seen that the potential steps for improving the 
WEC-Sim computation abilities are lying in the wave field 
analysis and PTO control systems. Although a major 
improvement can be performed on the preprocessing step of 
computing the hydrodynamic coefficients using a BEM solver, 
but this is out of scope of this research. 

The wave field analysis currently used in WEC-Sim is based 
on linear wave theory, including the computations of free surface 
elevation and orbital velocities. This fact restricts the 
implementation of WEC-Sim to relatively low sea states and 
ignores the nonlinearities in wave profile, instabilities in deep 
water waves, and interactions between wave components. Since 
the WECs are designed to operate in moderate and higher sea 
states and to survive extreme sea conditions, such limitation does 
not agree with the expectations. An important improvement is to 
replace the current linear wave theory computations with a 
nonlinear approximation of the wave field. This nonlinear wave 
model can be either from an analytical solution of nonlinear 
wave equation, for example nonlinear Fourier analysis of the 
nonlinear Schrödinger equation, or results from a CFD code.  

 
4 NONLINEAR OCEAN WAVE MODELS 

The “art” of wave field modeling starts with setting up the 
original initial boundary value problem (IBVP) of a fluid 
domain, here for example is a closed basin of a wave 
experimental facility. The IBVP consists of a set of field 
equations that are usually based on conservation laws, governing 
the inside of the fluid domain, and a set of boundary conditions. 
Figure 1 presents an example of such an IBVP, formulated for an 
incompressible, irrotational, and inviscid fluid. 

The investigation and understanding of any wave field 
behavior is through the solution of the IBVP depicted in Figure 
1. The approach to understand such a complex system needs 
additional tools including simplifying assumptions, numerical 
approximations, and perhaps some solution domain 
transformations. Depending on the decided approach, different 
wave modeling procedures are available, ranging from complete 
Navier-Stokes numerical solvers to analytical linear wave theory 
with spectral methods. CFD provides a numerical approximation 
and solution of the original or modified IBVP and AFD solves 
the wave equations by providing analytical solutions, if possible, 
to the IBVP. 

The most general form of field equations for explaining the 
behavior of fluid, assuming it is Newtonian, is the Navier-Stokes 
(NS) equations.  The NS equations are one of the most 
comprehensive systems of equations for fluid dynamics, 
consisting of three scalar momentum equations, governing the 
conservation of momentum, in three-dimensional Cartesian 
coordinates, as presented in Equations 3. These equations are 
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always solved, implicitly or explicitly, together with the 
conservation of mass equation (Eq. 4).   

𝜌𝜌 �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑡𝑡

+ (𝒖𝒖.∇)𝒖𝒖�                                

  = −∇𝑝𝑝 + ∇. �𝜇𝜇(∇𝒖𝒖 + (∇𝒖𝒖)𝑃𝑃) −
2
3
𝜇𝜇(∇.𝒖𝒖)𝑰𝑰� + 𝑭𝑭   (3) 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

+ ∇. (𝜌𝜌𝒖𝒖) = 0                      (4) 

in which, 𝒖𝒖 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the velocity vector, 𝑝𝑝 is the pressure, 
𝜌𝜌 represents the fluid density, 𝜇𝜇 is the dynamic viscosity of the 
fluid, 𝑰𝑰 represents an identity matrix, and 𝑭𝑭 is the body forces 
[18].  

The derivation procedure and more details can be found in 
many standard hydrodynamics or water wave mechanics books. 
The reader is encouraged to find details especially in [16], [17], 
and [18] among others.  

 

 
Figure 1: IBVP of a fluid domain. 

In the present research, the main focus is on non-breaking, 
incompressible, irrotational, and inviscid wave fields. Such 
assumptions guarantees the existence of a velocity potential, 
𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡), which provides information on the fluid particle 
velocity vector as, 

𝒖𝒖 = ∇ϕ                                            (5) 

where ∇= � 𝜕𝜕
𝜕𝜕𝑒𝑒

, 𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕
𝜕𝜕𝜕𝜕
�. The surface tension effect is assumed to 

be negligible and the depth is constant at 𝑧𝑧 = −ℎ . The wave 
profile, free-surface elevation is represented by 𝑧𝑧 =  𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡). 
Under these assumptions, the NS equations are reduced to Euler 
equations ([16], [19]), as 

∇2𝜙𝜙 = 0, −ℎ < 𝑧𝑧 < 𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡)                    (6)  
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

= 0,   𝑧𝑧 = −ℎ                                  (7) 

𝜂𝜂𝑡𝑡 + 𝜙𝜙𝑒𝑒𝜂𝜂𝑒𝑒 + 𝜙𝜙𝜕𝜕𝜂𝜂𝜕𝜕 = 𝜙𝜙𝜕𝜕,   𝑧𝑧 = 𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡)             (8) 

𝜙𝜙𝑡𝑡 +
1
2

|∇𝜙𝜙|2 + 𝑔𝑔𝜂𝜂 = 0,   𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)              (9) 

As can be seen from the Euler equations, Equations 6-9, the 
source of nonlinearity of the wave problem is in the free surface. 
On this boundary, there are nonlinear boundary conditions in 
addition to the unknown location of the free surface. 

Additionally, for the general IBVP of the fluid domain, 
additional lateral boundary conditions are needed to define the 
wave field dynamics. Such boundary conditions can be defined 
in two ways, (1) through an infinite-plane assumption, Equation 
10, or (2) a periodic boundary condition [20], Equation 11. 

|∇𝜙𝜙| → 0, 𝜂𝜂 → 0 as (𝑥𝑥2 + 𝑦𝑦2) → ∞             (10) 

𝜂𝜂�𝑥𝑥 + 𝐿𝐿𝑒𝑒 ,𝑦𝑦 + 𝐿𝐿𝜕𝜕 , 𝑡𝑡� = 𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡)                           

𝜙𝜙�𝑥𝑥 + 𝐿𝐿𝑒𝑒 ,𝑦𝑦 + 𝐿𝐿𝜕𝜕 , 𝑡𝑡� = 𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                 (11) 

The Euler equations are a good starting point for derivation 
and explanation of the wave equations, but they can only be 
solved using numerical approximations using CFD. Some of the 
most appropriate numerical tools to approximate and solve the 
Euler equations are higher order spectral methods (HOSM) and 
boundary element methods (BEM). The Euler equations can be 
used in deriving approximate wave equations by method of 
multiple scales [19]. Such wave equations can be the doorways 
to analytical solutions of the wave field and can provide in depth 
understanding of the underlying physical phenomenon. 

The motion and behavior of water waves, in addition to the 
general IBVP, can also be explained using wave equations. These 
wave equations, which mostly govern the motion of the free 
surface, are usually derived from simplification and perturbation 
of the wave IBVP. Wave equations come in the form of linear or 
nonlinear equations, depending on the derivation procedure, and 
explain different aspects of the wave behavior, such as 
nonlinearity and dispersion. Most of the nonlinear wave 
equations are derived by nonlinear singular perturbation of the 
Euler equations [19]. In return, if the perturbation, or the 
nonlinearity, parameter is allowed to be small enough, then the 
linear version of the nonlinear equations are recovered. It should 
be mentioned that all the waves in this study are assumed to 
propagate in 1+1D domain, which is 1-dimensional in space and 
time.  

4.1 Nonlinear Schrödinger Model for Deepwater 
The NLS equation, for deep-water narrow-banded wave 

fields, is given as ([22], [23]): 
𝑖𝑖�𝜓𝜓𝑡𝑡 + 𝐶𝐶𝑔𝑔𝜓𝜓𝑒𝑒� + 𝜇𝜇𝜓𝜓𝑒𝑒𝑒𝑒 + 𝜈𝜈|𝜓𝜓|2𝜓𝜓 = 0           (12) 

in which, 𝜓𝜓 is the complex envelope function of the wave train, 
𝐶𝐶𝑔𝑔 = 𝜔𝜔0/2𝑘𝑘0 is the deep water group velocity, 𝜇𝜇 = −𝜔𝜔0/8𝑘𝑘02 
represent the dispersivity coefficient, 𝜈𝜈 = −𝜔𝜔0𝑘𝑘02/2 is the 
nonlinearity coefficient, and 𝜔𝜔0 and 𝑘𝑘0 are the carrier circular 
frequency and wave numbers. From a more physical point of 
view, the NLS equation presents a balance between dispersive 
and nonlinear effects in a wave field, which are the second and 
the third term in Equation 10, respectively. This form of the NLS 
is called space-like NLS, sNLS [23], and is suitable for initial 
value problems (Cauchy problems) where the initial wave field 
as a function of spatial coordinates is known and the question is 
about the transformation of this initial profile in the space-time 
domain. The boundary value problem with measured free surface 
elevation time series at a fixed location can be analyzed and 
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modeled using the time-like nonlinear Schrödinger, tNLS, as 
[23]:  

𝑖𝑖�𝜓𝜓𝑒𝑒 + 𝐶𝐶𝑔𝑔′𝜓𝜓𝑡𝑡� + 𝜇𝜇′𝜓𝜓𝑡𝑡𝑡𝑡 + 𝜈𝜈′|𝜓𝜓|2𝜓𝜓 = 0               (13) 

in which, 𝐶𝐶𝑔𝑔′ = 1/𝐶𝐶𝑔𝑔, 𝜇𝜇′ = 𝜇𝜇/𝐶𝐶𝑔𝑔3, 𝜈𝜈′ = 𝜈𝜈/𝐶𝐶𝑔𝑔, and 𝜌𝜌′ = 𝜌𝜌𝐶𝐶𝑔𝑔. In 
general, the solutions of sNLS are related to those from tNLS 
through the following simple transformations: 

𝑥𝑥 → 𝑡𝑡 , 𝑡𝑡 → 𝑥𝑥 ,𝜌𝜌 → 𝜌𝜌′ , 𝜈𝜈 → 𝜈𝜈′, 𝜇𝜇 → 𝜇𝜇′                 (14) 

The amplitude of the free surface is given by [23]: 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑘𝑘0𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑐𝑐. 𝑐𝑐.                       (15) 

in which 𝑐𝑐. 𝑐𝑐. is the complex conjugate. One of the practical and 
interesting properties of the solutions of the NLS equation is that 
they contain the small-modulation instability, known as the 
Benjamin-Feir instability (BFI) [24]. This instability 
phenomenon is one of the important characteristics of deep-
water waves and as waves propagate from shallower regions, 
depth effects control such instabilities. These unstable solutions 
of the NLS are called “breathers”, which are the sources of 
extreme, or rogue, wave formation. Considering NLS equation 
in analysis and modeling of wave field for WEC design could 
improve the survivability of the deployed devices. Note that the 
BFI is weakly stable for waves with increasing directional 
spreading. 

4.2 Nonlinear Fourier Analysis of NLS 
The nonlinear Fourier transformation (NLFT) or inverse 

scattering transformation (IST) is a mathematical tool to solve 
integrable nonlinear partial differential equations (PDEs), some 
of which are the nonlinear wave equations of KdV, KP, NLS, etc. 
The general outline of NLFT is described in [23], [25], and [26], 
some details of which is presented here.  

The first step of NLFT is to assume a PDE that best explains 
the considered physical phenomenon. Next, using the Lax pairs 
of the assumed PDE, the eigenvalue problem (specifically, the 
Zakharov-Shabat eigenvalue problem [27]) is constructed. 
Solution of the eigenvalue problem provides the nonlinear 
spectrum components, which is called direct NLFT or direct 
scattering transformation (DST). Finally, using the nonlinear 
spectrum values, the inverse problem can be solved using the 
superposition of nonlinear wave components and their 
interactions. Readers are encouraged to read the details of 
computing steps in [23] and for an extensive reference listing. 
The problem outlines here are based on a Cauchy approach (an 
initial value problem with space-series) but can be easily 
extended to boundary value problem solution (with measured 
time-series) using the transformations outlined in this section.   

The focus of this research is on nonlinear analysis and 
modeling of WEC operational wave environment, which can be 
assumed to be mostly in deep-water, so the nonlinear 
Schrödinger equation (NLS) is chosen as the considered wave 
equation, the details of which is presented in the previous 
sections. Using the following transformations: 

 

𝑢𝑢 = 𝜌𝜌�𝜓𝜓,𝑇𝑇 = 𝜇𝜇𝑡𝑡,𝑋𝑋 = 𝑥𝑥 − 𝐶𝐶𝑔𝑔𝑡𝑡                    (16) 

the space-like Schrödinger equation (sNLS) becomes 

𝑖𝑖𝑢𝑢𝑃𝑃 + 𝑢𝑢𝑋𝑋𝑋𝑋 + 2|𝑢𝑢|2𝑢𝑢 = 0                          (17) 

in which 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the input of the NLFT, and is the scaled 
dimensional complex envelop scaled by a nonlinearity 
parameter, 𝜌𝜌�, explained in the previous sections. The 
corresponding eigenvalue problem of sNLS becomes [23], 
 

Ψ𝑒𝑒 = 𝑄𝑄(𝜆𝜆)Ψ  , 𝑄𝑄 = �−𝑖𝑖𝜆𝜆 𝑢𝑢
−𝑢𝑢∗ 𝑖𝑖𝜆𝜆�               (18) 

where 𝜆𝜆 is the time independent complex eigenvalue. The most 
general solutions for NLS are the ones given by the inverse 
scattering transform (IST) [23]. The results from NLFT states 
that wave trains consist of a linear superposition of sine waves, 
Stokes waves, and breather trains, plus nonlinear pairwise 
interactions among these components [28]. The mathematics is a 
kind of nonlinear superposition principle which is constructed as 
the general nonlinear spectral solution of the nonlinear 
Schrӧdinger equation and associated Riemann theta functions 
[23]. In this formulation, the nonlinear spectrum is a complex 
period matrix in which the diagonal elements correspond to 
Stokes waves, and the off-diagonal elements indicate the 
strength of the nonlinear interactions between the components 
[28].  

Implementing NLFA to compute the solutions of nonlinear 
wave equations automatically contains all free and bound modes 
of the solution. Sine waves and Stokes waves are presenting free 
and bound modes, respectively. The most important advantage 
of NLFA is an analytical representation for all nonlinear Fourier 
components. The components in NLFA, a nonlinear spectral 
(Fourier) theory, include sine waves, Stokes waves, phase locked 
Stokes waves known as breathers and solitons.  

  The nonlinear spectrum resulting from NLS equation, for 
examples see [23][25][26][28], consists of two main parts, the 
main spectrum, and spines. The stability of each of the wave 
frequency components can be determined from the spine 
formation. If the spine is a line going through the real axis 
(frequency axis), then this mode is a stable Stokes wave. If the 
spine connects two points of the spectrum and never crosses the 
real axis, then the resulting mode is an unstable breather packet, 
or equivalently a pair of phased-locked Stokes waves. Some of 
the most recent application of nonlinear spectrum in energy 
computation of wave trains and approximation of the extreme 
wave conditions can be found in [25] and [26]. 
 
4.3 Higher-Order Spectral Ocean Wave Model 

In the potential flow assumption, the field equation is the 
Laplace equation in 3-D as: 

∇22𝜙𝜙 +
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑧𝑧2

= 0                               (19) 
 
in which, ∇2 is the Laplacian in 2D in the horizontal directions. 
The free surface boundary, both kinematic and dynamic, are 
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written in term of the velocity potential on the free surface, 
𝜙𝜙�(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙�𝑥𝑥, 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡)�, following [1] as:  

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

= (1 + |∇2𝜂𝜂|2)𝑊𝑊 − ∇2𝜙𝜙� .∇2𝜂𝜂  ,                            

 𝑊𝑊 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

(𝑥𝑥, 𝑧𝑧 = 𝜂𝜂, 𝑡𝑡)                         (20) 

𝜕𝜕𝜙𝜙�
𝜕𝜕𝑡𝑡

= −𝑔𝑔𝜂𝜂 −
1
2
�∇2𝜙𝜙��

2 +
1
2

(1 + |∇2𝜂𝜂|2)𝑊𝑊2         (21) 
 

in which 𝑊𝑊 is the vertical velocity at the free surface and is the 
only variable that needs solution in the fluid domain.  

In pseudo-spectral method of solution, computation of some of 
the equations, usually including products of variables, are 
performed in the physical domain and the rest, usually including 
the derivatives of the variables, in the Fourier space. This 
approach exhibits some amazing convergence properties. The 
addition of a second-order wavemaker theory in the HOS-NWT 
makes this package even more suitable for validation and 
prediction of the wave conditions. Details of the additional 
wavemaker boundary condition and the solution procedure is 
well defined in [2]. 

HOS-NWT was validated by selected experimental data 
obtained from Oregon State University O.H. Hinsdale Wave 
Research Laboratory. Figure 2 presents the comparison between 
the measured free surface elevation and the predictions from 
HOS-NWT at different wave gauge locations. An overall good 
agreement can be seen between the predicted and measured 
values which provides a better confidence in implementation of 
HOSM for prediction of wave field characteristics and 
elevation/orbital velocity time series. More detail on the 
computational steps and details of discretization is not presented 
here and the reader is encouraged to find such information 
following [3] and other publication referenced in this section. 

 
Figure 2: An example of HOSM validation vs. the experimental results 

for JONSWAP waves with 𝐻𝐻𝑠𝑠 = 0.045 𝑚𝑚, 𝑇𝑇𝑝𝑝 = 1.0 𝑠𝑠, and (a) 𝛾𝛾 =
3.3, (b) 𝛾𝛾 = 5.0, (c) 𝛾𝛾 = 7. 

5 NONLINEAR PTO CONTROL ALGORITHMS 
5.1 Reinforcement Learning 

Assume a PTO control law of  
 

𝐹𝐹𝑝𝑝𝑡𝑡𝑝𝑝 = 𝑐𝑐 �̇�𝑧 + 𝑘𝑘 𝑧𝑧                                (22) 
 

where 𝑐𝑐 is the PTO damping, 𝑘𝑘 is the PTO stiffness, and �̇�𝑧 and 𝑧𝑧 
are the WEC speed and position, respectively.  The application 
of reinforcement learning is the online tuning of the damping and 
stiffness to maximize power production (or whatever the 
designer may wish to include in the objective function, for 
example, power could be balanced against operation near or over 
the systems constraints to avoid damage and wear-and-tear. 

Reinforcement learning is used to learn the optimal 
combination of PTO damping and stiffness coefficients in each 
sea state without considering any internal models of the device 
dynamics.  The particular variant of reinforcement learning 
utilized here is called Q-learning. In Q-learning, by agent and 
environment interaction, the controller learns the optimal 
behavior, or PTO control policy.  Because the space and 
environment are continuous, neural networks are combined with 
Q-learning to consider all sea states in addition to helping the 
model converge faster to optimal behavior. Neural networks are 
the agent that learns to map state-action pairs to rewards. A block 
diagram of the overall control structure is shown in Figure 3. 

At the heart of Q-learning is the Q function, which maps 
state-action pairs to the highest combination of current and future 
rewards (in this case, power produced). 

 
𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) ← (1 − 𝛼𝛼𝑘𝑘)𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)                            
+ 𝛼𝛼𝑘𝑘�𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)�         (23) 

 
The 𝑄𝑄 function, which is a function of the current state and 

action, is updated with some combination of the previous known 
value of the state and action pair at time t along with the current 
reward (i.e., the value of the current state and action pair) and a 
weighted consideration of the value of future rewards.   
 

 
Figure 3: reinforcement learning block diagram. 

The parameters alpha and gamma control the weight of 
current vs. previous information, and the value of future 
considerations, respectively.  The reward is whatever the 
designer deems desirable behavior, which in a wave energy 

(a) 

(b) 

(c) 
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application will likely be power with some penalty for operating 
at or beyond system limits. 

Figure 4 and Figure 5 below show simulated results of the 
Q-learning algorithm adaptively finding the optimal PTO 
damping and stiffness for two cases: regular and irregular waves. 
It is demonstrated that the algorithm is able to find the optimal 
stiffness and damping.  In actual application, the optimal 
stiffness and damping for the current sea state would not be 
known a priori. 

 

 
Figure 4: reinforcement learning converging to the optimal PTO 

stiffness and damping in regular seas. 

 

 
Figure 5:  reinforcement learning converging to the optimal PTO 

stiffness and damping in irregular seas conditions. 

5.2 Fuzzy Logic 
Fuzzy logic is a modeling and control approach in which the 

system state and actions are classified as belonging to sets and 
following logical rules based on plain language heuristics and 
expert knowledge.  For example, wave energy converter speed, 
which may range from -1 m/s to 1 m/s in normal operation, could 
be classified such that speeds between 1 m/s and 0.25 m/s are 
“large positive”, speeds between 0.75 m/s and 0 m/s are 
classified as “small positive”, and so on in a similar fashion for 
the negative speeds.  It is noted that in this example, the 
boundaries of the sets overlap.  In fuzzy logic, partial set 
membership is allowed.  For example, a speed of 0.5 m/s could 
be classified as being 33% membership of the “large positive” 
set and 66% membership of the “small positive” set. 

The control portion of fuzzy logic is the resolution of logical 
statements that dictate actions to be taken.  For example, for 
something like simple linear damping, the control laws could be: 
if the speed is large positive, the PTO force is large negative 
(assuming PTO force is defined as positive in the same direction 
as motion), and if the speed is small positive, the PTO force is 

small positive.  If the speed was 0.5 m/s, as given in the example 
above, we can see that we need to apply 33% of the first rule and 
66% of the second rule.  There are several different methods to 
resolve this, the simplest of which is to simply apply 33% of 
whatever is defined as a large negative PTO force and 66% of 
whatever is defined as a small negative PTO force. 

The chief advantages of fuzzy logic are that it can handle 
highly non-linear control that would otherwise be difficult to 
specify as a continuous function, and it is relatively easy to 
specify and deploy in applications in which a human expert 
operator has a relatively good understanding of stable and 
desirable behavior. 

Using the existing RM3 model in WEC-Sim, a fuzzy control 
system implementing over-travel protection on top of a 
traditional linear PTO damping strategy was developed. The 
Fuzzy Inference System was built using MATLAB's Fuzzy 
Logic Toolbox and supplied the damping coefficient for the 
force-actuated linear-PTO in WEC-Sim.  Figure 6 shows the 
input membership functions used for speed and position. The 
operating ranges for these inputs are selected based on the 
performance of a linearly damped point absorber under nominal 
wave conditions, which were assumed as a 2 meter wave height 
and a period of 10 seconds. 
 

 
 
 

 
Figure 6: example position and velocity fuzzy membership functions. 

The relative velocity of the float is considered “too fast'” 
when it reaches the maximum speed achieved at the expected 
wave conditions, as such both membership functions, the 
positive and negative directions, become fully true at this time. 
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The position membership functions include the “middle,” 
considered anywhere in the expected operating range, and upper 
and lower over-travel limits, which become fully true at the 
edges of the nominal range. When the float begins to travel 
outside the nominal range, the controller should respond by over-
damping the float to keep it within the limits. The following rules 
will achieve this 

 
• If position is middle, then PTO force is linearly damped 
• If position is too high and velocity is too fast up, then PTO 

force is very over-damped 
• If position is too low and velocity is too fast down, then 

PTO force is very over-damped 
 

Figure 7 shows the float's relative position under the 
nominal sea state, for a linearly damped model, and a linear 
damped model including the fuzzy over-travel protection. The 
result of the over-damping for position control is a compromise 
of 7.31% of the captured energy. It may be possible to decrease 
the losses incurred while in the nominal range through tuning, 
with the trade-off of subjecting the PTO to more sudden forces. 
A similar plot is shown for a wave height of 3 meters in Figure 
8.  This plot shows that the fuzzy logic controller is capable of 
limiting the motion of the float in high wave heights, while 
maintaining comparable power performance to a linearly 
damped PTO in the operating nominal range. 

  

 
Figure 7:  float position under linearly damped control, and fuzzy 

control to limit overtravel for system protection, with 2 meter regular 
seas. 

 

 
Figure 8:  float position under linearly damped control, and fuzzy 

control to limit overtravel for system protection, with 3 meter regular 
seas. 

6 WAVE BASIN TEST DATA FOR ANALYTICAL AND 
NUMERICAL MODEL VALIDATION  

In this section, existing undisturbed wave test data available 
for use in this project study are described, as well as the 
identification of additional undisturbed wave tests necessary to 
validate the nonlinear models presented in the previous sections. 

The identification of suitable undisturbed wave tests also 
considers the availability of experimental data that includes a 
physical model device where the wave-structure interaction has 
been measured (wave excitation, scattering and radiation), the 
device dynamic properties has been characterized (stiffness, 
damping and added mass), and the Wave Energy Converter 
includes measurements of a Power Take-Off. In this way, not 
only the analytical and numerical models of the wave 
propagation can be validated, but also the simulation models of 
the device dynamics and PTO performance, both to be 
implemented in WEC-Sim. 

Finally, the identification of existing test data for model 
validation will provide a basis for additional experiments to be 
conducted to extend the database, particularly with the vision of 
aiming nonlinear conditions of waves, PTO control strategies, 
and mooring system response. 

 
6.1 Existing Wave, WEC and PTO Control Test Data 

To perform the analytical and numerical model validation, 
only experimental data available from previous projects 
executed at the O.H. Hinsdale Wave Research Laboratory 
(HWRL) were considered. A significant amount of experiments 
involving water wave propagation have been carried out in the 
HWRL over the last years, where detailed data has been 
collected in a broad range of applications, including studies of 
Wave Energy Converters, floating structures, wave-structure 
interaction, and wave propagation and hydrodynamics. In 
principle, all of them are suitable for model comparison. 
However, wave generation techniques, availability of data, 
existence of cases with and without the model, and tests related 
to Marine Energy and measurements of PTO performance, have 
reduced the selection of those cases presented herein. 

Firstly, only studies carried out after 2015 have been 
considered. The reason behind is the significant improvement of 
wave generation techniques implemented in the laboratory at this 
time. Nonlinear regular waves have been simulated following 
[29] and [30], and second-order compensation has also been 
programmed for regular and irregular wave generation according 
to [31] and [32]. 

Wave Energy Devices have been tested in both facilities (i.e. 
the Large Wave Flume –LWF- and the Directional Wave Basin 
–DWB-) at HWRL. In general, preference in the selection has 
been given to experiments performed at the DWB given the 
three-dimensional character of studies associated to marine 
energy. These cases are suitable for testing nonlinear wave 
generation techniques, nonlinear wave propagation, nonlinear 
PTO response, and nonlinear mooring system analysis. 

Depending on the project objectives and scope, the 
experiments selected include tests with and without the presence 
of a physical model, specimen or device. 

Finally, identification of test cases with measurements of a 
PTO is also considered relevant for further model comparisons. 

In Table 1, selected projects suitable for the analytical and 
numerical model validation, and executed at the HWRL since 
2015, have been enlisted where the main selection characteristics 
are included. Interestingly, the wave conditions tested for the 
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WEC-Sim validation tests [33] is a super-set of the ALFA OWC 
[34] experiments. NOWSim were a series of tests performed 
during the second phase of ALFA OWC, where nonlinear waves 
and breathers were tested as part of the development of the 
present study. 

Figure 9 present the different regular wave cases available. 
The wave conditions are presented in dimensionless form and 
compared with the regions of validity of the different analytical 
wave theories. As seen in Figure 9, the available test data 
considers deep and intermediate water depths, with some weak 
nonlinear cases. 

 
Table 1: Selected experimental data for model validation. 

 
Project Regular 

waves 
Irregular 
waves 

Undisturbed 
conditions 

PTO 
measurements 

WEC-Sim [33] ● ● ● ● 
ALFA OWC [34] ● ●  ● 
ALFA OWC 2 ● ● ● ● 
NOWSim  ● ●  

 
Finally, Figure 10 presents the available irregular wave cases 

for numerical model validation. The individual waves of the time 
series have been obtained by means of a standard zero-crossing 
analysis and the significant wave height and energy period is also 
indicated for comparison purposes. 

As seen, an irregular case includes a broad range of individual 
waves with varying nonlinearity. Here is where the assumptions 
in the model of propagation of waves by means of a linear 
superposition of harmonics may fail significantly, since the 
nonlinear interaction of the different components is not taken 
into account. 

 

 
Figure 9: Existing regular wave data sets for analytical and numerical 

model validation. 

6.2 Additional Wave, WEC and PTO Control Tests 
As indicated previously, the development of the different 

nonlinear models for wave propagation, PTO control and 
mooring system design presented herein, require specific 
physical model experimentation for validation purposes. The 
existing data sets selected consider primarily linear or weakly 

nonlinear wave conditions, the PTO control strategy 
implemented was oversimplified, and no mooring system was 
included. Moreover, new advances in nonlinear wave generation 
in the laboratory have not been implemented yet. 

Hence, additional wave, WEC, PTO control and mooring 
system tests under nonlinear conditions are necessary to fully 
validate the proposed analytical and numerical models. 

The additional tests will be executed in the Directional Wave 
Basin at the HWRL, will include undisturbed nonlinear wave 
conditions with fully nonlinear wave generation, as well as 
testing with a complex WEC model that includes nonlinear PTO 
control strategies, and a catenary mooring system. 

These tests will extend the existing database for WEC-Sim 
validation, and will be designed to validate independently the 
different models proposed. 
 

 
Figure 10: Existing irregular wave data sets for analytical and 

numerical model validation. 

Summarizing, the available data set for analytical and 
numerical validation includes 23 different regular wave 
conditions (H=0.015 m to 0.242 m, T=0.87 s to 3.307 s), and 6 
irregular wave conditions (Hm0=0.015 m to 0.136 m, Tp=1.219 s 
and 2.611 s), at a single water depth of 1.36 m. 
 
7 FIELD MEASUREMENT DATA FOR ANALYTICAL 
AND NUMERICAL MODEL VALIDATION  

Processing of the field data has already shown the 
importance of nonlinearity in the wave field.  Figure 11 shows 
that observed wave elevations have more extremes (and thus 
more kurtosis) than linear reconstructions of the observed 
conditions.  Processing of the field data has also identified 
breaking waves and quantified the exceedance of these motions 
relative to linear theory [35].  Future work will use these data 
products to validate the nonlinear wave maker theory results and 
ensure that realistic time series are generated for laboratory 
experiments.  
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Figure 11: Measure (blue) and simulated (red) time series of sea 

surface elevations during a large wave event off the Oregon Coast in 
December 2015.  The measured time series is from a SWIFT buoy and 

includes a rogue wave at index 6000, which is absent from the 
simulated time series created from a linear model with the same 

measured spectrum.  Samples are at 25 Hz.  

8 CONCLUDING REMARKS  
The overall research plan and preliminary results obtained 

to date from the nonlinear effects on WEC dynamics project have 
been summarized in this study. The resulting models, algorithms 
and solution procedures will be applied to an experimental WEC 
system well-familiar to our group and the WEC research 
community. Existing experiments from the selected system will 
be used to validate the models. In particular, we described the 
model development and preliminary progress of the on-going 
research study on the effects of nonlinearities in ocean wave 
input and power-take-off (PTO) control on wave energy 
conversion system dynamics and efficiency. The model system 
employed and progress on recent developments were: (1) 
nonlinear wave modeling in the ocean, generation and 
propagation in a wave basin, and (2) nonlinear PTO control 
algorithm. An overview of the holistic analytical, numerical and 
experimental research approach is presented. To provide a 
simple means for analysis, comparison and performance 
evaluation, the WEC-Sim numerical platform was used for 
model implementation and system dynamic simulation. 
Analytical and numerical predictions of the nonlinear wave 
fields in a wave basin using the nonlinear Fourier analysis 
(NLFA) technique and corresponding nonlinear wavemaker 
theory will be validated using a comprehensive series of 
experimental test data as well as ocean wave measurements. 
Efficiency of the nonlinear PTO control will be evaluated by 
comparing numerical simulations with results of WEC model 
test data under corresponding wave conditions of the 
experimental studies without the presence of the WEC system. 
Additional experiments to complement the existing ones will be 
conducted in the coming year to validate the nonlinear wave 
models and PTO algorithms. Results from these planned studies, 
together with the improvements on nonlinear mooring line 

dynamic analysis procedures, will be reported in future 
conferences. 
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