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The propagation of ocean surface waves within the
marginal ice zone (MIZ) is a defining phenomenon of
this dynamic zone. Over decades of study, a variety
of methods have been developed to observe and
model wave propagation in the MIZ, with a common
focus of determining the attenuation of waves with
increasing distance into the MIZ. More recently,
studies have begun to explore the consequences
of wave attenuation and the coupled processes
in the air-ice-ocean-land system. Understanding
these coupled processes and effects is essential for
accurate high-latitude forecasts. As waves attenuate,
their momentum and energy are transferred to
the sea ice and upper ocean. This may compact
or expand the MIZ, depending on the conditions,
while simultaneously modulating the wind work
on the system. Wave attenuation is also a key
process in coastal dynamics, where land-fast ice has
historically protected both natural coasts and coastal
infrastructure. With observed trends of increasing
wave activity and retreating seasonal ice coverage, the
propagation of waves within the MIZ is increasingly
important to regional and global climate trends.
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modelling and observations of marginal ice zone
dynamics: multidisciplinary = perspectives and
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1. Introduction

The marginal ice zone (MIZ) is defined by the coexistence of ocean waves and sea ice, or by
the proximity of sea ice to open water. Functionally, these definitions are similar, because ocean
waves typically propagate into sea ice from open water through a region that is distinct from the
main pack ice. MIZs exist year-round at the edges of both Arctic and Antarctic sea ice, though the
locations and extents are heavily modulated by seasonal cycles.

Decades of research on wave propagation in the MIZ have produced a large knowledge
base, much of which is reviewed and advanced in this theme issue. The theoretical bases
are wide ranging, as are the field data with which to evaluate the various theories [1].
Laboratory experiments complement these efforts with controlled conditions, including recent
work comparing regular and irregular waves (and associated nonlinear effects) [2]. Wave
forecasting within the MIZ is now done operationally and at the global scale using a variety
of methods, depending on ice type and conditions, and it is not yet clear which, if any, methods
can be made universal [3]. Some of the lingering uncertainty is related to the sparsity of field
observations, but this is changing with the advent of inexpensive sensors that can be more easily
deployed [4]. The forecasts of waves within the MIZ are now being used to improve predictions of
ice evolution and floe size distributions [5]. Such two-way coupled wave—ice forecasting systems
are essential to accurately representing the polar regions [6], especially as the extent of the Arctic
seasonal MIZ expands with a warming climate [7].

At fixed observing locations, the seasonal evolution is a defining feature of the MIZ. Figure 1
shows an example, using nine years of observations from the central Beaufort Sea of the western
Arctic Ocean. These data were collected from two of the moorings in the Beaufort Gyre Observing
System (BGOS), as described in [8]. As the sea ice recedes in the early summer, waves form in
open water. As the summer progresses, the waves increase—until the onset of refreezing in the
autumn. Wave propagation in the MIZ occurs throughout each seasonal cycle, especially during
the transitions (i.e. July and October). The ice extent shown in figure 1 is specific to 1 October 2020,
but is representative of the autumn ice extent of the region. In other years, the BGOS mooring sites
can be completely ice free at this time. Wave propagation is both a defining feature of the MIZ and
a key process for the overall evolution of the air-ice—ocean-land system.

The intent of this review is to

(i) summarize present knowledge regarding wave propagation in the MIZ;
(ii) connect wave propagation in the MIZ to the larger air—ice-ocean-land system; and
(iii) describe key feedback mechanisms relating MIZ wave propagation to regional and global
climate trends.

Wave and ice data from the BGOS moorings are used throughout to demonstrate the scales and
magnitudes of these processes. This has an obvious bias of presenting signals most relevant to the
western Arctic. Where possible, this is balanced by literature citations and information from the
Antarctic and the eastern Arctic.

2. Wave propagation in the marginal ice zone

The canonical model for wave propagation in the MIZ is an exponential decay of spectral wave
energy E(f) as a function of frequency f that reduces with distance x into the sea ice,

E(f,x) = E(f,0) e, 2.1)

in which «(f) is a spectral attenuation rate that depends primarily on ice coverage. This
framework has been used extensively for decades [9,10], including incorporation into wave
forecast models [11-13].
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Figure 1. (a) Locations for BGOS moorings A and D, along with the ice extent on 10ctober 2020. () Ice thickness (left axis, blue
points) and significant wave heights (right axis, red points) measured hourly using moorings in the central Beaufort Sea from
2012 to 2021. (Online version in colour.)

(a) Attenuation rates

The attenuation rate «(f) is typically described as a power law that increases with frequency, o« =
af? [14]. The practical result is that the shortest waves (i.e. the high-frequency wind-sea waves)
are most rapidly attenuated, and thus farther within the MIZ only the longer waves (i.e. the
swell) remain. This creates a general distinction based on the wave climates of the Arctic and
the Antarctic. In the Arctic, fetches are short, wave energy is usually concentrated at f > 0.1 Hz
and waves are rarely observed more than 100 km into the MIZ [5,15]. In the Antarctic, fetches
are long, wave energy is usually concentrated at f < 0.1 Hz and waves are often observed well
beyond 100 km into the MIZ [16-19].

Figure 2 shows the theoretical attenuation of the waves measured at the BGOS moorings in
the MIZ. Although only the bulk significant wave heights are shown, the calculation is spectral

(equation 2.1), and the results use the conventional integration Hs =4,/ [ E(f) df. This theoretical

attenuation uses o = 0.3f2'7, which is consistent with prior observations from the region [15,20],
and assumes that waves are normally incident with the ice edge (x = 0) right at the mooring site.
This overly simplified analysis is meant to simply show the typical scale of the problem; the Arctic
MIZ is generally 5-50 km in extent, and waves are rarely energetic beyond 10 km. The Antarctic
MIZ, by contrast, can be much larger in extent, with energetic waves beyond 100 km [18].

Obscured by the bulk Hs results of figure 2 are the changes to the spectral shape within the
MIZ. The preferential attenuation of energy at high frequencies (and thus short wavelengths) has
a notable effect on the character of the waves. Without the short waves deep within the MIZ,
long waves have a very smooth appearance in time and space and a narrow energy spectrum.
This narrow spectrum causes the emergence of strong wave groups, with plausible mechanisms
that are linear [21,22] and nonlinear [23]. The nonlinear dynamics are distinct from those in open
water, because the wave steepness in sea ice is reduced and the dynamics are controlled by the
propagation medium [24].

The lack of energy at high frequencies far within the MIZ has been a measurement challenge
for decades, with long-running debates regarding the inference of a ‘roll-over’ in the spectral
attenuation rate. Recent re-analysis of several published datasets indicates that most high-
frequency measurements far within the MIZ are contaminated by poor signal-to-noise ratios, such
that reported roll-overs are spurious [25]. Direct input to high frequencies by wind within the
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Figure 2. Theoretical attenuation of waves observed at BGOS moorings from 2012 to 2021. The significant wave height versus
distance into the ice is calculated by applying a frequency-dependent attenuation rate to each observed energy spectrum £(f)
and then integrating to determine the significant wave height at that location.

MIZ, which is discussed in a later section of this paper, remains another explanation for apparent
roll-overs in attenuation.

Although less-well constrained than the frequency dependence, attenuation rates also have
a strong dependence on ice type, ice coverage, ice thickness and floe size distribution. Ice
concentration is the most common input to models [11], though ice thickness and floe size
distribution have also been implemented [26]. Ice type is perhaps the most challenging
dependence to address, since ice type is somewhat subjective. Visual classification of ice type
has been successful in separating inferred attenuation rates [27], but such images are not always
available. A related challenge is the heterogeneity of sea ice, which can be both difficult to quantify
in field experiments and under-resolved in model grids. In particular, there is observational
evidence suggesting that wave attenuation is strongest right at the edge of the MIZ (i.e. within
a few wavelengths) relative to large-area averages [20]. This suggests some nonlinearity in the
dynamics, or a specific set of processes at the ice edge.

(b) Dissipation or scattering?

There is a long-standing debate over the physical mechanisms of wave attenuation in sea ice
and their proper mathematical representation [28-30]. The attenuation itself is empirical: there
is simply a net change in wave energy from x1 to x,. The mechanisms may be non-conservative
(i.e. dissipation of wave energy) or conservative (i.e. scattering of wave energy). The mechanisms
and associated mathematical frameworks are reviewed in this issue [1]. The representation in
wave models is distinct: the non-conservative mechanisms alter the imaginary part of the complex
wavenumber, while the conservative mechanisms alter the real part of the complex wavenumber.
In such a framework, conservative processes can cause notable changes in wave direction (e.g.
refraction) while non-conservative processes cause attenuation.

Recent observational work suggests that dissipation is the dominant mechanism, in which
wave energy is lost by the breaking up of sea ice [31] and by turbulence at the ice—ocean interface
[32]. Additional energy may be dissipated by the collision of ice floes [33]; the modelling of these
mechanisms is reviewed in this issue [34]. Further evidence for negligible scattering (and thus

stoiog o8t 7 05 4 s g e siosansindaposeior [



Downloaded from https://royal societypublishing.org/ on 06 October 2022

1 + 104

wind-wave transfer ratio (relative)
effective fetch (scaled by wind speed)

102
0 0.2 0.4 0.6 0.8 1.0

ice concentration

Figure 3. Non-dimensional parameters for wave generation as functions of partial ice concentration: wind work relative to open
water (left axis, blue symbols) and fetch distance relative to open water (right axis, red symbols). (Online version in colour.)

strong dissipation) is provided by weak changes in the dispersion relation, relative to open water
[35]. There is some evidence for non-negligible scattering via changes to directional distributions
as waves propagate through the MIZ [36], but there are few observational studies that show
strong evidence for scattering.

The distinction between dissipation and scattering mechanisms is important, even though
either process can result in attenuation. When waves are dissipated, energy and momentum are
released from the waves and cause dramatic changes to the ocean—ice system. In observations, this
is difficult to discern from wave measurements alone, but measurements of ocean turbulence and
ice motion can provide proxy evidence for energy and momentum transfers [37]. Fully coupled
forecasts must account for these transfers of energy and momentum from the waves to the rest
of the system. Moreover, fully coupled forecasts must also represent transfers of energy and
momentum into the waves (i.e. wave generation within the MIZ).

(c) Wave generation in partial ice coverage

In addition to processes that decrease (attenuate) wave energy in the MIZ, wind forcing may
increase wave energy locally. This complicates interpretation of attenuation rates, which are
typically estimated by comparing observations of E(f, x) at different positions x. Local wind-wave
generation is likely as long as the MIZ has a non-zero fraction of open water [38]. At present, most
wave models typically multiply the wind input source term by the fraction of open water [39].
Another approach is to define an ‘effective fetch’ as a function of open water (or ice concentration)
and non-dimensionalize the wave generation as a function of wind speed [40,41].

The concept of effective fetch can be recast as an efficiency of wind work at the surface,
relative to open-water efficiency [42]. Figure 3 combines the results of [40,42] as a function of ice
concentration. Fundamental to this figure is the idea that waves provide the surface roughness
that facilitates the wind doing work on the ocean. Thus both the local wind-wave generation
and the local wind work on the ocean are reduced, but not zero, in the MIZ. A comprehensive
treatment includes not only the ice concentration but also the relative magnitude of the wave
orbital motions to the ice drift velocities [43]. Of course, the sea ice also alters the surface
roughness that modulates wind work [44], but those effects are beyond the scope of this review.

Additional analysis of the BGOS observations in this theme issue demonstrates the importance
of wind-wave generation in partial ice coverage and leads within the MIZ [5]. Noting that waves

e o i S B



Downloaded from https://royal societypublishing.org/ on 06 October 2022

incident from open water rarely propagate farther than 100 km into the MIZ of the western Arctic
(figure 2), this work finds that wave activity deep within the MIZ is almost entirely locally
generated. These waves remain small (H; < 0.5m), because they are fetch-limited in leads and
areas of partial ice coverage within the MIZ. Despite the small wave heights, these waves are still
important to ice evolution and floe size distribution [5]. A key assumption in this work is that the
local wind input to waves scales with the fraction of open water; this remains to be constrained
with observations.

3. Waves in the air—ice—ocean system

A fundamental and universal treatment of wave propagation in the MIZ must include
conservation of energy and momentum. The details for the wave physics depend on the relative
importance of dissipation and scattering; the details for the rest of the air-ice—ocean-land system
depend on what happens to that energy and momentum after being released from the waves. This
section explores the processes that are driven by wave propagation into the MIZ. These processes
are distinct from the local wind work discussed above; this section is concerned with the energy
and momentum that waves carry to the MIZ from open water (i.e. a remote source, rather than
a local source). A simple analogy is to think of the MIZ as a surf zone, in which the energy and
momentum carried by waves are released to other processes.

Figure 4 shows the rates at which wave momentum and energy would be released according
to the theoretical attenuation in figure 2 and also compares those rates to direct wind forcing in
open water. The intent is to provide a dynamic definition of the MIZ as the region in which wave
forcing exceeds local wind forcing and is thus a dominant signal. Details follow.

(a) Wave momentum flux in the marginal ice zone

Waves carry a flux of momentum, usually referred to as the ‘radiation stress’, S, and gradients
in this flux of momentum can drive mean circulation (and transport) in the MIZ [45-47]. The
radiation stress is directly proportional to the wave energy, so that the rate of momentum
transfer is

95; 19 [Edf

M= ) 3.1
0x 2 ox 31)

This is analogous to a stress, and figure 4 uses wind-stress estimates at several wind speeds to
provide a relative comparison for the wave stresses in the MIZ. In the first 10km of the MIZ,
wave momentum regularly exceeds the momentum provided by strong winds. The momentum
can be imparted to both the ice and the ocean, where it can drive transport and mixing that evolve
the MIZ as a coupled air-ice-ocean system.

The magnitude and direction of this effective stress are dependent on the relative alignment
of the wave propagation and the axis of the gradient, because the radiation stress is a tensor with
four elements, (Sxx, Sxy, Syy, Syx). For waves obliquely incident to the MIZ, the Sy, can drive strong
(0.5ms™1) transport perpendicular to the gradient (and along the edge of the MIZ) [37]. In cases
with waves at more normal incidence to the MIZ, the Sy, can drive transport into the MIZ (and
thereby compact ice floes at the edge of the MIZ) and create bands of higher concentrations of
sea ice [48]. In either case, the momentum carried by the waves is released to cause significant
changes in the transport and distribution of ice floes within the MIZ. The ice thickness has also
been shown to be related to the wave radiation stress in the MIZ [49].

(b) Wave energy flux in the MIZ

Waves carry a flux energy, and gradients in this energy flux are the rates at which energy is
transferred from the waves to the ice and ocean of the MIZ. This can be described as a rate of
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Figure 4. Rates at which wave momentum (a) and wave energy (b) would be released as functions of distance into the MIZ, as
determined by the theoretical attenuation of waves observed at the BGOS moorings. Each panel includes the equivalent rates
from direct wind forcing in open water at a range of wind speeds. (Online version in colour.)

work done,
. d[Ecd
W= J Ecgdf )
dx

where cg is the group velocity (which depends on frequency in the deep-water wave dispersion
relation). Figure 4 shows the rate of work done by the waves through the theoretical MIZ of the
BGOS data and compares it with the wind work of a range of wind speeds. The direct wind work
is estimated as c,t, where ¢, is an effective transfer velocity of around 2ms~! [50]. The wave
work can dominate for up to 50 km into the MIZ, relative to most moderate wind speeds. Thus,
the wave work is significant over a larger extent of the MIZ than the wave momentum. This
difference is explained by the group velocity cy contribution to the spectral energy flux (equation
(3.2)); cq is faster at the low frequencies that propagate the farthest into the MIZ.

Recent works suggest that significant wave energy is lost in the form of turbulence in the
upper ocean [32,37], though losses via ice floes fracturing [31] and ice floes colliding [33] may
also be important. For the case where all wave energy is lost as turbulence, the depth profile of
the turbulent dissipation rate €(z) in the upper ocean will balance the gradients in the energy
flux. For strong gradients, this remote source of turbulence may vastly exceed the local sources
(i.e. wind) [42,43]. The wave-enhanced turbulence in the MIZ can increase the mixing of stratified
melt-water, as well as the release of ocean heat during ice formation [51]. This turbulence is also
significant for gas exchange in the MIZ [52]. There are also indirect changes to turbulence and
mixing caused by waves. Langmuir turbulence, in which the sheared Stokes drift of the waves
interacts with mixed-layer turbulence, is known to enhanced mixing [53]. The propagation of
waves far into the MIZ thus provides another mechanism for mixing, which generally reaches
deeper than the direct forcing (equation (3.2)) and can be particularly important when there is
heat stored in the ocean [54].

(3.2)
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Figure 5. Annual average significant wave height versus annual average ice thickness at the BGOS moorings. (Online version
in colour.)

4, Feedback mechanisms and climate trends

As the planet warms and sea ice losses accelerate, we must consider whether and how wave
propagation in the MIZ impacts large-scale, long-term trends. Here, we examine how the
processes described above manifest in the climate system and their associated impacts. We look
for trends in how the sea ice affects the waves, how the waves affect the ice, and how these
then impact the coasts.

Figure 5 uses annual averages from the BGOS dataset to show a relation between the waves
and the ice at the mooring locations. The wave heights are greater, on average, when the ice is
thinner, on average. This says nothing about the details of the physics, or even the dependence of
attenuation rates on thickness. It simply shows that years with less ice have more waves.

(a) Increasing wave climate

In the Arctic, it is now well documented that seasonal wave activity is increasing as a direct result
of reduced sea ice and increased open-water fetch distances [55-60]. This trend includes not only
the overall average but also increases in extreme wave events [61]. In the Antarctic, there are also
linkages between the waves and the sea ice, specifically the break-up of sea ice by waves [16].
However, the fetches have always been large in the Southern Ocean [62], and thus a trend in
wave activity is elusive.

The increasing wave activity means that more momentum and energy are transferred into an
MIZ that is probably growing in extent [7]. Assuming canonical attenuation rates, larger waves
will reach farther into the ice of the western Arctic, eventually beyond 100km (figure 2). In
addition to the associated changes in floe size distributions, ice transport and ocean turbulence,
there are changes in ice formation. Pancake ice, which only forms in the presence of waves [63,64],
has recently become a more common initial freeze up in the Beaufort Sea [65]. Whether this
specific freezing process changes the overall seasonal cycle of ice thickness and strength in the
region is as yet unknown.
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(b) Waves inice loss events

Given that the increase in open-water fetch distances increases wave activity, there is hypothetical
feedback mechanism in which waves cause ice retreat that continually increases the fetch (causing
larger waves that cause further ice retreat). Although it is clear that storms can cause dramatic ice
loss events [66,67], attributing a specific portion of the ice loss to wave forcing has been difficult.
As figure 4 shows, the wind forcing is of a comparable magnitude, if not greater, at the large
synoptic scales on which storms are modelled and analysed. Furthermore, winds and waves are
usually co-temporal in a storm, such that isolating the forcing is difficult. More fundamentally,
ice loss is often more driven by thermodynamics (i.e. heating and melting) than by mechanical
dynamics (though those can enhance melting).

There are isolated examples of wave influences on ice loss, such as with Antarctic ice sheets
[68] and in landfast ice [69]. More often, analysis suggests that combined atmospheric and oceanic
stresses cause ice loss events [70]. In some cases, the ice loss from a given region is mostly a wind
and wave transport process [71,72]. In other cases, waves break up sea ice and the ice is lost via
enhanced melting [16]. Addressing the full range of processes requires wave—ice models fully
coupled with air-ice—ocean system models [26,73].

(c) Coastal impacts

In coastal regions, any waves not fully attenuated by sea ice may reach the shore. In this case, the
analogy of the MIZ as a surf zone becomes explicit. The gradients in wave energy and momentum
drive coastal processes, mostly notably near-shore circulation and sediment transport. Wave
energy dissipated as turbulence in the surf zone may also increase water temperatures [74], which
is particularly relevant for Arctic coasts [75].

Most Arctic coasts are eroding rapidly [76,77], and waves are a clear driver of these changes
[78-81]. The presence and absence of sea ice controls the wave exposure at the coast, with strong
regional variability [82]. Ice type is just as important as the presence/absence of ice, because this
can control wave attenuation. In the spring, thick landfast ice causes complete attenuation and
can prevent wave action at the coast for weeks or even months [83]. In the autumn, thin new
ice causes only partial attenuation, and significant wave energy arrives at the coast [83]. This is
consistent with other measurements of attenuation in landfast ice [84]. Thus, the specifics of the
attenuation rates in different ice types are particularly important in coastal MIZs.

5. Conclusion

Attenuation of waves within the MIZ is a defining feature of the transition from open water
to complete ice coverage. There is consensus that attenuation is a spectral process (i.e. per
wavelength or frequency), and there are sufficient parametrizations of this process to be useful in
wave forecasting. There is also an emerging consensus that wave energy and momentum are lost
(i.e. dissipated) to the surrounding ice and ocean, rather than simply redirected (i.e. scattered).
Much remains to be learned, including answers to the following questions.

— What is the dependence of the attenuation rate on ice type and thickness?

— How does heterogeneity in the ice affect wave attenuation?

— What nonlinear wave mechanics, if any, are important to attenuation?

— What controls the relative amount of wave energy lost to ice fracture/collisions versus to
ocean turbulence?

— What balances the wave momentum lost to ice motion?

— How do local winds generate waves in partial ice coverage?

Answers to these process-level questions will support the continued development of fully
coupled wave-ice-ocean—atmosphere models, which are needed for operational and climate
forecasts in polar regions. The prior decades of work combining theory, experiments, observations
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and models provide productive examples to follow. The future holds more tools for observations,
more realistic experiments and more computational power to incorporate this knowledge into the
forecasts. Time to get back to work.

Data accessibility. The BGOS wave and ice data are available at http:/ /hdl.handle.net/1773/46260.
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