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ABSTRACT

This thesis is a theoretical and experimental examination of the formation of
complex, patterned flow in two simple fluid systems. Taylor vortices form in the annulus
between rotating, concentric cylinders (in our case: inner rotating, outer stationary).
Taylor vortices were observed experimentally and the onset of these vortices was shown
to behave in accordance with theory. By varying the spacing between the cylinders and
fluid properties, such as viscosity, it was possible to demonstrate the fundamental
propetties of this phenomena. Benard cells are convective cells that form when a thin
layer of fluid is heated from below. The investigation of Benard cells in this thesis was
not as thorough as for the Taylor vortices, but the experiments still demonstrated the
dynamical similarities between the Benard and Taylor systems. These systems are
discussed as ideal models or paradigms for understanding the spontaneous emergence of

éomplexity.
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Chapter 1

Introduction

1.1 Description of Taylor-Couette flow and Benard convection

This thesis will examine the emergence of complex, organized behavior in two
simple fluid systems: Taylor-Couette‘ flow and Benard convection. The goal will be to
understand when and how the complex behavior emerges, and to verify this
understanding experimentally. Each system is defined by driving forces and dissipative
forces. The driving forces produce motion, while the dissipative forces work to restrain,
oppose, and dampen this motion. The complex flows of Taylor vortices and Benard cells
occur after reaching the critical point at which the driving forces begin to overpower the
dissipative forces.

In the Taylor-Couette flow, fluid is contained in the annulus between two
concentric cylinders, and the inner cylinder is rotated (see Fig. 1.1a). This rotation
produces a centrifugal driving force that moves fluid radially outward. The motion is
resisted by the dissipative force of the viscosity of the fluid (friction due to relative
movement of fluid particles). Once the inner cylinder is rotated fast enough, the
centrifugal forces win and the system makes a transition from laminar (simple) flow to
complex rolling toroidal vortices, called Taylor vortices (shown in Fig. 1.1b). The focus
of this thesis is the critical point at which this complexity emerges and the experimental
determination of the properties of the critical point with an uncertainty of only a few
percent. A limited investigation was also made of the complex flows that occur when the
rbtation rate is increased well beyond the critical point.

In the Benard convection a thin layer of fluid is heated from below as shown in
Fig. 1.2a. There are two dissipative forces present: the viscosity of the fluid, and the
thermal diffusivity of the fluid (heat transfer between fluid particles). The system is
driven by the temperature difference between boundaries which results in either a

buoyancy force or a surface tension force, depending on the experiment (discussed in
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FIG. 1.1. Taylor-Couette flow: (a) cross-sectional view (top view) and
(b) Taylor vortices produced in the final apparatus.
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FIG. 1.2. Benard convection; (a) standard boundary conditions;
(b) hexagonal convection cells, as viewed from above (Koschmieder 1993, p. 55).




Chapter V). When this system is driven beyond the critical point, complex motion in the
form of ordered convection cells arises. These Benard cells are shown in Fig. 1.2b and
will be described fully in Section 5.2. The theory of both driving forces will be discussed
briefly, but only the surface tension driven case was examined experimentally. Although
these expe;riments were much less complete than the Taylor vortices measureménts, the
criticaﬁty of the onset of convection was still verified successfully. As is evident from
the reviews by Koschmeider (1993) and Tagg (1992), there have been thousands of
publicaﬁons on the topic of Taylor vortices and Benard cells; this thesis will be restricted
to the experimental verification of the fundamental theories surrounding these

phenomena.

1.2 Stability and the bifurcation of states

Theoretical understanding of the emergence of complexity in these fluid systems
is based on the concept of stability. A transition from stable to unstable flow occurs at
the critical point at which the driving forces overpower the dissipative forces. In the
stable case, the fluid behaves as expected from Newtonian mechanics and the flow is
laminar. When it becomes unstable, the flow becomes extremely sensitive to small
disturbances and to the geometric conditions of the experiment. When this critical point
is reached and instability begins, the behavior of the system is said to bifurcate. As
shown in Fig. 1.3, this bifurcation means that there are now two solqtions for the motion
of the fluid: one is stable and the other is unstable. However the unstable solution is no
longer possible realistically, and the system follows the upper path of the bifurcation
diagram. Following the lower path after the bifurcation point in Fig. 1.3 would be
analogous to a pin resting vertically upright on its point; under absolutely ideal conditions
the solution is possible, but because it is so sensitive to any small disturbance the pin will
soon fall, and thereby follow the upper path.

It is important to note here that the onset of instability does not mean equilibrium
no longer exists. The bifurcation of the system simply means that the stable equilibrium

solution now has a more complex structure; the laminar equilibrium solution continues to



complex flow
(stable equilibrium)

order parameter

laminar flow
(unstable equilibrium)

control parameter

FIG. 1.3. Bifurcation of states diagram. Branching of path coresponds
to the emergence of complexity.



exist, but the likelihood that it would ever be seen experimentally is vanishingly small
because it is unstable. The bifurcation paradigm is often used to describe complex

systems; Taylor vortices and Benard cells are an ideal illustration of the concept.

1.3 Impliéations of emergent complexity

The emergence of Taylor vortices and Benard cells in simple fluid systems
provides an ideal introduction to the study of complexity. These phenomena represent
the emergence of complex patterns and flows in fluid systems whose motions are
predicted to be simple, or laminar, by coﬁvénﬁon mechanics. Consistent with the current
understanding of complexity, the emergence of Taylor vortices and Benard cells
demonstrates the concepts of criticality, phase transitions, scale independence, and
sensitivity to initial conditions. Despite very few experimental similarities, Taylor
vortices and Benard cells follow precisely the same model for the evolution of complex
flows and patterns. I believe it is worthwhile to consider the emergent complexity of
these two systems in a much broader context. Certainly the analysis of these two fluid
systems does not presume to explain all of the mysteries of the world around us; yet I
believe these phenomena to be significant to the entire scientific community.

There has a been a dramatic shift in scientific thinking over the past forty years.
Researchers and theorists from all disciplines have begun to look beyond reductionist
models of fundamental particles and components; these scientists are now studying
systems and their emergent behavior. In the past, science has been defined by the séarch
for simple, universal laws to describe and predict the universe. This search is no longer
adequate. As part of this philosophical shift in scientific thinking, it has been
demonstrated in chaos theory that simple, fully deterministic conditions do not
necessarily result in predictable, simple behavior. In fact, simple behavior is often the
exceptional case, and complexity far better describes the majority of phenomena in the
world around us. Efforts to understand how complexity arises and functions are currently

| underway in all hisciplines. The applications of these 'idea§ are vast: How does the

complexity of global weather patterns arise from gas &nd liquid particle motion? How




does intelligent life arise from individual cells and tissues? How does an intricate global
economy arise from the simple exchange of goods, sérvices, and information between
self-interested individuals? These are questions that can only be tackled by a study of |
systems and of complexity itself, not the individual components alone.

Taylor vortices Benard cells represent order and organization that is unexpected
by the IaWs of mechanics, especially the second law of thermodynamics, and this leads us
to wonder from whence the complexity arises. Perhaps the whole system is capable of
behavior that cannot be explained in principle by summing the action of a nearly infinite
number of fluid particles. We may further ask: should this be so wondrous and
unexpected, this spontaneous emergence of complexity? Perhaps, as Stuart Kauffman
(1995) suggests, complexity spontaneously arising from simple constituents is exactly
what we should expect, and the very existence of intelligent life is inevitable in a system
such as this universe. As we move forward into a more thorough and less philosophical
discussion of the emergent complexity of Taylor vortices and Benard cells, I ask the
reader to keep in mind the ideas above and the possibilities for an increased

understanding of the complexity that constantly surrounds us and is us.




Chapter 11
- Taylor-Couette flow: history and theory

2.1 History

The Taylor-Couette flow has been the subject of constant investigation during the
twentieth century, and the idea of concentric rotating cylinders containing fluid in the
annulus between them has been around for nearly 300 years (Donnelly 1991, p. 33). The
first known reference to such a fluid system is found in Issac Newton’s Principia. In
Book II, Section IX, Newton defined what we know today as a Newtonian fluid, where
the viscous stresses (the friction between fluid particles) are in proportion to the velocity
gradient. He discussed such a fluid contained between two rotating cylinders:

If a fluid be contained in a cylindric vessel of an infinite length, and contain another

cylinder within, and both the cylinders revolve about one common axis, and times of their

revolutions be as their semidiameters, and every part of the fluid continues in its motion,

the periodic times of the several parts will be as the distances from the axis of the
cylinders (Newton, p. 385).

Here Newton described what we know today as laminar flow in a Taylor-Couette
apparatus. It is unlikely that Newton could envision the complexity that would emerge in
this system. However, Newton did recognize the intrinsic simplicity and symmetry of
such a flow, presumably with the intuition that it would be worth studying.

George Stokes, one of the most important contributors to the development of
theoretical fluid dynamics, took the next step in the development of the concentric
cylinder model. In 1848 he published a paper in which he presented a mathematical
description of the velocity of the fluid between two cylinders revolving at different
angular velocities. He also made the insightful statement that, “if the inner [cylinder]
were made to rotate too fast, the fluid near it would have a tendency to fly outWards in
consequence of the centrifugal force, and eddies would be produced (Stokes 1888, p.
102).” Stokes’s understanding that the rotation of the inner cylinder would result in

instabilities was not seen éxperimentally until the work of G. I. Taylor in the 1920°s



(Donnelly 1991, p. 33). During the 75 years between Stoke’s paper and Taylor’s work,
the rotating cylinder system was studied primarily as a method of measuring viscosity, A
and usually only the outer cylinder was rotated. _

Working independently of each other, Amnulph Mallock and M. Maurice Couette
built and studied rotating cylinder viscometers during the late nineteenth century, and it
seems to Be a historical accident that only Couette’s name is associated with the flow.
Both researchers measured the torque on the inner cylinder when the outer was rotated
and used this torque to determine the viscosity of the fluid in the annulus between the
cylinders. Mallock experimented with rotating the inner cylinder, and he concluded from
his experiments that this flow would always be unstable (Donnelly 1991, p. 35). This
incorrect conclusion from his experiments was due to the fact that he set the angular
velocity of his inner cylinder above the critical value to amplify instabilities (to be
-discussed later). Couette published his thesis on viscosity in 1890 and in it he stated that
the viscosity of water appeared constant until a critical angular velocity was achieved by
the inner cylinder (Couette 1890, p. 433). Thus, early experimehtal work with rotating
cylinder systems had begun to discover the instabilities associated with the rotation of the
inner cylinder, but the ground work for understanding this phenémena would not be in
- place until a 1923 paper by G. I. Taylor (Donnelly 1991, p. 36). |

Taylor applied linear stability theory to the rotating cylinder flow, and he
conducted the first thorough experimental study of the patterns, or Taylor vorticies; that
occur above a critical angular velocity of the inner cylinder. He dropped ink in to the
fluid to aid visualization, and this made the sharp onset of the patterns far more evident
than anything seen with a viscometer apparatus. The theory Taylor developed predicted
that the fluid would change from smooth, or laminar, flow into distinct patterns (Taylor
1923, p. 289). This paper prompted further study of rotating cylinder systems, and the
flow soon became known as the Taylor-Couette flow.

The Taylor-Couette flow was then analyzed further in the 1950s by S.
Chandrasekhar. Chandrasekhar generalized Taylor’s theory and inspired more
experimental work on various flow phenomena. In 1965, work by D. Coles showed the

development of Taylor vorticies to be universal across a w1de range of geometric scale




(Donnelly 1991, p. 38). The study of the Taylor-Couette flow has continued to the
present day, and, as discussed in a recent book by E. L. Koschmieder (1993), research has
become so extensive that it is difficult to keep track of the numerous publications.
Perhaps the most interesting area of recent research has been the study of the turbulence

(chaotic flow) that evolves from the Taylor vortices at extreme rotation rates.

2.2 Navier-Stokes equation and equations of moﬁon

The Navier-Stokes equation is the fundamental dynamical equation for a fluid of
constant density; the equation expresses Newton’s second law of motion by relating the
forces present in a dynamic fluid to the inertia of the fluid. To derive the Navier-Stokes
equation, we must assume that the hypothesis of continuum mechanics applies to fluid
particles. This means that we can measure and use macroscopic quantities that are the
result of averaging over a large number of molecules and that these properties will be
continuous through the ﬂuid (Tritton 1988, p. 48). The two properties that we are
primarily concerned with are the velocity u(r,?) of the flow and the mass density of the
flow p(r,#), which are both functions of time and position. We must also require the law

of mass conservation given by the continuity equation

9P . V. (ouw =
at+V (puw)=0 2.1

(Tritton 1988, p. 52). For duration of this chapter and our discussion of the Taylor-
Couette flow, we will be concerned only with fluids of constant density p. Thus, Eg. 2.1
reduces to
V-u=0. 2.2)

Next we need to develop Newton’s second law by expressing the rate of change of
linear momentum in a fluid particle as equal to the net force acting on it. The subtlety
here is that we cannot simply equate the rate of change of momentum at a fixed point to
the force, because different particles will be at that point at different times. The particles
are subject to the laws of mechanics, not the points in space, and so we must follow these

particles over small amounts of time df. We need to know the rate of change of a quantity
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as we follow a fluid particle, and express this rate in terms of other quantities that refer to
fixed points in space. The change dQ in a quantity Q of a given fluid particle will have
two parts: the change (9Q/9¢)dt due to a change in time df while at a fixed point in space,
and the change VQ-dr due to a change in space dr while at a fixed point in time, as shown

in Fig. 2.1 (Symon 1971, p. 313). Dividing dQ by dt to achieve an expression for the rate,

gives us
dQ o0 dr
= =2=24(VO)|— |, 2.3
dt ot (Q)[dt) @3)
which can also be written in terms of the velocity vector field u(r,?)
dQ _ o9
—=—=+u-(VQ). 24
- =a+u-(V0) 24

This time derivative is called the substantive derivative' and is usually denoted by %? .

For vector functions it is expressed by the operator
—=—+u-V 2.5)

* (Landau and Lifshitz 1987, p. 3). Thus, the rate of change of velocity measured by a
particle co-moving with the fluid is

Du _oJu
]—)?——a—t+(u-V)u. (26)

Returning to our goal of deriving the dynamical equation for constant density fluid flow,
multiplying Eq. 2.4 by the density p gives the rate of change of linear momentum per unit
volume when following a particle co-moving with the fluid

Du Ju
e =p—4 Vu. 2.7
P Dt pat pu-Viu 2.7

(The density p remains outside of the operator because it is constant.) According to
Newton’s second law, the right-hand side of Eq. 2.5 should equal the net force per unit
volume acting on the fluid particle we are following. The three possible forces are the

pressure force, the viscous force, and any external force, e.g. gravity.

.-

! In using the term substantive derivative, we’ve followed the convention of Tritton’s text, Physical Fluid
Dynamics. This derivative is also called the total, material, or convective derivative in other references.

11




uir,t)

o

FIG. 2.1. The substantive derivative operator evaluates the change f- (X
in a quantity O@,t)while following a fluid flow defined by the velocity
vector field ufr,s). :
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The net pressure force per unit volume is a result of a spatial change in the
pressure p, so we can express the pressure contribution to the net force per unit volume by
the negative gradient of p, -V p. The viscous force per unit volume for a fluid of constant
density is given by 4 V?u, where u is the coefficient of viscosity (Tritton 1988, p. 58-59).
Viscous stresses oppose the relative movement of neighboring particles; we will use a
two dimensional example to illustrate the origin the viscous force term. We consider a
fluid with velocity u in the x direction and a simple velocity variation u(y). A stress will
act in the plane perpendicular to any velocity variation. This stress is directly

proportional to the velocity gradient, and therefore the force per unit area T will be given

by u—g—yli (Tritton 1988, p. 4). To generalize this idea we must consider velocity

variations of [u(r)| in all directions and stresses possible in any plane of three-dimensional
space. The result is the viscous force per unit volume /szu; this expression is far more
complicated to envision qualitatively, yet‘the fundamental concept of stresses due to
spatial velocity variations remains.? If we consider net external forces per unit volume to
be F, the force contributions sum to form the dynamic equation

P %’fﬁ:—Vp+uV2u+F. (2.8)

The above is the common form of the Navier-Stokes equation, and using Eq. 2.5 we can
rewrite it as

Ju

ot

This is the non linear partial differential equation for u that governs fluid flow, and we

p +(u-Vu=-Vp+uv’u+F. (2.9)

will now apply it, subject to the continuity equation, Eq. 2.2, to the Taylor-Couette flow.

2 A thorough mathematical derivation of the viscous force term is presented in Tritton (1988, p. 69-72).
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2.3 Applying the Navier-Stokes equation
» It is clear from the geometry of the Taylor-Couette flow shown in Fig. 2.2 that
cylindrical polar coordinates will be the most useful for analyzing this flow. The general

form of the continuity equation when expressed in cylindrical polar coordinates is -

o u, U 10u, 0u
+—= 5 ~=0. (2.10)

or r ra(])

(Tritton 1988, p. 60). Evaluating the individual components of Eq. 2.7 in cylindrical
polar coordinates is somewhat lengthy, and we will only outline the process here. There
is subtlety involved because u(¥,,z,2) is a vector field and the basis vectors ey, ey, e, of
cylindrical polar coordinates are not constant relative to position. To evaluate (u- V Ju in
the left hand side and VZu in the right hand side we must use the following two relations
(u- VYu=%Vu- u) - ux(Vxu), (2.11)
VZu = V(V- u) - VX(Vxu) (2.12)
(Griffiths 1989, p. 24-27). We can then finish evaluating Eq. 2.7 using standard
cylindrical polar forms of the gradient, divergence, and curl. (Griffiths 1989, p. 45). We
will quote the resulting components of Eq. 2.7; the radial component of the Navier-Stokes

équation in cylindrical polar coordinates becomes

p[au ou, u du, 0 u, ﬁ}_

dt 'ar+ra¢ 9z r

(2.13)
Q_p_+ 0> u lau, _z_t_,_+182 0’u, iau(p W F
ar ar ror r? 94’ 822'r23¢
the azimuthal component becomes
du, o u, uu, u,0du 0 u,
p[at+“'ar+ F e a0 "oz
(2.14)

_1ap azu¢ 10 u, u¢+_1_82u¢ 8u¢ 20w, P
Za(b

roo uar2+;8r__r7ra¢ az+ T

and the axial component becomes

14
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(a)

(b)

FIG. 2.2. Geometry of Taylor-Couette flow; (a) standard cylindrical
polar coordinates (z axis corresponds to common axis of the two

cylinders) and (b) top view of apparatus (z axis into the page).
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du, o u, U, du, d u,
+u, +— +u, =
0t or r 09 0 z

: : i 2.15)
op {a u, 10u, 10°%u, auz}
- += +

+F

z

2z Ma T oy o0t 87
(Landau and Lifshitz 1987, p. 48). We now wish to solve for the velocity distribution of
laminaf ﬂbw within the annulus between the cylinders for the case of the inner cylinder
rotating with angular speed Q and the outer cylinder at rest. We begin by assuming that
the veldcity is only in the azimuthal direction (u = uy €;), and that the velocity component
uy depends solely upon the radial position 7 (uy = uy(r)). These assumptions apply only to

laminar flow, but they form the foundation of the theoretical understanding of more
du
complex flows. Because ﬁ =, this flow will satisfy the continuity equation, Eq. 2.8,

and with these assumptions we can simplify the components of the Navier-Stokes
equation. Equation 2.11 does not contribute anything because u, = 0. Still building from

these assumptions, Eq. 2.10 for the azimuthal component of the Navier-Stokes equation

becomes
o%u, 10 u, u
0= LIt " 2.16
" [8 rroror 1 :l (2.16)
and Eq. 2.9 for the radial component of the Navier-Stokes becomes
5 :
P 2.17)
r dr 4

As with any attempt to solve a differential equation, we must include the boundary
conditions. We consider both cylinders to be impermeable walls, so u-r = 0 for r = a;
and r = a,. We will also introduce the no-slip condition, which states that the fluid next
to the rotating cylinder cannot have any tangential component of velocity relative to the
wall, or more formally: u x = 0 at each wall (Tritton 1988, p. 62). These boundary
conditions lead to the conclusion that

u,=Qa, at r=a, and u,=0 at r=a,. (2.18)

The solution to Eq. 2.12 can be found by separating variables and integrating in terms of

the variable (up / ), and it is of the form

16




u, = Ar + B/r (2.19)
Applying the boundary conditions, we find that

_ 2 2.2
A= Qal (az _a2) and B= Qal %2 _aZ) (2-20)
2 1 2 1

(Tritton 1988, p. 108). Thus, we have developed an expression to show the velocity
distribution inside a Taylor-Couette apparatus, under the assumption of ideal laminar

flow.

2.4 Instabilites and patterns in the Taylor-Couette flow

Thus far our development of the Taylor-Couette flow has been restricted to ideal
laminar flow, yet this is only a small fraction of the flows seen in a Taylor-Couette
system. When the flow is laminar, the viscous force dissipates the centrifugal force
resulting from circular motion; with higher rotation rates, the driving force of the circular
motion overpowers the viscous force, and more complex flows (with », and u, no longer
ZEro) result. More accurately, it is the no-slip condition at the cylinder walls that

~ provides thé driving force by producing a shear stress on the fluid between the cylinders.
However, we will not take the time to delve into evaluating the stress tensor; we will
continue to assume that the significant result is that fluid particles will be pushed radially
outward once the viscous stress has been overcome.

The transition to a complex flow in the Taylor-Couette system occurs at a precise
critical point (when the driving forces overpower the dissipative forces) and is the result
of instability in the flow. The linear theory of hydrodynamic stability was developed to
explain and understand these instabilities. Fundamentally, stability theory states that
changes from one type of flow to another are the result of spontaneously amplified
disturbances present in the system. Extreme and precise phase transitions (i.e. the
formation and/or change of patterns) will occur in the flow without an outside
disturbance, and the linear theory of hydrodynamic stability determines when these
amplifications will occur (Tritton 1988, p. 255).

Qualitatively, the patterns seen in a Taylor-Couette flow are the result of small

vortices, or Taylor cells, that occur as toroids that surround the inner cylinder, as seen in

17



Fig. 2.3. We will consider a small toroidal element of fluid (contained within dr and dz)
that becomes displaced to a slightly larger radius. If it now has a higher velocity than the
surrounding particles, it will continue to move outward because the inward radial
pressure at that position will be insufficient to balance the force of the fluid element’s
motion outward. Likewise, a toroidal element of fluid (again contained within dr and dz)
that is shiﬁed slightly inwards will continue to move to the interior. Thus, there is an
instability for some distributions of uy. Using a simplified model with no viscous
dissipation of the driving force, a toroidal element at » = ro will be displaced if its angular
momentum # is greater than the angular momentum of the toroidal element at r=ro +
dr. Thus, instability occurs if angular momentum decreases with an increase in radius r.

This is expressed by the Rayleigh criterion
' d
—ler?| <o (2.21)
dr

for instability in the Talyor-Couette flow (Tritton 1988, p. 261). As mentioned above,
this discussion of instability does not include the stabilizing force of viscosity, and the
full application of the linear theory of hydrodynamic stability is required to truly

determine when the system will be unstable to small perturbations.

2.5 Dynamic similarity

Before applying the linear theory of hydrodynamic stability, we need to introduce
the concept of dynamic similarity. From constructing and solving the Navier-Stokes
equation, we can see that any flow can be specified by three parameters: the kinematic

viscosity v (defined as the ratio of the viscosity coefficient W to the mass density p,

V= A ), a velocity scale U, and a length scale L. Dynamic similarity occurs when two

flows have the same ratio of velocity to the velocity scale at geometrically similar points
in the system. In simple one dimensional cartesian coordinates this means that the ratio u’
= /U is the same when the ratio x” = x/L is the same (Tritton 1988, p. 91). We can
combine these concepts to form a scale-independent and dimensionless quantity called

the Reynolds number
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FIG. 2.3. Movement within Taylor vortices (Tritton 1988, p. 260).
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Re=UL/ |
Re= Ly (2.22)
In systems that are geometrically similar, we claim dynamic similarity if the systems have

the same Reynolds number (Landau and Lifshitz 1987, p. 57). For Taylor-Couette flow, |
the Reynolds number is defined as

Re = 21(a, — “ly (2.23)

v

- (Tritton 1988, p. 261). Thus, dynamic similarity for the Taylor-Couette flow depends
only on the width of the gap between cylinders, the intrinsic properties of the fluid (i.e.
viscosity), and the rotation rate (dissipative mechanism) (Landau and Lifshitz 1987, p.
102). We expect this to be a valid expression for the Reynolds number because it
completely describes the geometry (length scale) of the system, the velocity scale, and the
intrinsic properties of the fluid. Historically, other expressions for the Taylor-Couette
Reynolds number have been used to describe the system, and these are also valid, as long
as they follow the from of Eq. 2.18 (Van Hook and Shatz 1997, p. 392). More recent
publications have also defined and used a Taylor number, but we will continue with the

conventional Reynolds number stated in Eq. 2.23 (Tagg 1995).

2.6 Applying the linear theory of hydrodynamic stability
To use the linear theory of hydrodynamic stability, we will begin with the
equations of motion developed in Section 2.2 and add in a small disturbance, which will
either grow or decay over time. The “linear” aspect of the theory means that any number
of disturbances may be considered, and each can be analyzed as a separate Fourier
component. We will introduce small perturbations in both the velocity field and pressure
field as follows:
A u = u(r) expli(md +kz) +0 t] (2.24)
A p = p(r) expli(md + kz) +0 ], (2.25)
where m,k, and & are all coefficients (Tritton 1988, p. 262). Because ¢ = 0 and ¢ = 2w are
identical situations, m must be an integer, but the wavenurgber & can take any value.

Using the simplest case and considering the perturbation to be axisymmetric implies m =
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0. The time coefficient ¢ is negative for low Re values and positive above a critical Re
value. A negative ¢ means that the perturbation will tend to decay, while a positive ¢ -
means the perturbation will amplify and cause a phase transition (Tritton 1988, p. 262).

A lengthy proof by Chandrasekhar has shown that G is always real, which means that a
perturbation will grow or decay continually (Chandrasekhar 1961, p. 43). Thus, the flow
will always begin in a laminar form but it will develop patterns as soon the critical Re

value is surpassed. For a Taylor-Couette apparatus with a small gap, we merely quote the

a /s
Re, =41.18] —2 (2.26)
a,—a, ). :

(Chandrasekhar 1961, p. 145). Thus, the Reynolds number acts as a dynamic indicator

critical Reynolds number

for studies of the Taylor-Couette flow. It is perhaps counter intuitive, but proven in
numerous experiments, that Re.; depends only on the geometry of the system. The theory
does not indicate what patterns will form, only where they emerge (where the phase
transition occurs), but for this purpose the theory has been proven highly accurate Qver
the last forty years. Small disturbances in the system can amplify spontaneously once the
critical Reynolds number has been reached, and this will producé the patterns of the

Taylor-Couette flow.
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Chapter 111

Taylor-Couette flow: experimentation and measurement

3.1 Initial apparatus

For an initial, crude investigatiori of the Taylor-Couette flow, I constructed an
apparatus based on the recommendations of Van Hook and Shatz as published in The
Physics Teacher (1997, p. 391). The outer cylinder was a standard glass graduated
cylinder with radius a; = 2.30 + 0.05 cm, and the inner cylinder was a section of copper
tubing with radius a; = 1.60 £ 0.05 cm. Using Eq. 2.26, the critical Reynolds number of
this system was Re, = 62.3. The inner cylinder was attached to a small DC motor using a
plastic shaft adapter. I slid rubber o-rings around the top and bottom of the inner cylinder
to keep it aligned in the center of the outer cylinder. The outer cylinder and the motor
were held in place using a simple ring stand and two clamps (see Fig 3.1).

Using this apparatus, I observed the transition from laminar flow to Taylor
vortices in two different solutions. The first solution used was rheoscopic fluid,
consisting of distilled water and silica particles (for flow visualization). (Rheoscopic
fluid was purchased from Arbor Scientific, Inc.). The second solution was a 50/50
mixture, by volume, of glycerol and distilled water, to which I added a small amount of
aluminum powder (particle size ~20 pm) for flow visualization. (Glycerol and aluminum
powder were purchased from Sigma-Aldrich Chemical Co.). As expected, due to its
much higher viscosity, the water-glycerol solution required a far greater angular speed
than the rheoscopic fluid to produce Taylor vortices. Due to the crude nature of the
apparatus, I did not take any precise measurements of the angular speed or the viscosity of
either solution. After determining that a simple Taylor-Couette apparatus would produce

the predicted patterns, I began to construct a larger and far more precise apparatus.
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FIG. 3.1. Initial Taylor-Couette apparatus. Section of copper pipe in
a 50 ml graduated cylinder that is driven by a DC motor.
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3.2 Final apparatus

To investigate the relationships of geometry, viscosity, and angular speed given by
Eq. 2.23 and Eq. 2.26, a precise apparatus (see Fig. 3.2) was constructed and four fluids
of different viscosities were used. The final apparatus consisted of a polycarbonate outer
cylinder (i_nner radius a; = 5.27 + 0.05 cm and length / = 56 cm) and two different PVC
plastic inner cylinders (outer radius a; = 4.44 + 0.05 cm, and outer radius a;,’= 4.22 + 0.05
cm). One of these inner cylinders was solid (negatively buoyant), and the other was
partially filled with lead shot to counter-act the buoyancy of the hollow center. The
diameters of these cylinders were measured with digital calipers and were determined to
be uniform in radius to within the precision of the measurement (+ 0.05 ¢cm). The motor
mount was designed to be removed easily so that the inner cylinders could be exchanged
and two different theoretical values of Re,, could be studied with a single apparatus.

Both inner cylinders were fitted with % inch diameter stainless steel shafts. Once
an inner cylinder is in place, the shaft fits into bearings constructed of Teflon impregnated
plastic located in the base and the polycarbonate cap of the outer cylinder. The shaft
enters a shaft adapter 1.5 cm above the upper bearing and the removable polycarbonate
cap for the outer cylinder; this adapter is driven by the motor mounted above. The shaft
is held in place by a thumb screw (tightened against the flat section of the shaft), and this
must be loosened to remove the polycarbonate motor mount and switch cylinders. This is
shown in Fig. 3.3. To ensure a precise alignment of the shaft adépter and shaft each time
the inner cylinder was switched, the current drawn by the motor was monitored. Because
motor drag can be approximately measured by current usage, the cap and motor mount
were adjusted in small increments until the motor drew a steady .current (and thus a steady
drag) at any given rotation rate.

Finding an appropriate DC motor to power the final apparatus was difficult
because relatively low cost motors do not run steadily (or at all, in some cases) at the slow
speeds (Q = 0.5 rad/s to 3.5 rad/s) necessary to study the onset of Taylor vortices in the
fluids used in this thesis. Attempts were made to control a DC motor by monitoring the
signal from an optical encoder (mounted on the motor) and using a lock-in amplifier /

operational amplifier system to adjust the motor to follow a function generator. These
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FIG. 3.2. Final Taylor-Couette apparatus (empty).
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FIG. 3.3. Motor mount and drive shaft adapter of the final Taylor-
Couette apparatus.
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attempts were unsuccessful. The problem was solved by using a geared down motor (a
Pittman #GM9413F277 24V DC motor with a 65.5:1 gear ratio, purchased from C & H
Sales, Inc.). The motor was powered by a Hewlett Packard DC power supply (Harrison
6285A) and controlled by limiting the voltage. Two of these motors were purchased and
ﬁtted with optical encoders (Hewlett Packard, HEDS-5500 A06), which provide 500
pulses pef revolution of the motor. In case of a breakdown, the second motor can be
installed by removing the shaft adapter from the motor shaft (using a small hex wrench)

and removing the two Phillips head bolts from the upper polycarbonate disk, as shown in

- Fig. 3.3.

3.3 Measuring viscosity
To produce four fluids with different viscosities, four different solutions of

glycerol and rheoscopic fluid were prepared. The viscosities of these solutions were
measured using a Gilmont falling ball viscometer (GV-2200). This method of viscosity
measurement was first developed by Stokes in 1845 (Sears and Zemansky 1960, p. 280).
Stokes deduced that the resistive force R on a sphere falling thrdugh a viscous fluid could
be expressed by

R =6nurv, @3.1)
where L is the viscosity, 7 is the radius of the sphere, and v is the relative velocity of
sphere and fluid (Sears and Zemansky 1960, p. 280). The buoyancy force B due to the
density p of the fluid could be expressed by

B = (4/3)nr'pg, (3.2)
and the force of gravity mg on a sphere of density p, is simply (4/ 3)1tr? p.g. Newton’s
secdnd law shows that the sphere will reach a terminal velocity when the force of gravity
equals the sum of the buoyancy force B and the resistive force R, as shown by

(4/3)n:r3 Pog = (4/3)7cr3 pg + 6murv. 3.3)

By manipulating Eq. 3.3 we can see that the viscosity i is given by

uz%l" g(p‘;;_p) . (34)
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The Gilmont viscometer allows the sphere to drop through a distance  =10.0 cm while
moving at its terminal velocity. By knowing the radius of the sphere (r = 0.315 cm) and
knowing that v = ‘y , we can use Eq. 3.4 to realize that the viscosity W in centipoises (cp)

can be determined from

u=3.30 (po-p)t, (3.5)

where time ¢ is measured in minutes. For the purpose of this thesis, and for the
expression for the Reynolds number, Eq. 2.23, the kinematic viscosity v = A is a more

useful quantity, and it follows from Eq. 3.5 that

330 (p, —p)t
V=—"""""".
Y

The kinematic viscosity was measured for each solution by first measuring the

(3.6)

density of three random samples using a 50 ml graduated cylinder and an OHAUS
Precision Standard electric balance. Next, sets of five measurements per sample were
taken, using the Gilmont viscosimeter and a stopwatch, on another three random samples
of the solution. These results are shown in Table 3.1, and the individual data points are
given in appendix A. The results are given in centiStokes, ¢S, which is a derived unit
equal to [cm®s! x 10%]. The motion of the falling sphere through the viscosimeter was
extremely sensitive to air bubbles in the fluid. To eliminate this source of error, the
sample was left to sit in the viscosimeter tube for 20 minutes before capping, thereby
allowing the air bubbles present to rise and escape. Because variations of viscosity with
temperature are common, the temperature was monitored throughout the viscosimeter
measurements using a Fluke 52 thermocouple. The temperature never left the range from
21.5°C to 22.7°C. Therefore, temperature variations were considered to have a negligible
effect upon the viscosity measurements.

The uncertainties for these values were calculated using the standard method of
propagating uncertainty in a physical measurement (Young 1962, p. 98). In general, we
can determine the uncertainty 6 in a result O(a,b,c) by using the measurement

uncertainties G,, Op, O, and the relation

.-
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TABLE 3.1. Properties of experimental solutions.

Density p Kinematic
Solution Solution # (g/ml) viscosity v
(cS)
40:60, glycerol:water by mass 1 1.080 £ 0.006 3.35+0.08
50:50, glycerol:water by mass 2 1.107 £ 0.006 526+0.15
50:50, glycerol:water by volume 3 1.123 +0.006 8.65t0.21
65:35, glycerol:water by mass 1.154 +0.006 12.27+0.22
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a 2 a 2 , a 2 ,
o3=(22) 01 +(L) 0; +(Z] o:. 6.7)

By applying this method to the density p = ”%, , we can express the uncertainty in p 'by

62 (-mY 62 o}
c, =\/7' (—I}‘Z—) o) =p ;1'2—+;/% (3.9)

Thus, the density values in Table 3.1 include an uncertainty propagated from the £0.01 g

uncertainty in mass measurement and the + 0.25 ml uncertainty in volume measurement.

These uncertainties are similar and often greater than the standard deviations of an actual

set of density measurements, and thus these propagated uncertainties seem appropriate.
The uncertainty in kinematic viscosity measurements is due the £ 0.015 minute (~

1 second) uncertainty in the drop time ¢ and the uncertainty of each density measurement,

o, =\KM} ! +(3—3%€) c, . (3.9
p p :

These propagated uncertainties were all smaller than the standard deviation of each data

and it is given by

set. Thus, the standard deviations were more conservative measures of uncertainty for
these measurements, and these values were used to quote the uncertainties in kinematic

viscosity found in Table 3.1. The full data sets are given in Appendix A.

3.4 Measuring angular speed v

Each of the four fluids was tested using both inner cylinder sizes. The voltage
supplied to the motor was slowly increased until the critical angular speed Q,, required
for Taylor vortices was reached. This critical speed was measured by the optical encoder
mounted on the motor, which was powered by a Hewlett Packard DC power supply
(#6281A) set at 5.0 V. The Channel A output of the encoder sends 500 pulses per motor
shaft revolution to a LeCroy digital oscilloscope. The oscilloscope was set to measure the
frequency of these pulses. Dividing this frequency by (500 x 65.5) and multiplying by 21
gives the angular frequency Q of the drive shgﬁ (and inner cylinder). Because the |
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frequency varied slightly, twenty measurements of the frequency were recorded per trial
(using the oscilloscope ‘run/stop’ button). Five trials were conducted for each fluid with
fhie small inner cylinder, and five trials were conducted for each fluid with the large inner
cylinder. Thus, a total of 100 measurements of the critical speed €., were taken for each
cylinder-fluid setup. The results are shown in Table 3.2, with the standard deviation of
each data set used as the uncertainty in measurement.

Although the motor speed was not stabilized an electronic feedback loop, the
percent standard deviation (used here as the fractional uncertainty) in angular speeds was
normally around one percent. Constant rotation would have been ideal, but this motor
system was deemed adequate because the fractional uncertainties in the other
experimental measurements were no more precise than one percent. The full data sets
and the standard deviations are recorded in Appendix A, and Appendix B contains
pictures of each cylinder-fluid setup. These measurements will be used in Chapter IV to
verify the application of the linear theory of hydrodynamic stability to the onset of Taylor

vortices.
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Chapter IV

Taylor-Couette flow: analysis

4.1 Experimental determination of Re,

The 800 measurements of €2, (see Appendix A) taken in order to produce the
results reported in Section 3.4 show clearly that there is a precise critical point for a given
geometry and fluid at which laminar flow is no longer stable and Taylor vortices form.
Examples of laminar flow and Taylor vortices seen experimentally are shown in Fig. 4.1;
the Taylor vortices of each cylinder-fluid system are shown in photographs in Appendix
B. As stated in Section 2.5, we can quantify the dynamics of the system using the
Reynolds number as given in Eq. 2.23. Thus, the critical Reynolds number Re,, for a
given experiment will be

Re = Q.a(a,~a) .

cr

@.1)

v
It is important to note that the kinematic viscosity v in this equation must be in units of
cm?/s (converted using 10?2 cm%s = 1 ¢S) because the radius measurements are in
centimeters. These Re,, values are shown below in Table 4.1, and depicted graphically in
Fig. 4.2. Theoretically the linear best-fit lines should be exactly horizontal (universal Re
for each geometry), and the experimental data is not far from this prediction. The
fractional standard deviation of Re,, was 2.8% for large a; and 3.8% for small a,’, and
thus a nearly universal Re,; was found for each of the two geometries.

Again, using the standard method for propagation of uncertainty shown in Eq. 3.7,

the uncertainty for each Re,; was determined from the uncertainty in each measured quantity

as
follows
2 2 2 2
- Qa, -2 Q Q -
GRe____\/(al(azv a1)) 0';22+( (azv al)) 631+( val) (_’azz'l'( al(:lfz al)) o_vz .(42)
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TABLE 3.2. Critical angular frequencies Q. for each solution and geometry.

Large inner cylinder Small inner cylinder
_ a;=4.44 cm ar’=4.25 cm
Solution #
angular frequency €, angular frequency Q.
(rad/s) (rad/s)

1 0.983 £ 0.027 0.756 +0.037

2 1.447 £0.015 1.087 £ 0.008

3 2.497 £0.015 1.860 * 0.008

4 © 3.43610.012 2.570 £ 0.015
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FIG. 4.1. Experimental Taylor-Couette results using Solution #2,
(a) laminar flow and (b) Taylor vortices.
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TABLE 4.1. Experimentally determined critical Reynolds numbers.

Large inner cylinder Small inner cylinder
Solution # a=4.44 cm ay’=4.25cm
critical Reynolds number  critical Reynolds number
Re., -Reer
1 103.1£0.2 79.3+0.1
2 96.9 £ 0.1 72.8 0.1
3 101.6 £ 0.1 75.710.1
4 98.6 £ 0.1 73.810.1
fractional standard deviation 2.8 % 3.8%
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FIG. 4.2. Experimentally determined critical Re for two geometries (two inner
cylinder sizes), using four solutions. Solid lines are linear best-fits of the data for
each inner cylinder; theoretically these lines should be horizontal.
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To be more exact, we expect this critical value of the Reynolds number to be universal for a
given geometry. If the Reynolds number is constant, the angular speed €., should be ‘
exactly inversely proportional to the viscosity v for the each inner cylinder. This relation is

shown by the two nearly straight lines (one for each @, value) in Fig. 4.3.

4.2 Theoretical Re,,

Now that we have examined the nature of the critical point for instability in the
Taylor-Couette system, let us investigate Chandrasekhar’s prediction of the critical
Reynolds number for the case of a small gap, (a; - a1) <<ay, as given by Eq. 2.26

LV
Re= 41.18( ‘ ] . 4.3)

a, —a,

In this exploration, it quickly becomes apparent that the small inner cylinder (the larger
gap) is somewhat outside the range of Chandrasekhar’s approximation. As described in
Section 3.2, the inner radius of the outer cylinder is a; = 5.27 £ 0.05 cm and the two inner

cylinders have radii of a; = 4.44 + 0.05 cm and a,"= 4.25 £ 0.05 cm. The system with the

(@, —a,)

larger inner cylinder has a ratio u
1

of 0.19, while the system with the smaller

(a, —ay)

inner cylinder has a ratio ;.
1

of 0.24. As will be shown later, the system that is

closer to the (a; - a;) << a; requirement produced results more consistent with Eq. 4.3.
Once more we apply the standard method for propagation of uncertainty, Eq. 3.7,
and we find that the uncertainty oy, in the Re,, prediction results from the uncertainties in

measuring a; and a, through

Ope = 4118’ %0 + alo:’ } 4.4
w 4 \a(a,-a) (a,-a)

Application of Eq. 4.4 shows us that a small error in the measurement of a cylinder’s

radius or a slight error in axial alignment will have a dramatic effect upon the theoretical
Re,; value; the inability to verify the uniformity of each cylinder’s radius throughout its

length is unquestionably the largest source of error in this thesis. This is an ideal example
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FIG. 4.3. Dependence of critical angular speed on Viscositgf- for two fixed
geometries; solid lines are linear best-fits of the data.
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of a system with extreme sensitivity to geometric conditions, and it is a common theme in
complexity analysis. Using Egs. 4.3 and 4.4, we obtain the following theoretical values:
Rec(ai=444cm) = 95.2 £ 4.5 and Reg(ai=4.25cm) = 84.1 + 3.3. Figure 4.4 shows these
theoretical Re,; values along with the experimentally obtained values. The experimental
data points for the large inner cylinder (smaller gap) generally fall within the uncertainty
of the theoretical values, but the experimental points of the small inner cylinder (larger
gap) are clearly below the theoretical Re,, obtain from Eq. 4.3. Thus, the data suggests

that Chandrasekhar’s small gap approximation is not accurate for a system with a

geometric ratio (@, —a) . 2024,
1

4.3 Pattern selection

Of particular interest in this system is the patterns themselves. As discussed
below, the patterns are actually very similar in size to the gap between the cylinders, and
this is perhaps another example of sensitivity to spatial conditions. This result seems
intuitive, but when considered analytically it is quite amazing that the system’s emergent
behavior is so well predicted by consideration of the boundary conditions.

Linear stability theory predicts that there will be a critical wavelength (maximum
voritice size measured in the z direction) to the emergent Taylor vortices, which is
dependent upon the geometry of the system. However, this theory does not require that
the critical wavelength is always chosen by the system (Koschmieder 1993, p. 242).
Linear stability theory simply predicts the critical point when the flow becomes unstable,
_and this instability results in pattern formation. Thus, just as we will see later in
convection, the patterns are non-unique. As experimentally verified by Burkhalter and
Koschmieder (1974), the vortices may form in different sizes depending on how slowly or
quickly Re, is approached. According to theory, we do expect the pattern wavelength A
to be uniform throughout the system at any given time, and we expect A to be the same

when Re,, is approached in the same way.
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The Taylor vortices were measured at Re,, during each experimental run, and the
results were exceptionally consistent, as shown in Table 4.2. The critical Reynolds-
number was approached slowly from Q = 0 during each run, and the pattern wavelength A
was consistently 0.85 + 0.05 cm for the system with large a; and 1.05 + 0.05 cm for the
system with small a,’. It is interesting to note that the ratio of the gap distance between
cylinders and the wavelength X is the same (within 1%) for both inner cylinder sizes.

This further confirms the notion that pattern size is a function of geometry alone and

arises from the boundary conditions of the system.

4.4 Beyond Re,,

After studying the initial bifurcation into unstable flow at Recr, each system was
driven further in the supercritical regime. This study was not nearly as thorough or
meticulous as the examination of Re,;, yet these limited observations are still useful for
understanding the emergence of complexity in the Taylor-Couette flow. A
comprehensive discussion of the supercritical regime in can be found in Koschmieder
(1993). When driven beyond Rey, the eight systems all made a transition from straight
Taylor vortices to wavy Taylor vortices (see Fig. 4.5) once a Reynolds number beyond at
least 1.25 Re,, had been reached. This emergence of patterns that are no longer axis-

- symmetric is intrinsic to our application of linear stability theory, and is the amplification
of perturbations that are no longer axisymmetric. (Meaning that m # 0 in the perturbation
equations Egs. 2.24 and 2.25). The Reynolds numbers for the emergence of wavy
vortices are given in Table 4.3.

It is interesting to note that the larger gap (small ;") consistently had to be driven
much farther above Rec, to produce wavy Taylor vortices, as shown in Fig. 4.6a. The
small a; system required lower Re values than the large a; system to produce axis-
symmetric vortices, and yet the small a;” system required much higher Re values than the

‘'large a; to produce wavy vortices. Figure 4.6b shows that viscosity, and not geometry

alone, is a factor in the emergence of these wavy vortices. Both geometric systems
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TABLE 4.2. Pattern wavelength, A, and gap-wavelength ratio.

Large inner cylinder Small inner cylinder
ai=4.44 cm a;’=4.25cm
‘Solution # ,
pattern wavelength A pattern wavelength A
(cm) (cm)
1 0.85+0.05 1.05+0.05
2 0.85+£0.05 1.0510.05
3 0.85+£0.05 1.05+0.05
4 0.85+0.05 1.05+£0.05
. (a, —q,
Ratio = 0.976 0.971
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(a)

FIG. 4.5. Wavy Taylor vortices using Solution # 2, (a) entire apparatus
and (b) close-up. g
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TABLE 4.3. Supercritical flow: observed Reynolds number for emergence of ‘wavy’

Taylor vortices, and the ratio of Reyayy to Reg;.

Solution # Large inner cylinder Small inner cylinder
ai=4.44 cm ar’=4.25cm
Rewavy Reyavy/Recr  Rewavy Rewavy/Recr
1 194 1.88 379 4.79
2 141 1.46 301 4.14
3 139 1.37 286 3.78
4 150 1.52 173 2.35
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produce wavy vortices at lower Reynolds numbers with fluids of greater viscosity,
although the effect is far greater in the large gap system.

When the system was driven further into the supercritical regime, turbulent flow
occured. At first this flow was contained with the Taylor vortices (an example of chaos
within a structured system), which eventually became axisymmetric again (see Fig. 4.7).
When dri\-zen to exceptionally high Reynolds numbers (on the order of 1000 Req;), the
flow became fully turbulent. A second motor (Pittman #14203d244-R2, 38.2V DC) was
required to reach such high angular speeds. Unfortunately, the apparatus shakes violently
at these speeds and needs to be mechanically stabilized before more research is done

within the turbulent regime.
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FIG. 4.7. Turbulent Taylor vortices using Solution #2.
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Chapter V

Benard convection: history and theory

5.1 History

In 1897, Henri Benard undertook the first scientific study of convection in a thin
layer of fluid heated from below. Benard produced hexagonal convection patterns in
spermaceti (whale oil) by heating the underside of the fluid with brass and cast iron plates
held over boiling water and cooling the topside with air. Benard was conscious of the
asymmetry in boundary conditions that resulted from this free surface (topside open to air
and therefore not uniform cooling), yet he felt the free éurface was necessary to view the
convective patterns. The depth of the fluid was on the order of 1 mm, and the
temperature difference across the fluid was around 80°C (Koschmieder 1993, p. 5).
Although many of the images in his work show patterns that are closer to diverse
polygons, Benard was convinced that uniform hexagonal convection patterns were
possible. Benard was also convinced that the convection patterns being formed were due
to buoyancy (hot fluid rising, cold fluid falling), and he published his results as his
doctoral thesis in 1900 (Tritton 1988, p. 42).

In 191.6 J.W.S. Rayleigh presented a framework for understanding the patterns
Benard observed in terms of hydrodynamic stability (similar to the discussion of stability
in the Taylor-Couette flow, Section 2.6). This work is the foundation of our modern
understanding of Benard convection. Because of the significance of Rayleigh’s work and
his insight into the control parameter for the convective system, buoyancy driven
convection is now commonly know as Rayleigh-Benard convection. However, it was
discovered by J.R.A. Pearson in 1958 that the convection seen by Benard was actually
driven by surface tension forces and not by buoyancy forces (Koschmieder 1993, p. 37).
To follow convention, fairly attribute credit, and avoid confusion, we will refer to the
buoyancy driven case as Rayleigh-Benard convection and to the surface tension case as

Marangoni-Benard convection (for Marangoni’s work in developing the control
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parameter for the surface tension case). Since Pearson’s discovery and Chandrasekhar’s
extensive work in hydrodynamic stability theory during the 1960s, a large volume of :
theoretical and experimental work has been done on both forms of convection, yet the -
general application of linear stability theory has remained. Although it will be somewhat
less in—depth than the discussion of the Taylor-Couette flow, we will now go through a

description of the modern understanding of the formation of convection patterns.

| 5.2 Linear theory of hydrodynamic stability

Just as in the Taylor-Couette flow, linear stability theory can be used to predict
and describe the phase transitions in a convective system. When a thin layer of fluid is
heated from below, as shown in Fig. 5.1a, the fluid will be at rest when the dissipative
forces of viscosity and thermal conductivity are greater than the driving, or destabilizing,
force of the temperature difference (Tritton 1988, p. 42). When the system reaches a
critical balance point between driving and dissipative forces, the system will becomé
unstable to small disturbances that are already present in the system. A small disturbance
will amplify and cause the system to undergo a phase transition and enter a state of
motion (Tritton 1988, p. 255). This motion is described in Fig. 5.1b. Itis important to
note that motion does not result due to an absence of equilibrium, but simply because the
motionless state is unstable (Tritton 1988, p. 42). There are still solutions to the Névier-
Stokes equation in which the fluid could be at rest, but because the state is unstable these

solutions do not occur.

5.3 The Boussinesq approximation

Our discussion of convection will only be concerned with externally induced
temperature variations. We will not be concerned with flow-induced temperature
variations, but restrict our analysis to temperature variations between boundaries (more
specifically between a rigid boundary and air, an ambient ﬂ};id). Thus, the temperature

will be considered a continuous function of position 7'= T(r). In principle, temperature
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within convection cells (Koschmieder 1993, p. 30).
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variations will give rise to variations in the properties of the fluid, but including this in
our analysis would be extremely complicated and outside the scope of this thesis.
Therefore we will make the commonly used Boussinesq approximation, which considers
all fluid properties (viscosity, thermal conductivity, coefficient of expansion, etc.) except
the density to remain constant’ (Koschmieder 1988, p.14). In fact, the density is
considered constant except in regards to the contribution of the gravitational force. Thus
the continuity equation Eq. 2.1 again reduces to

| V-u=0, 5.1
just as in Taylor-Couette flow (Tritton, 164). Likewise, we introduce a constant density

po into the Navier-Stokes equation

Po TD)%= ~Vp+uV*u+F. (5.2)

54 Rayleigh-Benard convection

Rayleigh-Benard convection is the result of hot, less dense fluid rising as cold,
more dense fluid sinks. Much work has been done to analyze the structure, size, and
planform (shape) of the resulting convection patterns; however, we will restrict our
discussion to understanding when and how these patterns form. In the Navier-Stokes
equation, Eq. 5.2, we now include a body force term (instead of setting F =0, as we did
in the Taylor-Couette case), and this body force is the gravitational force due to a change
in density, as follows

F=pg with p=potAp (5.3)

(Tritton 1988, p. 164). We are able to consider the density p to be constant for all other
terms of Eq. 5.2, because when Ap/p, << | and all accelerations in the flow are small
compared to g, the only significant effect of Ap is in the body force term. We must make
another approximation and linearize p(7) using the volume coefficient of expansion of

the fluid, o, and writing

! The full development of the Boussinesq approximation is described in Stability of Fluid Motions (Joseph,
1976). The implications have been studied by Spiegel and Veronis (1960), Mihaljan (1962), Perez-Cordon
and Velarde (1975), and Gray and Giorgini (1975).
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Ap = -0p AT (54)
(Tritton 1988, p. 164). The dynamical equation Eq. 5.2 now becomes
—]I))—’; = —%(Vp)+ W24~ goAT (5.5)
(Tritton 1988, p. 164). Equation 5.5 is the dynamical equation for a buoyancy driven
layer of ﬂﬁid.
We also need an equation for the temperature 7. We will assume that the fluid
has a constant heat capacity per unit volume, expressed as pC,, and we will again use the

substantive derivative operator of Eq. 2.5; in this case, to express the change in

temperature D%t as we follow a fluid particle (Tritton 1988, p. 165). Thus, we can

express the rate of heating per unit volume as pC, DT ; this heating is due solely to
pPCp Dt

the transfer of heat from neighboring fluid particles by thermal conduction.” We define
the conductive heat flux H as

H=-kVT, ‘ (5.6)
where £ is the thermal conductivity of the fluid and considered constant (Tritton 1988, p.
165). We then equate the divergence of thé conductive heat flux to the rate of heating per

unit volume,

oGPV )=-vE. (5.7)
Using Eq. 2.5 and the definition of the substantive derivative operator, we can now arrive

at the thermal equation for convection

T
aa—t+u-VT=1cV2T, (5.8

where x = k/pC, is the thermal diffusivity, or thermometric conductivity, of the fluid
(Tritton 1988, p. 165). ,

Now that we have developed the continuity equation, Eq. 5.1, the dynamical
equation, Eq. 5.5, and the thermal equation, Eq. 5.8, we can apply these to the case of a
horizontal layer of fluid (thickness d) contained between two boundaries of constant

.-

2To be truly géneral, the thermal equation we are building should include a term for internal heat
generation, but we will consider it negligible in this analysis.
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temperatures T} and T,. The concept of dynamic similarity (Section 2.5) is, of course,

completely relevant to this system, but the Reynolds number does not fully describe the

system. Thus we must follow convention and introduce the Rayleigh number Ra as the

control parameter for convection. For the circumstances of Rayleigh-Benard convection,

it is given by |

_ 8o, ~ 1)’
VK

Ra (5.9

(Landau and Lifshitz 1987, p. 219). Similar to the Taylor-Couette case, the system
becomes unstable to small disturbances once driven beyond a critical value of the control
parameter. The theoretical critical Rayleigh value for rigid boundary conditions (7}
above fluid; 7, below fluid) is Ra, = 1708. This result is reached with the same methods
as in the Taylor-Couette analysis. We introduce small perturbations in the vélocity field,

temperature, and pressure of the form

u = U(z)expli(kx + k) + ot], (5.10a)
p =p@)explilkx + ky) + o], (5.10b)
T = T(z)explilkx + k) + ot], (5.10¢)

and these perturbations amplify (time coefficient ¢ > 0) when the system is above Rac,
(Tritton 1988, p. 362). For values below Ra,, the time coefficient is negative and these
disturbances decay quickly. The fluid is at rest until Ra,, is reached, at which point
movement occurs due to instability. The most well known and celebrated flow above
Ra,, is the emergence of hexagonal convection cells (shown in Fig. 1.2), yet this is only
one possible configuration. Long, straight convection rolls are also common
experimentally. Linear stability theory simply predicts when the phase transition will
occur; no prediction of pattern selection is given without introducing far more
complicated and lengthy non-linear analysis. Despite this shortcoming, linear stability
theory has been shown experimentally to be very successful for the prediction of the onset

of convection.
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5.5 Marangoni-Benard Convection

Although perhaps more intuitive and comprehénsible, Rayleigh-Benard

‘convection presents difficult problems in practical experimental work, and the surface-

tension case (Marangoni-Benard convection) is more readily accessible to experimental
investigation. As described later in Chapter 6, these experiments deal with a rigid lower
boundary 'surface of constant temperature and an upper ‘free’ boundary surface of
constant temperature (air, in this case). For this discussion, we will modify the
Boussinesq approximation and assume that all fluid properties, including density p, are
constant, except the surface tension coefficient S. We will now consider a thin fluid
layer, in which gravity is neglected and surface tension is temperature dependent,
meaning

oS
§=8,+ 5 AT (5.11)

(Koschmieder 1993, p. 37). We can keep the continuity equation, Eq. 5.1, the Navier-
Stokes dynamical equation, Eq. 5.5 (although -0,gT is now considered zero because fluid
layers used for this convection are so exceptionally thin that significant differences in
buoyancy between upper and lower fluid are not possible), and the thermal conduction |
equation, Eq. 5.8, that we developed for the Rayleigh-Benard case. When applying the
boundary conditions of the system, the change in surface tension (due to temperature
variations) is set equal to the shear stress at the upper surface. It is this shear stress that
eventually sets the system into motion, because fluid is pulled laterally away from its
position at the surface and must be replaced with fluid from below (Koschmieder 1993, p.
38).

Because surface tension theory neglects gravity, the Rayleigh number of the
system is zero, and we must introduce a new control parameter to describe the system.

The Marangoni number Ma is defined by

(5.12)

and the critical value for the emergence of convection is Mag, = 79.607 (Koschmieder
1993, p. 42). This critical value is a result of the same perflirbations in velocity field and
temperature (Egs. 5.10a and 5.10b) that we introduced in the buoyancy driven case. As
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before, these perturbations decay below the critical value in the control parameter and
amplify above the critical value. Because this analysis neglects gravity, it is best applied
to extremely thin layers of fluid. Buoyancy forces often dominate in thicker layers, and
experimental work has shown that both driving forces are often present in a convecﬁve

system (Koschmieder 1993, p. 37).
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Chapter VI

Benard convection: experimentation and analysis -

6.1 Experimentation

These experimental attempts closely followed the recommendations of Schatz and
Van Hobk (1997). Early attempts to produce convection cells were undertaken using a
‘Handi-Pan’ electric skillet and canola oil. Flow visualization was achieved by drying out
gold-colored model paint and rinsing it with acetone; once dry again, small amounts of
this residue were mixed with the oil. As predicted, the oil began at rest and convection
cells appeared with sufficient temperature (see Fig. 6.1). The cells were mostly round
and slightly non-uniform, so no further measurements were taken. Unfortunately, these
early experiments were some of the most successful, as it soon became apparent that
temperature is a difficult control parametér to work with.

The electric skillet did not provide very uniform heating, so a chemist’s hot plate
was used (Cimarec 2, Thermoclyne). It is exceptionally important that a uniform heat
source be used. Using petri dishes to contain the fluid on the hot plate did not work
because the slight convex shape of the bottom did not transfer heat evenly from the hot
plate to the fluid. To create a more even heat source, [ used a 1 cm thick piece of
aluminum (high heat conductivity) as a lower boundary and created side walls using high
temperature gasket sealant and PVC plastic. This was a much better heat source; the
lower boundary temp was constant (as measured with the Fluke 52 thermocouple)
between random points on the aluminum plate to within 0.5°C, yet the results were still
marginal. ‘

Using the recommendations of Schatz and Van Hook (1997), experiments were
conducted using silicone oil of v =50 ¢S and v = 100 ¢S with aluminum powder for
visualization. The aluminum powder stays in suspension for a very limited amount of
time, so it is quite difficult to slowly ramp the temperature.and observe the onset of

convection. When convection was reached, hexagonal patterns usually appeared, but
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FIG. 6.1. Initial Marangoni-Benard convection results using a
"Handi-Pan" and canola oil. Fluid thickness 1s about 1 cm.
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these patterns were very faint (see Fig. 6.2a). Figure 6.2b shows the long, straight
.convection cells that also form. I was unable to find a gasket sealant that completely
resisted the silicone oil, so the apparatus constantly leaked. Finally, when working with
very thin layers, a level surface is essential, and it was rare that I achieved a fluid layer

that was a constant thickness across the entire apparatus.

6.2 Measuring temperature and thickness

Convection was produced in the silicone oils and the canola oil over a range of
thickness d from 2 mm to 10 mm, and the qualitative results were consistent with the
predictions of Eq. 5.12. More temperature was always required for a smaller d, and
hexagonal cells were often seen, although faint and non-uniform. Just as in the Taylor
flow, the pattern wavelength was always similar to the size of the gap between
boundaries, A = d. While taking measurements with the thermocouple and a ruler,
samples of canola oil of differing thickness were heated until the onset of convection, and
these measurements are reported in Table 6.1. As shown by the definition of the
Marangoni number in Eq. 5.12, the fluid tﬁickness d and the temperafure difference AT
should be linearly proportional at the emergence of convection (i.e. at Ma,;). The best-fit

line of Fig. 6.3 demonstrates that the canola oil data fits this theory well.

6.3 Discussion

For simplicity, these experiments in convection were all under the assumption of a
dominant surface-tension driving force. Although the examination of the onset of
convection was less thorough than the study of the Taylor-Couette flow, the experiments
were successful enough to verify the criticality of the phase transition to the unstable
regime in a fluid heated from below. The experiments were also successful in illustrating
the remarkable parallels between the Benard convection system and the Taylor-Couette
system. If a more comprehensive study of Benard cor_lvecti.on is undertaken by another

thesis student, it will be essential to address immediately the problems of temperature
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FIG. 6.2. Marangori-Benard corwvection; (a) long convection cells in

theoscapic fluid and (b} hexagonal convection cells in silicone oil.
. Contrast enhanced using Adobe Photoshop.
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TABLE 6.1. Measurements at the onset of convection in canola oil.

Fluid thickness d Temperature difference AT
(cm) O
0.55+0.05 1752
0.50 £ 0.05 19.0+2
0.40 £+ 0.05 28.5+2 |
0.30£0.05 355+2
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FIG. 6.3. Experimental verification of linear relationship between fluid thickness and
temperature difference at the onset of surface-tension driven convection; solid line
is a linear best-fit of the data.
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control and flow visualization. Van Hook and Schatz suggest that aluminum flakes are
best for visualization; perhaps the aluminum powder (spherical, diameter ~20 pm) I
obtained from Sigma-Alderich Chemicals was inappropriate. However, I was unable to
find any other fine aluminum powder from the major chemical supply companies. I
believe that these experimental problems can be overcome; it would simply be a matter of

time and concentrating solely on Benard convection.
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Chapter VII

Conclusion

7.1 Discussion

This thesis has studied the fundamental properties of the emergence of Taylor
vortices and Benard cells. Linear stability theory was verified experimentally for both
cases, although admittedly, more thoroughly for the advent of Taylor vortices.
Chandrasekhar’s small gap approximation for Re,, was also verified experimentally.
Although Taylor-Couette flow and Benard convection are very different phenomena, the
characteristics of the bifurcation point and the emergent complex flow were shown to be
extremely similar. Both systems showed a phase transition to complex flow when a non-
dimensional control parameter exceeded a critical value. In both cases, the pattern
wavelength A was similar in size to the distance between the boundaries of the flow.
Although counter-intuitive, for both systems it was shown that the driving force necessary
to reach complex flow patterns is actually smaller when the distance between boundaries
was increased. These systems demonstrate the fundamental characteristics of emergent

complexity.

7.2 Complexity, entropy, and “order for free”?

Although we developed a rather complete framework for understanding the onset
of complexity in these flows, mystery still surrounds the emergence of complexity in
simple systems. To the traditional scientist, emergent complexity is probably quite
foreign and counter-intuitive; the second law of thermodynamics mandates that the
universe should be moving towards simplicity, not complexity. Does the concept of
increasing entropy not apply to these flows? Are these organized vortices and cells truly

“order for free?” The answer is subtle. As demonstrated by numerous research groups,

the emergence of complexity in these systems actually increases overall entropy
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production (Goerner 1994, p. 87-91). Thus, the development of the organized, complex
flows of Taylor vortices and Benard cells obeys the second law of thermodynamics and
significantly hastens the entropy increase in the universe. In the aggregate, entropy still
increases because the Benard cells are so much more effective at equalizing temperature
(bringing hot to cold) than simple thermal diffusion, and the Taylor vortices are so much
more effective than laminar flow at equalizing the sheer forces between boundaries.
Again, we can take the implications far: can the evolution of complex and intelligent life
be explained as a consequence of an, as yet, undiscovered law that complex structures
arise because they maximize entropy production? Given the current rates at which
humans utilize natural resources and produce disorder, the theory certainly seems

suggestive, if not scientifically viable.

7.3 Suggestions for future work

The opportunities for future undergraduate research on this topic are nearly
| infinite. This thesis has only scratched the surface of the current body of knowledge
surrounding the Taylor-Couette flow. The breadth of experimentation in this thesis was
greatly limited by keeping the outer cylinder at rest (€, = 0). However, it would be
worthwhile to study the criticality of a number of other inner cylinder sizes (a;) before
altering the current apparatus to rotate the outer cylinder. If these additional inner
cylinders were machined precisely, and if an electronic feed-back loop were implemented
successfully to control the motor speed, it would be possible to both increase the
precision of the résults and to obtain a much more comprehensive examination of Reg;.
Other researchers have used laser-Doppler interferometry to measure the velocity of the
flow at specific points in the vortices, and this should also be feasible at the
undergraduate level. Alternatively, velocity might be measured by inserting dyes into
various sections of the flow. By stabilizing the current apparatus mechanically, it should
also be possible to drive the system at much higher angular speeds and thereby study the
turbulent regime. Non linear stability theories have been dgveloped to understand Taylor

vortices; these theories would also be worth investigating.
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The obvious suggestion for future work on Benard convection would be to
construct an apparatus to study buoyancy driven, or Rayleigh-Benard; convection. This
apparatus would require rigid boundaries of constant temperature above and below. The
aluminum plate could still be used as the lower boundary; the real difficulty would be to
create a transparent upper boundary so that the formation of convection cells could still
be observéd. Sapphire plates have been used by other researchers, but perhaps a cold
water bath would be adequate. I was unable to obtain the thermal diffusivity or
coefficient of expansion (from the CRC Handbook or from Sigma-Aldrich Chemical
Company) for the silicone oils used; a thorough study of Ra,; and Ma,, could be
undertaken by knowing these values. Non linear theories of both Rayleigh-Benard and
Marangoni-Benard convection could be studied, as well the general theories for the case
in which both driving forces are present.

I believe there is also extensive opportunity to explore further the philosophical
implications and insights that Taylor vortices and Benard cells can provide as models of
emergent complexity. The formation of these patterns is interesting in its own right, but
it also seems that deep insights into the general mechanisms of evolving éomplexity can
be gleaned from these simple phenomena. What are the fundamental laws of physics and
properties of matter that cause complexity to emerge in systems of all kinds (including
living), and how can these two experiments lead us to a better understanding of ourselves

as complex natural systems?
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Appendix A:
Taylor-Couette data
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Appendix B:
Taylor-Couette images
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FIG. B.8. Supercritical flow using Solution #4 (composition 65:35
glycerol:water, by mass) and the small inner cylinder (al =4.22 cm).
(a) Tavlor vortices, (b) wavy Taylor vortices.
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FIG. B.7. Supercritical flow using Solution #4 (composition 65:35
glycerol:water, by mass) and the large inner cylinder (al =4.44 cm.
(a) Taylor vortices, (b) wavy Taylor vortices.
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FIG. B.6. Supercritical flow using Solution # 3 (composition 50:50
glycerol water, by volume) and the small inner cylinder (al =4.22 cmy.
(a) Taylorvortices, (b) wavy Taylor vortices.
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FIG. B.5. Supercritical flow using Solufion # 3 (composition 50:50
glycerol:water, by volume) and the large inner cylinder (a1l =4.44 cm).
(a) Taylor vortices; (b) wavy Taylor vortices.
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FIG. B.4. Supercritical flow using Solution # 2 {composition 50:30
glyrerol-water, by mass) and the swall inner cylinder (al = 4.22 cm).
{a) Taylor vortices; (b) wavy Taylor vortices.
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50

water, by mass) and the large inner cylinder (a1l =4.44 cm).
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(a) Taylor vortices; (b) wavy Taylor vortices.

FIG. B.3. Supercritical flow using Solution # 2 (composition 50

glycerol
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FIG. B.1. Supercritical flow using Solution# 1 (composition 40:60
glycerol:water, by mass) and the large inner cylinder (al =444 cmy).
(a) Taylor vortices; (b) wavy Taylor vortices.
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