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ABSTRACT4

Coupled in situ and remote sensing measurements of young, strongly-forced, wind waves5

are applied to assess the role of breaking in an evolving wavefield. In situ measurements of6

turbulent energy dissipation from wave-following “SWIFT” drifters and a tethered Dopbeam7

system are consistent with wave evolution and wind input (as estimated using the Radiative8

Transfer Equation). Both measured and estimated dissipation increase with wave slope. The9

Phillips breaking crest distribution is calculated using stabilized shipboard video recordings10

and the Fourier-based method of Thomson and Jessup (2009), with minor modifications.11

The resulting Λ(c) are unimodal distributions centered around half of the phase speed of12

the dominant waves, consistent with several recent studies. Comparison of the breaking rate13

estimates from the shipboard video recordings with the SWIFT video recordings show that14

the breaking rate is likely underestimated in the shipboard video when wave conditions are15

less steep and breaking crests are small. The breaking strength parameter, b, is calculated16

by comparison of the fifth moment of Λ(c) with the measured dissipation rates. Neglecting17

recordings with inconsistent breaking rates, the resulting b data do not display any clear18

trends and are in the range of other reported values. The Λ(c) distributions are compared19

with the Phillips (1985) equilibrium range prediction and the Romero et al. (2012) results,20

from which it appears that the Duncan (1981) c5 scaling for dissipation is only valid over a21

limited range of wave scales.22
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1. Introduction23

Wave breaking plays a primary role in the surface wave energy balance. The evolution of24

a wave energy spectrum in frequency, E(f), is governed by the Radiative Transfer Equation25

(RTE),26

∂E(f)

∂t
+ (cg · ∇)E(f) = Sin(f) + Snl(f)− Sds(f) (1)

where Sin(f), Snl(f), and Sds(f) are the source terms corresponding to wind, nonlinear inter-27

actions, and dissipation (Young 1999). Wave breaking is thought to be the dominant mech-28

anism for energy dissipation (Gemmrich et al. 1994; Babanin et al. 2010b), though recent29

evidence suggests that non-breaking “swell” dissipation may be significant when breaking is30

not present (Babanin and Haus 2009; Rogers et al. 2012; Babanin and Chalikov 2012). Dis-31

sipation by breaking is widely considered to be the least well-understood term and process32

in wave mechanics (Banner and Peregrine 1993; Thorpe 1995; Melville 1996; Duncan 2001;33

Babanin 2011). In particular, there have been only a few field studies that quantify the wave34

energy lost to whitecaps in deepwater.35

Much of the energy lost during wave breaking is dissipated as turbulence in the ocean36

surface layer. Several studies (Kitaigorodskii et al. 1983; Agrawal et al. 1992; Anis and37

Moum 1995; Terray et al. 1996) have shown a layer of enhanced dissipation under breaking38

waves, decaying faster than the “law of the wall” solution associated with flow over a solid,39

flat, boundary. Below this enhanced layer, measurements tend to approach the expected40

law of the wall scaling. Gemmrich and Farmer (2004) correlated enhanced dissipation with41

breaking events, suggesting that dissipation in this surface layer corresponds to energy lost42

from breaking waves. Thus, measurements of turbulent dissipation can be used as a proxy43

estimate of breaking dissipation. These are lower bound estimates, however, as some wave44

energy is also spent on work done in the submersion of bubbles (as much as 50% according45

to Loewen and Melville 1991).46

Gemmrich (2010) measured turbulent dissipation in the field using a system of three47
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high-resolution pulse-coherent Sontek Dopbeam acoustic Doppler sonars, profiling upwards48

into the wave crest above the mean water line. Gemmrich (2010) found that turbulence was49

enhanced particularly in the crest, even more so than previous observations. Thomson (2012)50

achieved a similar result with wave-following “SWIFT” drifters, which measure turbulent51

dissipation from near the surface to a half meter depth with a pulse-coherent Aquadopp HR52

acoustic Doppler profiler. Both these studies estimate dissipation rate using the second-order53

structure function, D(z, r), as described in detail in Section 2 and in Wiles et al. (2006).54

Using laboratory measurements, Duncan (1981, 1983) related the speed of a steady break-55

ing wave to its energy dissipation rate. Towing a hydrofoil through a long channel at a56

constant speed and depth, Duncan (1981) determined that the rate of energy loss followed57

the scaling58

εl ∝
ρwc

5

g
(2)

where εl is the energy dissipation per crest length, ρw is the water density, g is gravitational59

acceleration, and c is the speed of the towed hydrofoil. Melville (1994) examined data60

from previous laboratory experiments of unsteady breaking (Loewen and Melville 1991) and61

noted an additional dependence of dissipation on wave slope, as also suggested in Duncan62

(1981). Drazen et al. (2008) used a scaling argument and a simple model of a plunging63

breaker to hypothesize that dissipation depends on wave slope to the 5/2 power. They64

compiled previous data and made additional laboratory measurements and found roughly65

the expected dependence on slope.66

In parallel with Duncan’s work, Phillips (1985) introduced a statistical description of67

breaking, Λ(c, θ), which is defined as the distribution of breaking crest lengths per area as a68

function of speed, c, and direction, θ. Thus the total length of breaking crests per area is69

Ltotal =

∫ ∞
0

∫ 2π

0

Λ(c, θ) c dθdc. (3)

The scalar distribution, Λ(c), is often used in place of the full directional distribution. It70

can be found by integrating over all directions in broad-banded waves or by using the speed71
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in the dominant direction in sufficiently narrow-banded wavefields. The breaking rate, or72

breaker passage rate, is the frequency that an actively breaking crest will pass a fixed point73

in space. The breaking rate can be calculated from the first moment of Λ(c),74

RΛ =

∫
cΛ(c)dc. (4)

Phillips (1985) used Duncan’s scaling to propose a relation for breaking-induced dissipation75

from the Λ(c) distribution,76

Sds,Λ =

∫
ε(c)dc =

bρw
g

∫
c5Λ(c)dc (5)

where b is a “breaking strength” proportionality factor and ε(c) is the spectral dissipation77

function.78

In addition, Phillips (1985) hypothesized that at wavenumbers sufficiently larger than79

the peak, a spectral equilibrium range exists such that wind input, nonlinear transfers, and80

dissipation are all of the same order and spectral shape. Phillips (1985) proposed a spectral81

form of the dissipation function within the equilibrium range,82

ε(c) = 4γβ3I(3p)ρwu
3
∗c
−1 (6)

where83

I(3p) =

∫ π/2

−π/2
(cos θ)3pdθ (7)

is a directional weight function, γ, β, and p are constants, and u∗ is the wind friction velocity.84

Thus, Phillips derived that, within the equilibrium range, Λ(c) should follow c−6 and be given85

by86

Λ(c) = (4γβ3)I(3p)b−1u3
∗gc
−6. (8)

The Λ(c) formulation is well-suited to remote sensing methods, which have shown promise87

in the field because of their ability to capture more breaking events than in situ point88

measurements. Early remote studies such as Ding and Farmer (1994) and Gemmrich and89
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Farmer (1999) calculated wave breaking statistics without using Λ(c). Later, the Duncan-90

Phillips formulation was recognized as a potential means to relate remote-sensed whitecap91

measurements to dissipation. Phillips et al. (2001) produced the first field observations of92

Λ(c), using backscatter from radar data. Melville and Matusov (2002) used digital video93

taken from an airplane to calculate Λ(c). Gemmrich et al. (2008) also calculated Λ(c) from94

digital video, in this case from the Research Platform FLIP. The studies of Kleiss and Melville95

(2010), Kleiss and Melville (2011), and Romero et al. (2012) all used Λ(c) measurements from96

airplane video during the Gulf of Tehuantepec Experiment (GOTEX).97

The results of Thomson et al. (2009) and Thomson and Jessup (2009) are of particular98

relevance to the present work. Thomson and Jessup (2009) introduced a Fourier-based99

method for processing shipboard video data into Λ(c) distributions. The Fourier method100

has the advantage of increased efficiency and robust statistics compared to conventional101

time-domain crest-tracking methods. This method was validated alongside an algorithm102

similar to the one used in Gemmrich et al. (2008). Thomson et al. (2009) presented the103

results of the Fourier method for breaking waves in Lake Washington and Puget Sound.104

Despite the widely varying wave conditions, experimental methods, and processing tech-105

niques, a number of similar characteristics can be seen in the Λ(c) results from these recent106

studies. With the exception of Melville and Matusov (2002), all of the Λ(c) show a unimodal107

distribution with a peak at speeds roughly half the the dominant phase speed. Melville108

and Matusov (2002) instead calculated a monotonically decreasing Λ(c), but had limited109

resolution and used an assumption that the rear of breaking crests was stationary. Kleiss110

and Melville (2011) demonstrated that the rear of a whitecap is not in fact stationary, and111

the differing result from Melville and Matusov (2002) could be reproduced in their data by112

imitating the study’s video processing method. The peaked distribution differs from the c−6
113

shape predicted by Phillips (1985), though most of the studies note tails in Λ(c) approaching114

c−6 at high speeds. These speeds, however, are not generally within the equilibrium range115

used to arrive at Equation 8. Plant (2012) recently suggested that the unimodal Λ(c) distri-116
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butions are produced by an interference pattern of dominant wind waves, moving at speeds117

slightly less than the group velocity and resulting in large wave slopes during constructive118

interference. Another similarity in recent Λ(c) studies is the dominance of infrequent, fast-119

moving whitecaps in the distribution of the fifth moment c5Λ(c), which is used to calculate120

dissipation. Plots of c5Λ(c) often show significant values up to the highest speed bin for121

which they are calculated.122

Knowledge of b is crucial to the remote calculation of dissipation. Values of b from the123

field have spanned four orders of magnitude, from 3.2 × 10−5 in Gemmrich et al. (2008) to124

1.7× 10−2 in Thomson et al. (2009). One issue appears to be the different choices made in125

processing Λ(c), in particular defining the whitecap speed and length. Kleiss and Melville126

(2011) reviewed the methods of Gemmrich et al. (2008) and Kleiss and Melville (2010) and127

noted a 300% difference in b resulting from their differing speed and length definitions.128

Another problem is uncertainty over the nature of b. In introducing the concept, Phillips129

(1985) treated b as a constant, however, as noted above, the studies of Melville (1994)130

and Drazen et al. (2008) indicate at least one secondary dependence on wave slope. Wave131

slope can be represented in a number of ways from the wave spectrum, E(f). In Banner132

et al. (2000), the breaking probability of dominant waves was found to correlate best with133

significant peak steepness, Hpkp/2 where134

Hp = 4

{∫ 1.3fp

0.7fp

E(f)df

}1/2

. (9)

Another measure of steepness can be calculated using the significant wave height, Hs, in135

place of Hp. Banner et al. (2002) showed that for a range of wave scales, the breaking136

probability was related to the azimuthal-integrated spectral saturation,137

σ =

∫ 2π

0

k4Φ(k, θ)dθ =
(2π)4f 5E(f)

2g2
(10)

where Φ is the wavenumber spectrum, k is the wavenumber magnitude, and θ is the direction.138

Breaking was found to occur above a threshold value of σ, with the breaking probability139
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increasing roughly linearly with σ above this threshold. The saturation spectrum is related140

to wave mean square slope (mss) through141

mss =

∫ ∫
k2Φ(k, θ)kdkdθ =

∫
2σ

f
df. (11)

Romero et al. (2012) used the Λ(c) distributions from Kleiss and Melville (2010) to calcu-142

late a spectral b(c) based on the Drazen et al. (2008) wave slope results applied to saturation.143

In the present study, bulk b values are calculated for an evolving wave field to investigate144

possible trends with wave slope or steepness. Calculation of b or b(c) requires a separate145

measurement of the breaking dissipation. The use of turbulent dissipation as an estimate146

of breaking dissipation was first utilized in Thomson et al. (2009). In the absence of in situ147

measurements, Gemmrich et al. (2008) and Romero et al. (2012) used indirect estimates148

of dissipation from wind measurements and wave spectra (i.e., the residual of Eq. 1). A149

disadvantage of this indirect method is that uncertainties in the wind parameterizations and150

wave measurements can lead to errors in dissipation estimates.151

In the following sections, in situ and remote techniques are used to measure dissipation152

from breaking, wave evolution, and Λ(c) in a young sea with strong wind forcing. In Section 2,153

the field experiment is described and the methods are summarized. In Section 3, the results154

are presented and in situ measurements are compared with Λ(c) estimates. In Section 4, the155

findings are discussed and sources of uncertainty in the data are addressed.156

2. Methods157

a. Collection of Wind and Wave Data158

Observations were made in the Strait of Juan de Fuca (48◦12’ N 122◦55’ W), north of159

Sequim, Washington, from February 12-19, 2011. Measurements were taken onboard the160

R/V Robertson and from two free-floating “SWIFT” (Surface Wave Instrument Float with161

Tracking) drifters. The roughest conditions were observed during the days of February 14162
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and 15, in which a winter storm produced southerly winds of 9-18 m s−1. On these days,163

the Robertson was set on a drogue and allowed to drift across the Strait (downwind) at164

approximately 2 km hr−1.165

Wave measurements were made from the two wave-following SWIFT drifters. These166

Lagrangian drifters are described in detail in Thomson (2012). They were equipped with167

a QStarz BT-Q1000eX, 5 Hz GPS logger and accelerometer, 2 MHz Nortek Aquadopp HR168

pulse-coherent Acoustic Doppler Current Profiler (ADCP) with 4 Hz sampling and 4 cm bin169

size, Go-Pro Hero digital video camera, and Kestral 4500 anemometer. The SWIFTs were170

released from the Robertson and generally drifted at similar speeds, thus staying within171

approximately 1 km of the ship. Wave frequency spectra and associated parameters are172

estimated using the orbital velocities measured by Doppler speed-resolving GPS loggers173

onboard the freely-drifting SWIFTs, using the method of Herbers et al. (2012).174

Wind measurements were made from a shipboard sonic anemometer (RM Young 8100),175

at a height of 8.9 m above the water surface, as well as from the SWIFTs at 0.9 m. The176

wind friction velocity u∗ is estimated using the inertial dissipation method as described in177

Yelland et al. (1994). Thomson (2012) measured the drift of the SWIFTs due to wind drag178

at speeds roughly 5% of the wind speed. Using this estimate to remove wind drift, the tidal179

surface currents can be inferred as the residual of the SWIFT displacements, and were below180

0.6 m s−1 throughout the experiment.181

Figure 1 shows the tracks of the ship and SWIFTs for the two days of interest. In182

addition, bulk wind and wave quantities are shown as a function of fetch. Wave height183

and period increased along track, and wind speed increased slowly on both days. Wind184

friction velocity, however, did not vary as much as wind speed during the two days. The185

non-dimensional wave age, calculated as cpU
−1
10 where cp is the peak phase speed, only briefly186

exceeds 0.5 at the beginning of each day, when the wind is lowest. Thus, the observed waves187

constitute a young, highly-forced, pure wind sea.188

In addition, wind measurements are used from two nearby stations operated by the189
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National Data Buoy Center (NDBC), also shown in Figure 1. The anemometer at Smith190

Island (NDBC #SISW1) is located at 17.1 m above the site elevation, or 32.3 m above the191

mean sea level. The 3-meter discus buoy offshore of the Dungeness Spit (NDBC #46088)192

makes wind measurements from a height of 5 m above sea level. Additionally, the Dungeness193

buoy outputs frequency-directional wave spectra.194

Figure 2 shows the evolution of the wave frequency spectrum, E(f), binned by fetch195

every 500 m. It has been widely observed that the spectrum approaches a region of the196

form f−n for high frequencies, with the most commonly cited values of n being n = 5 (as197

in Phillips 1958; Hasselmann et al. 1973) and n = 4 (as in Toba 1973; Donelan et al. 1985),198

both of which are shown in Figure 2. In deriving Equation 6, Phillips (1985) used the Toba199

(1973) form E(f) ∝ u∗gf
−4, so this comparison is of particular interest. Except for briefly200

after the peak and in the higher frequencies (f ≥ 1 Hz), the spectra follow f−5 much better201

than f−4. When colored by u∗ in Figure 2b, however, the curves do appear to sort in the202

tail as expected from the Toba spectrum.203

b. In Situ Estimates of Energy Dissipation204

The rate of energy dissipation via wave breaking, Sds, is estimated using in situ measure-205

ments of turbulent velocity profiles u(z) in a reference frame moving with the wave surface.206

This is done from two SWIFT drifters, as described above and in Thomson (2012) and, in-207

dependently, from a wave-following platform equipped with Sontek Dopbeam pulse-coherent208

acoustic Doppler profilers and tethered to the ship with a 30 m rubber cord. This Dopbeam209

system is discussed further in Gemmrich (2010).210

The volumetric dissipation rate εvol(z) is calculated by fitting a power law to the observed211

turbulent structure function,212

D(z, r) = 〈(u′(z)− u′(z + r))2〉 = A(z)r2/3 +N (12)

where z is measured in the wave-following reference frame (i.e. z = 0 is the water surface),213
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r is the lag distance between measurements (corresponding to eddy scale), A(z) is the fitted214

parameter, and N is a noise offset. Assuming isotropic turbulence in the inertial subrange,215

the eddy cascade goes as r2/3 and the volumetric turbulent dissipation rate is related to each216

fitted A(z) by217

εvol(z) = C−3
v A(z)3/2 (13)

where Cv is a constant equal to 1.45 (Wiles et al. 2006). Integrating the dissipation profiles218

over depth gives a total dissipation rate,219

Sds,SWIFT = ρw

∫ 0

0.6

εvol(z)dz (14)

where z is measured from the instantaneous water surface (z = 0) to the bottom bin depth220

of 0.6 m. The structure function is averaged over 5 minute intervals before calculating the221

dissipation. In addition, profiles of εvol(z) are removed if the r2/3 fit does not account for at222

least 80% of the variance or if A is similar in magnitude to N (see Thomson 2012). Figure223

3 shows the evolution of the dissipation profiles and total dissipation with fetch. Profiles224

of dissipation deepen, and the overall magnitude increases, as waves grow along fetch and225

breaking increases. In Thomson et al. (2009), a persistent, constant background dissipation226

of 0.5 W m−2 was noted in both Lake Washington and Puget Sound in the absence of227

visible breaking. This is consistent with the SWIFT measurements here, thus a 0.5 W m−2
228

average background dissipation level is subtracted from SWIFT and dopbeam dissipation229

measurements in the following sections.230

c. Video Observations of Wave Breaking231

Wave breaking observations were made from a video camera mounted above the Robertson232

wheelhouse, at 7 m above the mean water level, aimed off the port side of the ship. With233

the drogue set from the stern, the port side view was an undisturbed wavefield. The video234

camera was equipped with a 1/3” Hi-Res Sony ExView B&W CCD. The data (eight-bit235
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grayscale, 640 × 480 pixel, NTSC) was sampled at 30 Hz and later subsampled to 15 Hz.236

The lens had a 92◦ horizontal field of view and was oriented downward at an incidence angle237

of approximately 70 degrees, giving a pixel resolution of 10-40 cm in the analyzed region.238

The video was stabilized in the vertical and azimuthal (pitch and yaw) directions with a pan-239

tilt mounting system (Directed Perception PTU-D100). This video data is used to estimate240

the breaking rates and the Λ(c) distributions.241

Additionally, video taken from the SWIFTs is examined to produce independent esti-242

mates of the rate of breaking at a much higher pixel resolution (since the SWIFT cameras243

are only 0.9 m from the surface). Unfortunately, the batteries on the SWIFT Go-Pro cam-244

eras expired after around 2 hours, so only early conditions on each day could be examined.245

Using two SWIFTs on each of the two days, total of eleven 30-minute video recordings from246

the SWIFTs are processed. SWIFT breaking rates are calculated by counting the number247

of breaking waves passing the SWIFT and dividing by the duration of the recording (30248

minutes). The counting is subjective, as the SWIFT video is too motion-contaminated to249

produce accurate automated results. Only clear whitecaps that broke prior to reaching the250

SWIFT with crest lengths larger than the diameter of the SWIFT hull (0.3 m) are counted.251

Shipboard video data are processed according to Thomson and Jessup (2009), as sum-252

marized below. Four minor modifications to this method are detailed in Appendix A.253

The analysis begins with the rectification of camera pixels to real-world coordinates using254

the method of Holland et al. (1997). Here the x and y directions are taken as the along-255

ship and cross-ship directions, respectively. A portion of the image, roughly 15 m × 20 m256

and no closer than 15 m from the ship is extracted and interpolated to a uniform grid of257

2n points. The camera position was remotely reset periodically, as it was prone to drift in258

the azimuth at rate of about 5◦ per minute. Short video windows of 5 to 10 minutes were259

chosen for analysis to avoid these resets and ensure statistical stationarity of the breaking260

conditions. This window length is comparable to those shown in Kleiss and Melville (2010)261

although the field of view is significantly smaller (roughly 0.2 km2 in their study). The262
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uncertainty introduced from these small windows is addressed in Section 4. This field of263

view is sufficient to capture complete crests for the conditions observed. The resulting pixel264

resolution is around 0.25 m (cross wave) by 0.075 m (along wave).265

The rectified video is broken up into segments of 1024 frames (68.3 seconds) with 25%266

overlap. Sequential images are subtracted to create differenced images, which highlight the267

moving features of the video, most prominently the leading edge of breaking waves. The268

breaking crests are further isolated when the differenced images are thresholded to binary269

images, I(x, y, t) (see Appendix A for choice of threshold). This procedure was originally270

described in Gemmrich et al. (2008). Two examples of the progression from raw image271

to binary are shown in Figure 4. Figure 4 also shows SWIFT images from the same times.272

These images demonstrate the range of breaking conditions seen during the experiment. The273

left images are representative of the calm conditions the beginning of both days, with small274

and transient breaking crests. The right images are representative of the rough conditions275

later in each day (after drifting out to a larger fetch), with larger and more vigorous breaking276

crests.277

After thresholding, a three-dimensional fast Fourier Transform (FFT) is performed on278

the binary shipboard video data, I(x, y, t), which is then filtered in wavenumber to isolate the279

crest motion. Integration over the ky (along-crest) component produces a two-dimensional280

frequency-wavenumber spectrum, S(kx, f), as shown in Figure 2a of Thomson and Jessup281

(2009). Directional distributions of breaking could not be calculated from this dataset be-282

cause of the shipboard camera configuration. With a camera height of 7 m and incidences283

angles of 60◦ – 70◦, changes in sea surface elevation due to the waves themselves can manifest284

as movement in the lateral, or y, direction. This corrupts the y-velocities and prevents the285

calculation of an accurate directional distribution. Following the method of Chickadel et al.286

(2003), the frequency-wavenumber spectrum is transformed to a speed-wavenumber spec-287

trum using c = f/kx, and the Jacobian |∂f/∂c| = |kx| preserves the variance in the spectrum.288

The speed spectrum is calculated by integrating over the wavenumber, S(c) =
∫
S(kx, c)dkx.289
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This speed spectrum has the shape of the Λ(c) distribution, but it must be normalized290

to have the correct magnitude. The normalization follows from a direct calculation of the291

average breaking length per unit area, Ltotal,292

Ltotal = dy

∑
I(x, y, t)

NA
, (15)

where dy is the length of the pixels along the crests,
∑
I(x, y, t) is the number of breaking293

pixels, N is the number of frames, and A is the area of the field of view. Thus, Λ(c) is294

calculated as295

Λ(c) = Ltotal
S(c)∫
S(c)dc

, (16)

directly following Thomson and Jessup (2009). Removal of bias in Equation 16 is described296

in Appendix A.297

Nine cases of 5 to 10 minutes were used from the video record to calculate Λ(c) distri-298

butions during the experiment. Table 3 shows the time, fetch, duration, and bulk wind and299

wave values from these cases. Figure 5 shows the resulting Λ(c) as a function of dimensional300

speed and normalized speed, c/cp, and colored by mss. These distributions are qualitatively301

similar to those from Gemmrich et al. (2008), Thomson et al. (2009), and Kleiss and Melville302

(2010), with a peaked shape centered around approximately 0.5cp. As expected, the magni-303

tude of Λ(c) increases with mss. In addition, a region of roughly c−6 is visible at high speeds,304

similar to the theoretical shape described in Equation 8.305

3. Analysis & Results306

a. Fetch Dependence307

The R/V Robertson and SWIFT measurements of winds and waves are highly depen-308

dent on fetch, because of the drift mode for data collection. Here, these measurements are309

compared with the idealized case of fetch-limited wave growth, in which a wind of constant310
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magnitude and direction blows out from from a straight coastline. The fetch dependence is311

directly related to wave slope and thus wave breaking (Banner et al. 2002).312

Figure 6 compares the drifting measurements of wind speed, direction, and wave height313

from the Robertson and SWIFTs with fixed measurements from the two nearby National314

Data Buoy Center (NDBC) stations (see locations in Figure 1). There is significant spatial315

heterogeneity in the wind speed measurements. In particular, on February 14, the wind316

measured from the ship increases dramatically with increasing fetch, while both NDBC317

wind speed measurements are roughly constant. The ship wind speeds converge to roughly318

the same 17 m s−1 value as measured from the NDBC stations when the ship reaches a fetch319

similar to the NDBC stations. It is likely that some of the increase in measured wind speed320

with fetch is due to the sharp transition in roughness at the coastline and the resulting321

adjustment of the boundary layer (Smith and Macpherson 1987). The February 15 wind322

data, measured only at fetches longer than 12 km, matches the NDBC measurements much323

better. As expected, the wave height at the NDBC buoy stays approximately constant in324

response to the roughly steady winds, whereas the SWIFT wave heights grow in time due325

to the increasing fetch along a drift track.326

For ideal fetch-limited waves, Kitaigorodskii (1962) argued that the wave field could be327

fully characterized by the fetch, X, gravitational acceleration, g, and a scaling wind speed.328

Thus empirical “laws” have often been sought for wave energy and frequency growth with329

fetch (e.g. CERC 1977; Donelan et al. 1985; Dobson et al. 1989; Donelan et al. 1992). The330

scaled variables take the form:331

x̂ =
gX

U2
10

, ê =
g2E0

U4
10

, f̂ =
U10fp
g

(17)

where E0 is the wave variance, and fp is the frequency at the peak of the wave spectrum.332

The wind speed at a 10 m reference height, U10, is most often used as the scaling wind speed333

as it is easily measured in the field. Young (1999) consolidated a number of the proposed334

fetch relations into two power laws with a range of coefficients. Figure 7 (a, b) compares this335

current data set against Young’s empirical relations, using 500-meter along-fetch averaging.336
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The non-dimensionalized data are highly sensitive to the choice of appropriate wind337

speed, particularly for February 14 where the wind grows from 10 to 19 m s−1 over the338

course of the day. Three wind speed scalings are compared in Figure 7 (a, b), using: a339

constant wind speed equal to the time-averaged daily wind speed, an instantaneous wind340

speed, and a linear fetch-averaged wind speed (à la Dobson et al. 1989). Based on the NDBC341

wind data alone, a constant U10 scaling might seem appropriate. In fact, scaling with the342

fixed NDBC winds agrees much better with the empirical fetch laws than either shipboard343

wind speed scaling. This is a notable contrast of reference frames: the fixed stations suggest344

a fetch-limited wave field, while the drifting measurements do not.345

Two additional parameters are plotted against non-dimensional fetch in Figure 7 (c,346

d). One is mean square slope, mss, calculated from the wave spectra as in Equation 11,347

which is associated with the likelihood of wave breaking (Banner et al. 2002). Wave slope348

increases logarithmically with non-dimensional fetch on February 14. On February 15, mss349

also increases with fetch, but the waves are in the mid-range of the previous day. These350

trends are similar for a number of alternative slope or steepness parameters (not shown). Also351

plotted is the drag coefficient, CD, calculated as a ratio of u2
∗ and U2

10. These measurements352

are independent, since u∗ is calculated from wind turbulent dissipation (Yelland et al. 1994)353

rather than mean wind speed. At very short fetches, the drag is notably higher than the354

remainder of the data, which again is evidence of the adjustment of the atmospheric boundary355

layer to the land-water edge. At longer fetches, drag is in the expected range of 1-2×10−3
356

and shows a mild increasing trend along fetch (and thus with steepness).357

This field experiment exhibits two of the features — an irregular coastline and wind358

heterogeneity — which prompted Donelan et al. (1992) to write that “perhaps it is time to359

abandon the idea that a universal power law for non-dimensional fetch-limited growth rate360

is anything more than an idealization.” It is likely that the ambiguous comparison of the361

data with the established fetch laws is a result of both the non-ideal winds and the rapid362

change of the atmospheric boundary layer at very short fetches, which itself is a result of363

15



changes in roughness due to waves. The observed fetch dependence suggests a wave field364

that rapidly evolves in the first few kilometers, then achieves a quasi-equililbirum. This is365

constant with the in situ breaking dissipation estimates, which increase from 0 to 5 km fetch,366

then maintain an approximately constant value from 5 to 15 km fetch (Figure 3).367

b. Energy Fluxes368

As discussed in Section 1, the evolution of ocean surface waves is governed by the Radia-369

tive Transfer Equation (RTE). Here, we calculate each of the terms in a bulk RTE, which is370

integrated over all frequencies,371

∂E

∂t
+ cg · ∇E = Sin − Sds. (18)

such that the nonlinear term is dropped. (It does not change the total energy in the system,372

only the distribution of the energy within the spectrum.) By considering the total energy373

budget, we can diagnose the wave evolution along fetch and assess the estimates of wave374

breaking dissipation. Figure 8 shows the estimates of all terms in Eq. 18.375

In general, both local growth and advective flux of wave energy (the left two terms in376

Equation 18) occur in response to wind forcing. Without a large array of wave measurements,377

it is impossible to explicitly separate the two growth terms. One approximation is to assume378

a stationary wavefield, such that ∂E/∂t = 0 and all wave growth is due to advection of wave379

energy at the group velocity. The ambiguous comparison with empirical fetch laws in Figure380

7, however, indicates that a stationary assumption may not be appropriate. An additional381

issue is noise in the wave energy measurements, which causes large variability in the growth382

terms when using finite differences to approximate the derivatives. This is problematic even383

when the spectra are averaged over 500-meter spatial bins as in Figure 2.384

To treat both the issues of stationarity and measurement noise in the left-hand side of385

Equation 18, large-scale estimates are made separately based on daily linear regressions of386

wave energy with fetch and time (i.e., regressions of ∆E vs. ∆x and ∆t). The first case387
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is equivalent to the stationary assumption, where all growth during the experiment is due388

to advection of wave energy. In the second case, the wave energy is assumed constant in389

fetch, such that all the change in wave energy is due to local, temporal growth. Tables 1390

and 2 show the results of ∂E/∂t and ∂E/∂x for February 14 and 15, including R2 values391

and 95% confidence intervals. As noted above, neither of these cases describes perfectly the392

true evolution of wave energy, which is actually a combination of both terms. However, it393

leads to a range of possible values394

min

(
∂E

∂t
, cg

∂E

∂x

)
≤
(
∂E

∂t
+ cg

∂E

∂x

)
≤
(
∂E

∂t
+ cg

∂E

∂x

)
(19)

where overbars indicate the daily averages from Tables 1 and 2. Here, cg is calculated from395

the peak frequency using the deep-water dispersion relation.396

Figure 8b shows this range of values from Equation 19. Apart from the small change397

in cg, this estimate does not capture possible variations in growth within each day, but the398

R2 values shown in Tables 1 and 2 show that a constant linear approximation is reasonable399

(minimum R2 of 0.82, mean of 0.90). A more conservative range would use the outer values400

of the 95% confidence intervals of the regressions.401

The wind input function in Equation 18 is parameterized using the wind stress, ρau
2
∗,402

and an effective phase speed, ceff , such that403

Sin = ρaceffu
2
∗, (20)

as described in Gemmrich et al. (1994). There is significant uncertainty in the choice of ceff .404

Terray et al. (1996) found ceff to be somewhat less than the peak phase speed and show a405

dependence on wave age, albeit with much scatter. Figure 6 from Terray et al. (1996) shows406

values of ceff ranging between roughly 0.3cp and 0.7cp for our range of u∗c
−1
p . Thus, the407

range of values for the wind input term is408

0.3ρacpu
2
∗ ≤ Sin ≤ 0.7ρacpu

2
∗. (21)

The resulting wind input range is shown in Figure 8a.409
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With Equations 18, 19 and 21, the range of possible dissipation values during the ex-410

periment can be computed and compared with the measured turbulent dissipation from the411

SWIFTs and the Doppbeams. This comparison is shown in Figure 8c. An additional black412

line is shown in each of the panels, corresponding to ceff = 0.5cp and a stationary wavefield413

(∂E/∂t = 0). The measured results fall within the estimated range from the energy balance414

for all but a few points during the experiment. Where this range would include negative415

values of dissipation, including all of February 15, it has been limited to zero.416

The stationary wavefield assumption (black line on Figure 8b and 8c) better describes417

the waves on February 14 than February 15. The stationary RTE dissipation matches the418

turbulent dissipation on February 14, it underestimates the turbulent dissipation on February419

15, consistent with an overestimate of ∂E/∂x. This is related to the intercept of the linear420

regression in fetch (see Table 1). If the growth were perfectly linear in fetch, this intercept421

would be expected to be near zero (no wave energy at zero fetch). On February 14, this422

is indeed the case, with the intercept at less than 1 km. On February 15, however, the423

intercept is on the order of 10 km, indicating that either the growth is not linear along fetch424

or the growth is not steady. This is consistent with Figure 7, where for constant wind speed425

scaling, wave energy on February 15 grows faster than the near-linear empirical power law426

trend (the exponent is 0.8 according to Young 1999).427

Figure 8 shows that bulk dissipation estimates from the RTE are similar to turbulent428

dissipation measurements. Both of which show dissipation increasing along fetch (and thus429

with wave slope), especially at very short fetches. At larger fetches, the RTE dissipation430

continues to increase, more so than the relatively flat turbulent dissipation measurements.431

It is likely that the in situ turbulence measurements of dissipation are biased low, because of432

some wave energy is lost during whitecapping to work in submerging bubbles (Loewen and433

Melville 1991). Thus, if bubble effects account for an increasing fraction of the total dissi-434

pation as the waves grow, the turbulence measurements would increasingly underestimate435

the total dissipation, as seen particularly on February 14. This is important context for the436
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comparison of in situ results with breaking statistics from the video data.437

c. Breaking Rate438

Breaking rates from the ship-based Λ(c) distributions and from the manual SWIFT-based439

breaker counts are shown in Figure 9a. Both measurements show an overall positive trend440

with wave slope, as expected, but the dynamic range and shape of the trends are significantly441

different. Whereas the SWIFT values vary from only 16-58 hr−1, the shipboard breaking442

rates vary over two orders of magnitude, from 3-229 hr−1. Unfortunately, SWIFT video443

cameras ran out of battery power prior to reaching the maximum breaking conditions. The444

actual overlap is with the first three shipboard observations from February 14 and the first445

two from February 15. In general, the SWIFT breaking rates are larger than the shipboard446

measurements, and thus the overall trend with mss is decreased. The low breaking rates447

from the shipboard video are likely biased by insufficient pixel resolution, and these values448

are plotted with open symbols to reflect low confidence in these points (see Figure 9 and449

again later in Figure 10). The two estimates are relatively close for the maximum overlapping450

point (68 hr−1 from shipboard vs. 58 hr−1 from the SWIFT), indicating that these estimates451

may be consistent at when the wave are larger and steeper (i.e. at larger mss Figure 9 and452

larger fetch in Figure 8).453

The SWIFT breaking rates imply that the shipboard video regularly misses breaking454

waves during calmer conditions, when whitecaps are short-crested and the foam they produce455

is short-lived. As shown with examples in Figure 4, the small-scale breaking seen frequently456

in the SWIFT video (panel c) is barely visible in the shipboard video (panel b) during calm457

conditions. Moreover, many uncounted wave crests appear to break without producing foam,458

but are visible from the SWIFT due to the layer of water sliding down their front face or459

ripples forming near the crest. These small-scale breakers are similar to “microbreakers”,460

which are a well-known phenomenon (e.g. Jessup et al. 1997). As the waves evolve, however,461

the character of the breaking changes. Large, vigorous whitecaps start to replace the small,462
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transient breaking events seen at the shorter fetches, and evidence of microbreaking becomes463

less apparent. These larger whitecaps (as in Figure 4f) are more visible from the shipboard464

video (Figure 4d) and the breaking rates converge for later times (when the SWIFT camera465

batteries are depleted).466

The higher breaking rates from the SWIFT video during calm conditions are consistent467

with the in situ turbulent dissipation estimates. As shown in Figure 9, both breaking and468

dissipation increase approximately one order of magnitude as waves evolve and steepen.469

This implies that each wave dissipates roughly the same amount of energy during breaking,470

such that more breaking produces more dissipation. The breaking rates from the shipboard471

video, by contrast, increase much more dramatically than the dissipation estimates, and472

this would imply that each breaking wave contributes less dissipation as the wave field473

evolves. This is both physically unlikely and contrary to the Duncan-Phillips theory, where474

the dissipation rate of a breaking wave is proportional to c5 times its crest length, with a475

proposed additional positive dependence on wave slope (Melville 1994; Drazen et al. 2008).476

Thus, only ship-based video recordings from the rougher conditions (filled symbols of Figure477

9a) are used in assessing Λ(c) results and inferred breaking strength parameter.478

d. Breaking Strength Parameter479

The value of the bulk breaking parameter b is calculated from480

b =
Sds

ρwg−1
∫
c5Λ(c)dc

, (22)

using each of the four measures of dissipation, Sds, from Figure 8. These calculated b values481

are shown as a function of mss, wave age, and wave steepness in Figure 10. Only one SWIFT482

was in the water during the two February 15 video segments, thus there is one less b value483

for these Λ(c). The independent variables use the average of mss, cp, U10, and Hs within484

a 500 m region around each Λ(c) calculation. As in Figure 9a, values that are biased by485

insufficient pixel resolution are shown with open symbols.486
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In addition, data is included from measurements made in Lake Washington, WA, in 2006487

and Puget Sound, WA, in 2008, originally reported in Thomson et al. (2009). Whereas in488

Thomson et al. (2009), a constant b was obtained via regression of
∫
c5Λ(c)dc to the measured489

dissipation, here individual values of b are calculated. Apart from the updates to the Fourier490

method detailed in Section 2, the Λ(c) methodology is similar between the datasets. The491

comparison of b with wave age and steepness is in part motivated by the desire to compare492

across these datasets, as the spectra from the earlier measurements are insufficient quality493

to calculate mean square slope.494

As expected, the b values are affected by of undercounting small whitecaps in less steep495

seas. The biased points, shown in open symbols, have dramatic trends of decreasing b with496

increasing wind forcing (described by inverse wave age, U10/cp) and increasing wave slope497

(using mean square slope, mss, and peak wave steepness, Hskp/2). The Thomson et al.498

(2009) data show these same trends, suggesting the same biasing effect. This trend may be499

expected in any Λ(c) study with insufficient sampling of small-scale breaking.500

The remaining unbiased values, shown in solid symbols, have b grouped around a constant501

on the order of 10−3. No statistically significant trends are present. In particular, the increase502

in b with wave slope shown in Drazen et al. (2008) is not observed, though the range of wave503

slopes here is quite limited relative to Drazen et al. (2008). Thus, as in Phillips et al. (2001),504

Gemmrich et al. (2008), and Thomson et al. (2009), the best estimate of b for this study is a505

constant range over the experimental conditions. The five unbiased Λ(c) distributions, each506

paired with four Sds estimates, result in an ensemble of 20 points. Amongst this set, the507

mean b value is 3.2×10−3, with a standard deviation of 1.5×10−3. This range is highlighted508

in gray in Figure 10 and is applicable for waves with mss ≥ 0.031 or Hskp/2 ≥ 0.19.509

Figure 10 also shows these b values relative to other recent studies. Clearly, they are lower510

than the average b of 8−20×10−3 reported from the Puget Sound and Lake Washington data511

in Thomson et al. (2009), which is a direct result of the under-sampling of small breakers512

in the previous study. Our range of 1 − 5 × 10−3 is slightly larger than the experimental513
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results of Drazen et al. (2008), which predict that waves with steepness of around 0.2 will514

have a b of roughly 10−3, though their measured values in that range are closer to O(10−4).515

The Romero et al. (2012) b(c) are of O(10−3 − 10−4) for speeds below cp. Gemmrich et al.516

(2008) give a range of b that is significantly lower, 3.2 × 10−5 ≤ b ≤ 10.1 × 10−5. Phillips517

et al. (2001) calculate b ranging from 7− 13× 10−4.518

The b values reported from field studies are sensitive to the limit of integration in Equation519

22. This can be unbounded, with significant contributions to the total area coming from520

sporadic, extremely rare, or nonexistent breaking above the spectral peak. This problem is521

not unique to this study, though it can be exacerbated by the Fourier method as discussed522

in Appendix A. The results of Romero et al. (2012) suggest a solution to this dilemma.523

The bulk b calculated in Equation 22 represents all speeds, in contrast to the spectral b(c)524

from Romero et al. (2012). The Romero et al. (2012) model and data shows, however, that525

above cp a precipitous drop in breaking strength should be expected, due to the decreased526

saturation of these waves. Thus, the upper limit of the integration in Equation 22 is taken527

to be cp. In effect, this amounts to a b(c) model where b(c) is constant for c ≤ cp and zero528

for c > cp.529

4. Discussion530

a. Importance of Small-scale Breaking531

It has long been accepted that foam-based breaker detection methods are incapable of532

measuring microbreakers.However, microbreaking is often treated as an afterthought, or an533

effect which is important only at the very short wave scales. This study leads to two impor-534

tant considerations regarding microbreakers. First, the distinction between whitecaps and535

microbreakers is not straightforward. Comparison of SWIFT and shipboard video reveals536

that many breaking waves which are visible from the SWIFTs do not show up in the ship-537

board video. These are not true microbreakers as they do aerate the surface, however they538
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are not visible from the ship due to their short crest length, short duration, and low contrast539

of foam produced. This phenomenon does not appear to be limited to the high-frequency540

waves; rather, it seems to be a broadband effect based more on the overall wave steepness541

(as given by the integrate mean square slope).542

Second, these breaking waves appear to have a biasing effect. As the breaking becomes543

stronger, large whitecaps replace, rather than simply add to, the smaller-scale breaking544

events. If this biasing effect is indeed important, it is not unique to this study. Clearly,545

the Lake Washington and Puget Sound data from Thomson et al. (2009) shown in Figure546

10 display evidence of this bias as well. Kleiss and Melville (2011) compiled breaking rates547

from five datasets which show a very similar range of values to those shown here in Figure 9,548

after normalizing by the wave period. Babanin et al. (2010b) compared the empirical Λ(c)549

function proposed by Melville and Matusov (2002) with a numerical dissipation function and550

showed that b needed to change over four orders of magnitude to reproduce the appropriate551

dissipation. Gemmrich et al. (2008) is notable both for their low estimates of b (∼ 3 −552

10 × 10−5) and the high resolution of their video (pixel sizes of 3.2 × 10−2 m). This is553

consistent with the proposition that small-scale breaking waves are not resolved in most554

other field measurements. Whereas Drazen et al. (2008) showed that the large range of b555

values reported in laboratory measurements could be somewhat explained by differences in556

wave steepness, we propose that the range in b reported from field measurements is large557

due to the biasing effect of small-scale breaking and/or the ability of different video systems558

to resolve small breakers.559

Infrared (IR) imaging may improve remote sensing of small-scale breaking, by detect-560

ing the disturbance in the thermal boundary layer even when foam is not visible Jessup561

et al. (1997). Jessup and Phadnis (2005) made IR measurements of Λ(c) for laboratory562

microbreakers, but similar measurements can be challenging to make in the field. Recently,563

Sutherland and Melville (2013) made the first field measurements of Λ(c) with stereo IR564

cameras. Such measurements are essential to quantify the dynamics of small-scale breakers565
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and the overall effect of small-scale breaking on wave evolution.566

b. Sensitivity and Error in b567

The largest source of uncertainty in the measured Λ(c) is the omission of microbreakers568

and small-scale whitecaps. However, there are several other sources of uncertainty in the b569

estimates, which are shown in Figure 11, using the Sds values from SWIFT 1 (red symbols570

in 10).571

One potential source of error is from the relatively short video recordings (5-10 minutes)572

used determine each Λ(c). Synthetic data were created to determine the errors of the Fourier573

method caused by short recordings. The synthetic data is a binary time series resembling574

thresholded, natural, crests. The speed of the breaking crests follow a normal distribution575

centered around 3 m s−1, for similarity with the field data. Noise, as randomness in the576

speed of each synthetic pixel, is added to avoid “ringing ” in the Fourier result. In natural577

data there is always sufficient noise to avoid ringing. Because the speed and crest length578

of the synthetic breakers is prescribed, the true Λ(c) distribution is easily calculated and579

compared with the curve obtained from the Fourier method. For each video recording from580

the field, 50 runs of synthetic data were analyzed using the same configuration, breaking581

rate, and duration. An example of the family of resulting Λ(c) distributions is shown in582

Figure 12a for the data point of February 14, 21:34 UTC (see Table 3), along with the input583

Gaussian distribution. Clearly, significant errors from the true Λ(c) are possible when using584

such limited data. The resulting uncertainty in b from propagating these errors through in585

the integral of c5Λ(c)dc is shown in Figure 11a. As expected, the uncertainty is greatest in586

the data with the sparsest breaking (higher b), which is already known to be biased by the587

pixel resolution. Within the unbiased data, the errors introduced by the short windows are588

small relative to the scatter of the data.589

The calculation of b is also subject to uncertainty from Sds. In Figure 10, b values590

corresponding to four independent measurements of Sds are shown. The uncertainty in591
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the inferred Sds from the Radiative Transfer Equation is shown in Figure 8. The SWIFT592

and Doppbeam uncertainty is discussed in the Thomson (2012). One source of error is in593

the power law fit of the structure function in Equation 12. Lower and upper bounds of594

the SWIFT dissipation are propagated through the calculations using the root-mean-square595

error (RMSE) of the power law fit. The resulting b error bars for SWIFT 1 are shown in596

Figure 11b. These errors are comparatively small relative to the uncertainties from Λ(c).597

The sensitivity of the b results to choices made in the Λ(c) processing are shown in 11598

(c-e). For example, the threshold value used to generate the binary video frames (see b)599

controls the number of pixels identified as “breaking crests.” The effect on b of adjusting this600

threshold by ±20% is shown Figure 11c. The error bars associated with this manipulation601

are roughly uniform and extend approximately half an order of magnitude. Similarly, varying602

the upper limit c = cp in the integration of c5Λ(c)dc by ±20% shifts the b results by roughly603

a half order of magnitude, as shown in Figure 11d.604

Finally, there is some disagreement over the correct speed to assign each breaking event.605

In Phillips’s theory, c refers to the phase speed of the breaking wave. It has been observed,606

however, that the speed of the whitecap is actually somewhat less than the phase speed.607

Laboratory experiments (Rapp and Melville 1990; Banner and Pierson 2007; Stansell and608

MacFarlane 2002), show a possible linear relationship between the two speeds of the form609

cbrk = αc, where c is the true phase speed, cbrk is the observed speed of the whitecap, and610

α ranges from 0.7 to 0.95. Moreover, Kleiss and Melville (2011) showed that the speed of611

advancing foam in breaking waves tends to slow over the course of a breaking event. This is612

consistent with the laboratory study of Babanin et al. (2010a), which showed a shortening613

and slowing in waves breaking from modulational instability. Since the Fourier method614

includes contributions from speeds throughout the duration of breaking, it distributes the615

contributions from a single breaking event to a number of speed bins. This interpretation616

of breaker speed, however, may be contrary to the original definition of the Λ(c) function617

by Phillips (1985) (Mike Banner, personal communication). The effect on Λ(c) of these618
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two modifications to the assigned breaking speed is similar – both serve to shift breaking619

contributions to higher phase speeds.620

Using synthetic data, we have determined that the Fourier method Λ(c) centers on the621

average speed of the breaking wave. Thus, for crests slowing to 55% of their maximum speed,622

as in Kleiss and Melville (2011), the effect is similar to using α = 0.775. The implications623

of this difference are most apparent in the fifth moment calculation, where using α = 0.7624

increases the magnitude of c5Λ(c)dc by α−6=850%, as shown in Figure 11e. Adjusting to625

maximum breaker speeds, our final b estimates to would be O(10−4), rather than the O(10−3)626

we obtain with average breaker speeds. Thus, the slowing effect is thus similar in extreme to627

the bias of insufficient pixel resolution – either can increase the inferred b by over an order628

of magnitude.629

c. Comparison with Phillips’s Relation630

Within the equilibrium range of waves with c < 0.7cp, Phillips (1985) predicted Λ(c) to631

follow the c−6 form of Equation 8. At these speeds, Figure 5 does not show the predicted632

form. Instead, a peaked curve similar to many recent studies is observed. This result633

implies a flaw in either Duncan’s c5 scaling of breaking dissipation (Equation 2), Phillips’s634

equilibrium range spectral dissipation function, ε(c) (Equation 6), or significant errors in635

estimates of Λ(c) at almost all speeds.636

In calculating b in Section 3, a constant or bulk value was assumed. However, one way637

to explain the deviation of the measured Λ(c) from Phillips’s theoretical Λ(c) is with a638

spectral b(c), which is equivalent to modifying Duncan’s c5 power law scaling. Figure 13639

further illustrates this point. First, the wave energy spectrum coincident with each Λ(c)640

distribution is plotted as a function of normalized phase speed. The spectra are divided641

into two regions: the equilibrium range at speeds less than 0.7cp = 2kp where Equation 8 is642

expected to hold, and the peak range (c ≥ 0.7cp) which Phillips’s theory does not address.643

An estimate of b(c) can be made based on the measured Λ(c) distributions and Phillips’s644
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ε(c) from Equation 6. ε(c) is calculated using measured u∗ and an estimate of the constants645

4γβ3I(3p) ≈ 0.0024 from Kleiss and Melville (2010). The spectral breaking strength is then646

b0(c) =
ε(c)

ρwg−1c5Λ(c)
, (23)

which is shown in Figure 13b. b0(c) appears flat at high speeds, consistent with the observed647

c−6 slope in Λ(c). However, this region of consistent b is largely within the peak waves, where648

Phillips’s ε(c) derivation does not apply (hence the dashed lines in this region). Within649

the equilibrium range where the Phillips dissipation function is valid, b0(c) increases over650

multiple orders of magnitude with decreasing speed. This is because the measured Λ(c) does651

not match Phillips’s theoretical c−6 in this range.652

In studying wave breaking in the Gulf of Tehuantepec Experiment (GOTEX), Romero653

et al. (2012) proposed two spectral models of b,654

b1(k) = A1(σ1/2 −B1/2
T )5/2 (24)

and655

b2(k) = A2(σ̃1/2 − B̃1/2
T )5/2 (25)

where σ is the azimuthal-integrated spectral saturation in wavenumber (Equation 10), σ̃ is656

saturation normalized by the directional spreading, and A1, A2, BT , and B̃T are coefficients657

fit to their data. These models are based on the results of Banner and Pierson (2007) and658

Drazen et al. (2008) showing a 5/2 power law dependence on wave slope. The Romero659

et al. (2012) models are independent of Phillips’s theoretical dissipation function for the660

equilibrium range, thus they are expected to differ from the inferred b0(c). In Figure 13c,661

the spectral b1(k) is plotted using A1 = 4.5 and BT = 9.3×10−4, which Romero et al. (2012)662

calculate for α = 1 (i.e. assuming whitecap speed equals the underlying wave phase speed)663

and using the Janssen (1991) wind input function. The saturation spectra are calculated as664

in Equation 10. The model b(k) is then converted to b(c) using the deep-water phase speed665

c =
√
g/k.666
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The Romero et al. (2012) b1(c) model and our inferred b0(c) curve differ in both the667

equilibrium and peak ranges. This difference is to be expected for the peak waves, where668

the theoretical equilibrium ε(c) is not applicable and thus b0(c) is invalid. Whereas b0(c)669

is relatively flat in this region, b1(c) decreases dramatically with σ. This means that the670

effective exponent in the proposed c5 Duncan scaling is actually much less than 5 in this671

region. This result was used to justify the upper limit of cp in the integration of c5Λ(c) in672

the previous section.673

In the equilibrium range (low speeds), the discrepancy from c5 is often attributed to674

microbreaking waves, which are difficult to measure and thought to dominate the dissipation675

in this range. As in this study, Romero et al. (2012) noted that their measured b(c) were676

much higher than their model b1(c) at low speeds. For this reason, they do not extend their677

calculated b to speeds less than 4.5 m s−1. This region is shown with dotted lines in Figure678

13, and makes up the entire equilibrium range for our waves. This is in agreement with the679

dramatically increased b0(c) inferred at these speeds. Sutherland and Melville (2013) used680

stereo IR video to improve detection of small-scale breaking, and found better agreement681

with estimated total dissipation measurements using the b1(c) model from Romero et al.682

(2012). However, a comparison of spectral dissipation is not shown.683

The b(c) models from Romero et al. (2012) are based on the premise that the c5 scaling of684

Duncan need only be modified to include a secondary dependence on wave slope. However,685

there are a number of other possible reasons for the apparent deviations from the original686

c5 scaling. First, Duncan’s relation was derived for steady breakers caused by a towed687

hydrofoil. Since ocean breaking waves are fundamentally unsteady, time derivatives may688

play an important role in the dissipation scaling. Although the c5 scaling has been applied to689

unsteady breaking in Melville (1994) and Drazen et al. (2008) with an additional dependence690

on wave slope, these laboratory breakers do not necessarily simulate natural whitecaps.691

Ocean waves break primarily due to modulational instability, whereas laboratory waves692

are usually induced to break by linear superposition (Babanin 2011). In addition, three-693
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dimensional wave effects (i.e., the short-crestedness that is a signature of whitecaps) are not694

well simulated in flume experiments. Another characteristic of natural waves which is not695

included in laboratory experiments is the influence of short wave modulation by the peak696

wave orbitals. Thomson and Jessup (2009) and Kleiss and Melville (2011) both corrected697

for this effect in their Λ(c) calculations, but found that the change was minimal, thus it698

was not performed here. However, it is still not clear what effect this modulation has on699

the c5 scaling, and it has been proposed that the Duncan scaling is only applicable for the700

spectral peak waves where there is no modulation (Babanin 2011). This, again, is not were701

the Phillips (1985) equilibrium form is expected.702

The original Duncan (1981) experiments need revisiting in light of these issues. The703

basis for scaling dissipation by c5 comes from a momentum argument, where the change in704

momentum is related to the tangential component of the weight of the breaking region, per705

unit crest length, gA sin θ. Here θ is the wave slope and A is the cross-sectional area of the706

breaking region. Duncan (1981) showed experimentally that for the steady breaking waves,707

gA sin θ =
0.015

g sin θ
c4. (26)

Calculation of a rate of energy loss from the above force requires an additional velocity708

term, so it is natural to again use c, resulting in the ultimate c5 scaling of the dissipation709

rate. However, Equation 26 has to our knowledge never been verified for unsteady ocean710

breaking waves. Confirmation of the original Duncan (1981) results for ocean whitecaps is711

a necessary, and so far missing, step to using c5Λ(c) to measure breaking dissipation. If the712

cross-sectional area of active breaking, A, does not scale as c4, the results of Duncan and713

Phillips cannot be applied to obtain dissipation in the field.714

Additionally, the use c5Λ(c) to calculate a spectral dissipation, ε(c), as in Phillips (1985)715

or Romero et al. (2012) relies on the assumption of spectrally local breaking dissipation.716

This means that all the dissipation from a breaking wave is assigned to a single spectral717

component, or a small range of spectral components if a variable c is tracked throughout718

the breaking event. However, it has been shown that breaking of the dominant waves causes719
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dissipation of the waves at scales smaller than the peak waves (e.g. Young and Babanin720

2006). Recent updates to spectral dissipation models (Ardhuin et al. 2010; Rogers et al.721

2012) have used a so-called “cumulative term” to reproduce this effect. Thus, it is possible722

that some of the dissipation unaccounted for at small speeds here and in Romero et al. (2012)723

is in fact caused by breaking at larger scales.724

d. Non-breaking Dissipation725

Another consideration in dissipation estimation is the effect of non-breaking wave dissi-726

pation, often called “swell dissipation.” In recent years, the observation that in waves where727

no breaking takes place there is still appreciable dissipation of wave energy has motivated728

the search for other mechanisms of wave dissipation (Babanin 2011). The most promising729

of these so far has been that when the wave orbital velocities achieves a certain threshold730

Reynolds number, the orbital motion transitions from laminar to turbulent, and this tur-731

bulence dissipates wave energy (Babanin and Haus 2009). The relevance for this study is732

that the total dissipation is used in calculating b, where it would be more appropriate to use733

only the breaking contribution to the dissipation. The magnitude of this swell dissipation is734

still not clear, especially in waves where breaking is also present. Babanin (2011) used lab-735

oratory measurements from Babanin and Haus (2009) and observations of swell dissipation736

from Ardhuin et al. (2009) to estimate the average volumetric swell dissipation as737

εvol(z) = 0.002ku3
orb (27)

where k is the wavenumber and uorb is the wave orbital velocity. Babanin and Chalikov738

(2012) calculated swell dissipation in numerical simulations of a fully-developed wavefield,739

and found that the volumetric dissipation scaled as740

εvol(z) = 3.87× 10−7H1/2
s g3/2 exp

[
0.506

z

Hs

+ 0.0057

(
z

Hs

)2
]
. (28)

Equation 27 gives dissipation rates of 1 − 10 × 10−4 m2 s−3, while Equation 28 is of order741

10−5 m2 s−3. Compared with the measured dissipation of εvol ∼ 10−3 m2 s−3, these two742
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estimates differ on whether this mechanism is an appreciable source of dissipation in this743

system, or a very minor source. In truth, both estimates are still largely speculative, since744

swell dissipation has so far not been measured in the presence of breaking (Babanin and745

Chalikov 2012). The use of total dissipation in place of breaking dissipation in studies of746

Λ(c) such as this one may lead to an overestimation of b, as breaking dissipation is less than747

the total dissipation. The magnitude of this bias depends on the relative importance of the748

breaking and swell terms.749

5. Conclusions750

Video and in situ measurements waves during a winter storm in the Strait of Juan de Fuca751

show a strong fetch dependence in wave spectral evolution and wave breaking. Heterogeneity752

in the wind forcing prevents drifting wave measurements from conforming to fetch-limited753

scaling laws, although nearby measurements at fixed stations are marginally consistent with754

fetch-limited scaling laws. The discrepancy is most exaggerated at short fetches where755

atmospheric drag is high and wave growth is rapid.756

There is a strong correlation between wave breaking activity and the mean square slope,757

mss, of the waves, both of which increase along fetch. Estimates of wave breaking dissipation758

inferred from turbulence measurements are consistent with estimates from a wave energy759

budget using the Radiative Transfer Equation (RTE). The breaking dissipation estimates760

are compared with video-derived metrics.761

Video-derived breaking rates and breaking crest distributions Λ(c) also increase with762

mss. However, during calmer conditions, estimates of breaking rates differ between high-763

resolution video recorded on SWIFT drifters and low-resolution video recorded from a ship.764

This bias is attributed to under-counting the small breakers, and thus the Λ(c) results765

during calmer conditions are not used. Using the remaining Λ(c) results, the breaking766

parameter b is estimated to be constant through the experiment at around 10−3. Error767
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analysis indicates that video collection and processing details, such as pixel resolution and768

breaker speed definition, can alter b by an order of magnitude (at least).769

Compared to recent literature, these Λ(c) results are similar in shape and magnitude.770

However, we suggest that many b values from recent field experiments, notably those of771

Thomson et al. (2009), are likely biased by subtleties of video collection and processing.772

We also suggest that the c5 scaling for energy dissipation from the original Duncan (1981)773

laboratory experiments is of limited validity for application to whitecaps observed in the774

field, especially in the c−6 equilibrium range envisioned by Phillips (1985). This is related to775

recent efforts to determine a spectral b(c) (e.g. Romero et al. 2012), which implicitly alter776

the c5 scaling.777
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APPENDIX A783

784

Fourier Method Modifications785

Modifications to the Fourier method of Thomson and Jessup (2009) are described below.786

a. Calculation of Incidence Angle from Horizon787

The camera incidence angle was not constant, because of the slow drift and periodic788

resetting of the stabilized pan and tilt. The stabilized pan and tilt adequately removed789

wave motions (e.g. ship roll at periods of a few seconds) from the video recordings, but790

contamination from lower period motions is evident in the raw video data. To remove these791

motions, the horizon in the undistorted image (i.e., after lens “barrel” distortion is removed)792

is used as a constant reference. First, the angle above horizontal is calculated as793

β =
ytop − yhorizon
ytop − ybottom

× 69◦ (A1)

where 69◦ is the total vertical field of view and y is in pixels. Then, the incidence angle is794

calculated simply as795

θ = 90− 69◦/2 + β (A2)

In practice, the horizon is manually identified in four images every 30 seconds and the average796

value of the resulting incidence angle is used for all images in that 30 seconds. The incidence797

angle is essential for rectifying the video data to real-world coordinates (Holland et al. 1997).798

b. Difference Threshold799

Choosing an accurate binary threshold to identify breaking crests is critical to obtaining800

the correct Λ(c) distribution. Differences in lighting and foam conditions make it difficult801
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to determine a single threshold criterion. In Thomson and Jessup (2009), a threshold based802

on a multiple of the image standard deviation is used, with similar results over a range of803

conditions. In the present study, however, the wider range of conditions necessitate a more804

adaptable method. Thus, the modification of a technique described in Kleiss and Melville805

(2011) is used, which is based on the cumulative complementary distribution of pixels806

W (it) = 1−
∫ it

−∞
p(i)di, (A3)

where p(i) is the probability density function of the subtracted brightnesses. The main807

difference from Kleiss and Melville (2011) is the use of the differenced images rather than808

the raw frames. As shown in Kleiss and Melville (2011) Figure 3, W (it) decreases from 1 to 0809

as it increases, and shows a distinct tail at high it when breaking is present. This signature is810

also present when using differenced images. The tail is seen clearly in the second derivative811

of the log of W (it), L
′′. As noted by Kleiss and Melville (2011), taking the threshold as the812

beginning of this deviation (i.e. maximum L′′) produces a number of false positives in their813

data. To obtain better signal-to-noise, they settle on a threshold value where L′′ falls to814

20% of its maximum value. The same threshold is applied here, after manually confirming815

that this is near the point when thresholding stops excluding more residual foam and begins816

cutting off the edges of true breaking crests.817

c. Constant Signal-to-Noise Filter818

Thomson and Jessup (2009) describe the need to isolate the significant bands around the819

peak in the wavenumber-frequency spectrum when transforming to S(c) to prevent noise820

from biasing the speed signal (page 1667). To this end, Thomson and Jessup (2009) restrict821

the integration from S(ky, f) to S(ky, c) to the points where the value of S(ky, f) is greater822

than 50% of the peak of S(ky). This process was slightly modified after examining the823

accuracy of the Fourier method with synthetic data. It was found that significant gains in824

accuracy could be made by using an integration cut-off that did not vary with wavenumber,825
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as shown in Figure 14. The true Λ(c) curve in Figure 14 is the Gaussian function used as826

the input distribution to the synthetic data. The “original” Λ(c) comes from the Fourier827

method as described in Thomson and Jessup (2009). For the “modified” curve, values828

from wavenumbers or frequencies less than 0.2 s−1 or m−1 are removed as they contain a829

high density of noise. Next, a constant cut-off 5% of the absolute maximum value of the830

remaining spectrum is used in the limits of integration around the significant band. The831

comparison is also shown on logarithmic axes in Figure 14b. This plot confirms the gains in832

accuracy of the modified filter at both the low and high speeds tails of the distribution, but833

also shows a general issue with the Fourier method at high speeds. Whereas time-domain834

calculations of Λ(c) contain zeros at high speeds where no observations are measured, the835

Fourier method contains small, non-zero values related to the noise floor in the spectrum.836

These small contributions may be amplified when taking higher moments of Λ(c). Therefore,837

some caution must be used in integrating c5Λ(c) to large c in Equation 5, which is discussed838

in Section 3.839

d. Width/Speed Bias840

A central assumption in the normalization of Λ(c) by Ltotal described above is that the841

width of the breaking crests is exactly one pixel, so that all
∑
I(x, y, t) pixels contribute to842

the length of the crest. However, breaking that occurs at speeds faster than one pixel per843

frame, c > ∆x/∆t, will produce crests in the binary image of width844

n =
c

∆x/∆t
, (A4)

where ∆x is the pixel width in the breaking direction and ∆t is the separation between845

frames (here, 0.0667 seconds). Evidence of this effect is shown in Figure 15a, where the846

average horizontal advancement of crests is plotted against their average width, weighted by847

crest size. These variables are well-correlated, and the relation follows closely the one-to-one848

line predicted by Equation A4. To correct for the associated bias of additional pixels with849
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fasters crests, the FFT normalization of Thomson & Jessup (2009) is modified with the ratio850

of ∆x/∆t to obtain851

Λ(c) = Ltotal
∆x/∆t

c

S(c)∫
S(c)dc

. (A5)

From Equation 4, the breaking rate can be calculated from the first moment of Λ(c). In852

addition, the breaking rate can be calculated directly from the binary images as853

RI =

∑
I(x, y, t)

nxnyN∆t
, (A6)

where nx and ny are the number of pixels in x and y. Carrying through the integration in854

Equation 4 with the modified Λ(c) from Equation A5 results in an equivalent expression as855

Equation A6. Thus, in effect the width modification amounts to rescaling Λ(c) to match the856

direct breaking rate, RI . Figure 15b compares RΛ from the original Λ(c) distribution and857

from the width corrected Λ(c) with the direct breaking rate, RI . The linear trend in the858

original results indicates that the bias is small and linear. The final results show identically859

equal values of RI and RΛ, as required by this normalization.860
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List of Tables997

1 Linear fits of the daily wave energy growth with fetch, for SWIFTs 1 and998

2. When multiplied by cg, ∂E/∂x gives an estimate of the advective wave999

growth. The intercept indicates the value of fetch for which the linear fit1000

extrapolates to give zero wave energy. R2 values and 95% confidence intervals1001

(in W s m−3) are also shown. 441002

2 Linear fits of the daily wave energy growth with time, for SWIFTs 1 and 2.1003

For each day, ∂E/∂t gives an estimate of the temporal wave growth. R2 values1004

and 95% confidence intervals (in W m−2) are also shown. 451005

3 Date, time, fetch, and duration of the 9 Λ(c) observations. Also shown are1006

the bulk wave and wind quantities, calculated as 500-meter averages around1007

each point in fetch. 461008
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Table 1. Linear fits of the daily wave energy growth with fetch, for SWIFTs 1 and 2. When
multiplied by cg, ∂E/∂x gives an estimate of the advective wave growth. The intercept
indicates the value of fetch for which the linear fit extrapolates to give zero wave energy. R2

values and 95% confidence intervals (in W s m−3) are also shown.

Day SWIFT ∂E/∂x [W s m−3] Intercept [km] R2 95% CI
Feb. 14 1 0.125 -0.23 0.951 ±1.51×10−2

Feb. 14 2 0.111 -0.41 0.931 ±1.60×10−2

Feb. 15 1 0.152 9.46 0.926 ±4.95×10−2

Feb. 15 2 0.230 11.97 0.852 ±1.33×10−1
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Table 2. Linear fits of the daily wave energy growth with time, for SWIFTs 1 and 2.
For each day, ∂E/∂t gives an estimate of the temporal wave growth. R2 values and 95%
confidence intervals (in W m−2) are also shown.

Day SWIFT ∂E/∂t [W m−2] R2 95% CI
Feb. 14 1 0.075 0.915 ±1.21×10−2

Feb. 14 2 0.067 0.873 ±1.35×10−2

Feb. 15 1 0.065 0.955 ±1.63×10−2

Feb. 15 2 0.093 0.816 ± 6.13×10−2
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Table 3. Date, time, fetch, and duration of the 9 Λ(c) observations. Also shown are the
bulk wave and wind quantities, calculated as 500-meter averages around each point in fetch.

Date/Time Duration [min] Fetch [km] Hs [m] Te [s] U10 [m s−1] u∗ [m s−1]
19:10 UTC 14 Feb 2011 6.8 1.40 0.56 2.55 9.74 0.45
20:36 UTC 14 Feb 2011 6.5 3.01 0.71 2.61 11.50 0.37
20:48 UTC 14 Feb 2011 5.1 3.37 0.76 2.64 12.55 0.42
21:34 UTC 14 Feb 2011 6.5 5.24 1.08 2.89 15.07 0.56
21:41 UTC 14 Feb 2011 8.5 5.60 1.12 2.97 15.73 0.60
22:27 UTC 14 Feb 2011 6.0 8.33 1.26 3.11 17.24 0.64
22:35 UTC 14 Feb 2011 4.8 8.84 1.29 3.14 18.01 0.66
19:04 UTC 15 Feb 2011 10.0 12.55 0.86 2.87 11.45 0.36
19:27 UTC 15 Feb 2011 6.0 13.17 1.00 2.97 13.11 0.48
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Fig. 1. Summary of conditions during the two days of observations. (b) Map of the Pacific
Northwest showing the Strait of Juan de Fuca. The red box corresponds to the edges of
(a), which shows instrument and ship tracks during February 14 and 15. The dashed line
is the zero-fetch line. The solid lines are the tracks of the R/V Robertson and Dopbeam
(black), SWIFT 1 (red), and SWIFT 2 (cyan). The yellow arrow shows the average direction
of the wind from both days. (c-f) Evolution of the wave and wind conditions with fetch
measured from SWIFT 1 (red), SWIFT 2 (cyan), and the R/V Robertson (black line in
wind measurements). Conditions shown are (c) significant wave height, (d) peak energy
period, (e) 10-meter wind speed, (f) friction velocity, and (g) wave age.
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Fig. 2. Wave frequency spectra colored by fetch (a) and u∗ (b). Also shown are power laws
of the form f−4 and f−5.
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Fig. 3. (a) Turbulent dissipation profiles from SWIFT 1 plotted with fetch. Depth, z, is
measured from the instantaneous sea surface. (b) Total (integrated) turbulent dissipation
measured by SWIFT 1 (red), SWIFT 2 (cyan), and Dopbeam system (blue) vs. fetch,
averaged over 500 meters. The background dissipation level of 0.5 W m−2 has not been
subtracted from these values, but is shown as the lower axis limit of panel (b).
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Fig. 4. Sample images of breaking from shipboard and SWIFT video. Images (a, b, c) are
taken from February 14, 19:13 UTC, during calm, less steep wave conditions. Images (d,
e, f) are taken from February 15, 19:27 UTC, during rougher, steeper wave conditions. (a)
and (d) show raw, stabilized shipboard images, with the red box showing the sampled field
of view. (b) and (e) are the corresponding thresholded, binary images in rectified real-world
coordinates. (c) and (f) are sample SWIFT images from coincident times.
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Fig. 11. Sensitivities and error bars for the b data with the SWIFT Sds values. Error
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