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ABSTRACT

An algorithm is presented for the stabilization and rectification of digital video from floating platforms. The

method relies on a horizon-tracking technique that was tested under a variety of lighting and sea-state con-

ditions for 48 h of video data over 12 days during a research cruise in the North Pacific Ocean. In this dataset,

the horizon was correctly labeled in 92% of the frames in which it was present. The idealized camera model

assumes pure pitch-and-roll motion, a flat sea surface, and an unobstructed horizon line. Pitch and roll are

defined along the camera look direction rather than in traditional ship coordinates, such that the method can

be used for any heading relative to the ship. The uncertainty in pitch and roll is estimated from the un-

certainties of the horizon-finding method. These errors are found to be of the order 0.68 in roll and 0.38 in
pitch. Errors in rectification are shown to be dominated by the uncertainty in camera height, which may

change with the heave motion of a floating platform. The propagation of these errors is demonstrated for the

breaking-wave distribution L(c). A toolbox for implementation of this method inMATLAB is shared via the

MATLAB File Exchange.

1. Introduction

The use of digital video as a measurement tool has

grown tremendously in recent years, as the cost ofmaking

and storing high-quality digital videos has decreased.

Standard electrooptical (EO) video, which records visible

light in the wavelengths spanning 400–700 nm, is part of

a larger category of passive remote sensors that also in-

cludes infrared (IR) cameras and hyperspectral imaging

systems (Holman and Haller 2013; Dickey et al. 2006).

These passive systems complement the active remote

sensors such as radar and lidar. Oceanographic applica-

tions of remote sensing include direct measurements of

whitecap coverage (Callaghan and White 2009) and sea

ice concentration (Weissling et al. 2009). In addition,

underlying properties such as wave dissipation, bathym-

etry, and currents can sometimes be inferred from remote

measurements (Sutherland and Melville 2013; Stockdon

and Holman 2000; Chickadel et al. 2003). Alternatively,

hyperspectral measurements of optical properties of the

upper water column (i.e., ocean color) may be used to

determine concentrations of certain biological quantities

(IOCCG 2000).

Across these modes and applications, quantitative use

of camera imagery benefits greatly from knowledge of

the camera location and orientation, or ‘‘pose.’’ Camera

pose information is needed specifically for two common

tasks: stabilization and rectification. Stabilization is the re-

moval of camera motion from a set of images, resulting in

images appearing as though recorded from a fixed camera.

Rectification is the projection of one or more images into

a common coordinate system. When images are projected

onto a map of the earth’s surface, as from an airplane or

satellite, it is commonly termed orthorectification.

For a camera mounted to a fixed platform, the pose

may be measured once and applied to all images. Such

configurations are not often available at sea, but they

may be approximated in exceptionally stable ships

[such as R/P Floating Instrument Platform (FLIP); see

Gemmrich et al. 2008; Zappa et al. 2012; Sutherland

andMelville 2013] or in relatively calm conditions (e.g.,

Thomson et al. 2009; Thomson and Jessup 2009). Re-

liance on specific ships or conditions is not ideal,

however, as it limits the availability of these mea-

surements. Alternatively, the pose may be recorded
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continuously from an external system, usually an in-

ertial motion unit (IMU). IMUs measure linear accel-

eration and angular velocity with a combination of

accelerometers and gyroscopes. The position of the

IMU is then estimated from dead reckoning. In Kleiss

and Melville (2010, 2011) and Romero et al. (2012), an

IMU was used to gather the positional data needed to

rectify images taken from an airborne system. In

Schwendeman et al. (2014), a shipboard camera was

actively stabilized with an inertial pan-tilt system. There

are two disadvantages of this strategy. First, inertial

measurements are sensitive to noise and drift, such that

accurate systems can be prohibitively expensive. Second,

such systems require precise synchronization with the

video frames, otherwise matching errors will occur.

A more attractive option is to use the video frames

themselves to estimate the camera orientation. Prob-

lems of this type usually require ground control points

(GCPs) with known x, y, and z coordinates (Szeliski

2010). GCPs may be available in coastal applications

when land makes up a significant portion of the camera

field of view, as in Holland et al. (1997). In the open

ocean, however, there are no GCPs.

In the following paper, a method for determining the

pitch and roll of a shipboard camera is described from

the location of the horizon line in the image. Similar

strategies have been used for stabilization of cameras for

marine surveillance (Cao and Zhang 2007; Morris et al.

2007; Fefilatyev et al. 2012) and unmanned aerial vehicle

(UAV) flight control (Bao et al. 2005; Thurrowgood

et al. 2009; Zhang et al. 2011). The focus here is an image

rectification to sea surface coordinates for oceanic

measurement tasks. One such application is the calcu-

lation of the wave-breaking distribution L(c) (Phillips

1985). Calculating this distribution requires the mea-

surement of the length L and speed c of many breaking-

wave events.

In section 2, the horizon-finding method is described

using an example image from a research cruise in the

North Pacific. In section 3, this algorithm is applied to

the full video dataset and its performance is evaluated.

The uncertainty and sensitivity in the method are ex-

amined in section 4, using L(c) as a case study. Finally,

section 5 concludes and points the user to a publicly

available MATLAB toolbox for implementation of

these algorithms.

2. Methods

The general problem of interest is outlined in Fig. 1. A

camera looks obliquely outward over a flat sea surface

from a known height H at a constant heading (or azi-

muth) g. The horizon line is unobstructed and visible in

the image. The camera orientation is fixed except for

two angles: pitch f and roll t, which are unknown and

are defined in the camera reference frame rather than

the ship reference frame. Throughout the remainder of

this paper, the incidence angle, s 5 p/2 2 f, is used

rather than pitchf for notational convenience in the

calculations.

The ultimate goal of the following procedure is to

determine s and t, such that it becomes possible to

project a point located at pixel (u, y) to sea surface co-

ordinates (x, y, 2H), and vice versa. This goal will be

achieved by relating the equation of the horizon line to s

and t, as detailed below.

a. Data collection

The images shown here were collected during a re-

search cruise on board the R/V New Horizon in the

North Pacific in 2012. The ship sailed from San Diego,

California, to Ocean Station Papa (508N, 1458W) and

back over the course of 3 weeks. On 12 of these days, the

ship held station for several hours to make a variety of

wind and wave measurements. These measurements

include approximately 48h of video, taken from a 3.6-mm

‘‘bullet’’ camera with 1/3-in. high-resolution Sony ExView

black-and-white (B/W) charge-coupled device (CCD).

The data were sampled at 30Hz and 8-bit grayscale,

and compressed to MPEG-2 video. For the first half of

the experiment, the camera was mounted on the top rail

(H5 10.7m) facing off the starboard side. On 7 October,

it was moved to the ship’s centerline (still on the top rail)

to be able to look off either port or starboard.

The camera was attached to a pan-tilt stabilization

system (Directed Perception PTU-D100), which actively

corrected for rotation in the incidence (5 908 2 pitch)

and azimuth angles. This was the same stabilization

FIG. 1. Problem schematic, defining the camera parameters and

coordinate systems. The sea surface is shown in blue, with dark blue

corresponding to the camera field of view, while gray areas denote

sky. The small rotated square represents the camera sensor (not to

scale), and the top-right square shows the resulting image.
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package used in Schwendeman et al. (2014), in which

a time-consuming manual horizon-finding method was

used to compensate for the drift in incidence, while roll

was left uncorrected. By using active stabilization, the

camera orientation is decoupled from the ship’s pitch,

roll, and heading angles. Therefore, we must make the

distinction that in the following sections, all angles are

of the camera relative to the sea surface, which

are unrelated to the ship’s orientation. Although

helpful in maintaining a given field of view, the active

stabilization has been shown to be insufficient for

quantitative processing of moving signals, such as

breaking waves. This motivates the postprocessing

method that follows.

b. Horizon-finding algorithm

This image-based stabilization depends on an auto-

mated method for fast, robust, and accurate detection of

the horizon line. Possible complications are poor light-

ing conditions, partial horizon views, and noise from

features in the sea surface (e.g., whitecaps) and sky (e.g.,

clouds). As noted in section 1, horizon detection has

proven useful for a number of applications, and several

strategies have been described in the literature. Re-

cently, Fefilatyev et al. (2012) developed a ‘‘separation

criterion’’ approach for finding the optimal horizon line

from a rapidly moving, buoy-mounted camera. While

their problem requires a very robust detection algo-

rithm, here we find that a simpler, faster approach is

acceptable for our data and application.

Figure 2a shows an example video frame with the

horizon clearly visible in the image. In Fig. 2b, the image

has been filtered with the Canny edge detector, which

isolates and thresholds local maxima in the image gra-

dient along the direction perpendicular to the gradient

direction (Canny 1986). Because the Canny detection

method uses the gradient direction information, it has

a number of advantages over other edge filters. First, the

user can specify to return only the maximum pixel for

a given edge (called nonmaximal suppression), which

leads to sharper edges. Additionally, the Canny detector

can find connected edges with a lower threshold through

hysteresis and edge linking (see Szeliski 2010 for more

details). Figure 2b shows the result ofMATLAB’s Canny

detector with an automated threshold that identifies 5%

of pixels as edges.

Next, the binary edge image is passed to the Hough

transform, a widely used method for identifying lines in

images (Duda and Hart 1972; Illingworth and Kittler

1988). In the Hough transform, candidate lines are pa-

rameterized in polar coordinates by r, the distance of the

line to the image origin, and u, the direction of the line,

as shown in Fig. 1. Then, the number of edge pixels in the

FIG. 2. An example of the horizon-finding procedure for a frame

from 1958 UTC 8 Oct. (a) The original image after removal of

distortion. (b) The binary image resulting from filtering with the

Canny edge detector. (c) The Hough transform accumulator array,

with maximum value circled in red. (d) The original image with

computed horizon line overlaid. For this image, the calculated

camera angles are t 5 3.98 and s 5 78.78.
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binary edge image is tallied along each line candidate.

Thus, an accumulator array is assembled, whose ele-

ments each correspond to a line in (r, u) space, and

whose values equal the number of edge pixels located

along this line. Since the horizon line is usually the

longest or most prominent edge in the image, its r and

u parameterization corresponds to the maximum

value of the accumulator array. Figure 2c shows

the resulting accumulator array with the maximum

value circled. Finally, Fig. 2d shows the resulting line

drawn on the original frame, exactly aligned with the

horizon.

c. Projection equations

With the horizon line found, the camera incidence

and roll can be calculated from the camera projection

equation (also called perspective transform or homog-

raphy). The geometric basis for the projection equation

is the pinhole camera model, in which all light rays pass

through a principal point O before hitting the sensor

located one focal length f from O. Although the sensor

physically lies behind the principal point, it can be

easier to visualize the problem with it in front, as in

Fig. 1.

A necessary first step is to determine the camera’s in-

dividual distortion coefficients and intrinsic parameters.

This is done using a geometric calibration technique,

based on the algorithms of Zhang (2000) and Heikkila

and Silven (1997), that is available in MATLAB’s

Computer Vision System Toolbox (or similar open

source software packages). Distortion can be thought

of as the deviation of the camera from an ideal pinhole

camera and is often noticeable for wide-angle lenses.

After correcting for distortion, the horizon is seen as

a straight line in the image, as in Fig. 2. Here, a distortion

correction is used with two radial coefficients, no skew,

and no tangential distortion, resulting in average errors

of less than one pixel from a pinhole camera. With

distortion removed, the camera is fully characterized

by four intrinsic parameters. The first of these are fu
and fy, which are the camera focal length expressed in

terms of the pixel width and pixel height, respectively.

The other two are cu and cy, which correspond to the

(u, y) coordinates, respectively, of the pixel located

directly behind O, otherwise known as the image or-

igin. The distortion coefficients and intrinsic param-

eters for the camera used in this experiment are listed

in Table 1.

The invertible perspective equation for projecting

real-world (x, y, z) coordinates to (u, y) pixel coordi-

nates is

s[u, y, 1, d]T 5 [P][x, y, z, 1]T , (1)

where P is the 4 3 4 ‘‘camera matrix,’’ d is the inverse

depth or ‘‘disparity,’’ and s is an arbitrary scale factor.

Equation (1) can be inverted to find (x, y) from (u, y) by

assuming s 5 d 5 1, and then normalizing the resulting

(x0, y0, z0) coordinates by2z0/H, leading to coordinates

at (x, y, 2H), that is, the flat sea surface. For a pure

rotation in s and t, the form of P is

[P]5

2
664
fu 0 cu 0

0 fy cy 0

0 0 1 0

0 0 0 1

3
775
2
664
cost sint coss sint sins 0

sint 2cost coss 2cost sins 0

0 sins 2coss 0

0 0 0 1

3
7775 , (2)

where fu, fy, cu, and cy are the intrinsic parameters de-

scribed above.

Angles s and t are uniquely determined by the loca-

tion of the horizon line. In the limit of y / ‘, Eq. (1)
leads to u and y, which lie along a straight line in the

image corresponding to the horizon line, and defined by

r and u as found in the previous section. The equations

relating these parameters are

t5 tan21

�
2fu

fy tan(u)

�
(3)

s5 tan21

�
fu sin(t) cos(u)2 fy cos(t) sin(u)

r2 cu cos(u)2 cy sin(u)

�
. (4)

Note that the above equations do not include the third

camera angle, azimuth, given by g in Fig. 1. The azimuth

TABLE 1. Distortion coefficients and intrinsic parameters for the

3.6-mm ‘‘bullet’’ camera used in this experiment.

Parameter name Value

Number of columns nu 640

Number of rows ny 480

First radial distortion coefficient k1 20.601

Second radial distortion coefficient k2 0.364

Focal length per pixel width fu 673.4

Focal length per pixel height fy 610.0

Image column center cu 339.2

Image row center cy 244.5
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angle may be needed for some applications if it varies

significantly across images and directional information is

required. Like camera height, however, azimuth cannot

be determined with the horizon-finding procedure.

Therefore, it must be measured or estimated from some

other data source, such as the ship’s heading. With the

pan-tilt stabilization system used here, the camera azi-

muth is kept relatively constant over time scales of

several minutes, but this makes it independent of the

ship’s heading. We therefore define the line of sight of

the camera to be at azimuth5 08 unless otherwise noted.
Figure 3 demonstrates the rectification from image

coordinates to world coordinates, for the same example

as Fig. 2. The red line again shows the accurately de-

tected horizon line, which is used to measure roll and

incidence. For the example shown, the camera was

found to be oriented at 3.98 roll and 78.78 incidence. The
blue rectangle in the original image maps to an oblique

near-trapezoidal shape in Earth coordinates.

3. Results

a. Horizon-finding statistics

Next, we apply the method to the full dataset of 48 h

over 12 days. Images were subsampled at 30-s intervals

for a total of 5761 frames. Figure 4 shows 12 sample

frames from this set, one for each day of the experiment.

This figure demonstrates the robustness of the horizon-

finding procedure over the large variety of lighting con-

ditions seen during the experiment. Then all the frames

are projected as though taken from a stationary camera

positioned at 08 roll and 758 incidence. Example videos

showing this stabilization for severalminutes at a time are

also available as online supplemental material.

All 5761 processed images were manually reviewed

and classified into one of three categories: horizon visi-

ble and correctly identified, horizon visible but in-

correct, and horizon not visible. The results of this

analysis are shown in Table 2, separated by date. The

rightmost column of the table shows the percentage of

frames in which a visible horizon has been correctly

detected. The results totaled over the entire experiment

are shown in the bottom row. Overall, 92.3% of visible

horizon lines were correctly identified with the Hough

transform method.

The accuracy is quite variable over the experiment,

reaching a minimum of 70.8% on 5 October, compared

with a perfect 100% on 11 October. This accuracy is

primarily a function of lighting, as noted in the Condi-

tions column. The most unfavorable conditions are on

clear or partly cloudy days when the sun is low in the sky,

resulting in high glare and saturation of the image near

the horizon. The worst days for these conditions are 5

and 6October. This motivatedmoving the camera to the

ship’s centerline on 7October, allowing the camera to be

directed either port or starboard to avoid glare, thereby

dramatically improving the horizon detection. Second-

ary effects include low light in the early morning or

evening and rain drops on the window of the camera

housing.

b. Quality control

It is crucial to be able to identify when the horizon-

finding algorithm fails, without relying on the manual

inspection described above. Given a series of sequential

images, it is possible to identify an incorrect horizon as

an outlier from the expected smooth variation ins and t.

Such amethod is unsuitable, however, in cases where the

FIG. 3. Example rectification using the image from Fig. 2. (a) The image in pixel coordinates, with horizon

detected correctly (red) and a sample rectangle (blue). (b) The projection of the pixels within the blue rectangle to

Earth coordinates.
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horizon is rapidly moving or when nonsequential images

are examined.

Instead, a predictive variable is defined to identify

spurious horizons. Since the horizon is chosen as the

maximum of the Hough transform, the prominence

of this maximum is related to the strength of the ho-

rizon line. This first peak is compared with the second

highest peak, and the ratio m of these peaks is used as

an inverse quality metric. To avoid values near a prom-

inent horizon, the second maximum is found a distance

of r . 10 pixels and u . 2.58 from the first peak. A ra-

tio m 5 1 indicates that both maxima are identical,

whereasm5 0 corresponds to an infinitely large primary

maximum.

FIG. 4. (a)–(l) Twelve example video frames showing successful horizon detection (red dashed line), each from a different day of the

experiment. (m) Composite image formed by transforming each image as though taken from a camera at 758 incidence and 08 roll, and
averaging over all images. The red dashed line shows the expected horizon for this orientation, and the colored rectangles mark the outline

of each transformed image.
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The horizon-finding method can fail for one of two

reasons: either the horizon is not visible in the image

or the horizon is not the strongest line in the image. In

both cases, a large value ofm is expected. Using the full

dataset of 5761 images, the ability of m to diagnose

false horizons is examined. For a given threshold value

mt images with m , mt are predicted to be successful

horizon identifications (positives), while images with

m.mt are predicted failures (negatives). By comparing

with the manual classification, images are characterized

as true positives (TP), false positives (FP), false nega-

tives (FN), and true negatives (TN). Positive predictive

value (PPV), or ‘‘precision,’’ is the ratio of true positives

to all predicted successful horizon identifications,

PPV5
TP

TP1FP
. (5)

Conversely, true positive rate (TPR), or ‘‘recall,’’ is the

ratio of true positives to all actual successful horizon

identifications,

TPR5
TP

TP1FN
. (6)

Figure 5 shows the precision and recall curves made

by varyingmt. Daily curves are shown, as well as for the

full dataset. As with Table 2 the results are encouraging

overall, but they depend greatly on the individual day.

Formt5 0.8, the total PPV is 99.6% (four false positives

per 1000 predicted positives) and the total TPR is 96.2%

(3.8% unnecessarily discarded images). For the same

threshold, the minimum daily PPV and TPR values are

98.9% and 81.8%. Thus, if anything, this cutoff has the

potential to be overly conservative when predicting

failure in the horizon-finding algorithm.

4. Discussion

a. Uncertainty analysis

Three uncertainties can be quantified in this method:

the uncertainty in the horizon line (r, u), the uncertainty

in camera angles (s, t), and the uncertainty in the pro-

jected real-world coordinates (x, y, z).

The uncertainty in (r, u) can be due to the resolution

of the camera, the chosen quantization in the Hough

transform, and uncertainty as a result of ambiguity in the

horizon location. Camera intrinsic calibration indicates

that the pinhole model is only accurate to within 1 pixel.

Similarly, the Hough transform is discretized by 1 pixel

in r. The resolution in u is specified by the user and was

TABLE 2. Horizon-finding results, separated by day, and totaled over the entire dataset. Images were output every 30 s and manually

classified. Percent correct column indicates the percentage of visible horizon lines that are correctly identified in the Hough transform.

Date (2012) Conditions

Horizon visible,

correct

Horizon visible,

incorrect Horizon not visible Percent correct (%)

26 Sep Partly cloudy 208 17 29 92.4

28 Sep Low light early 189 28 37 87.1

29 Sep Occasional rain on glass 145 31 26 82.4

2 Oct Partly cloudy, occasional glare 470 8 30 98.3

3 Oct Partly cloudy, late glare 296 58 13 83.6

4 Oct Mostly cloudy 377 1 3 99.7

5 Oct Clear, frequent glare 318 131 59 70.8

6 Oct Partly cloudy, frequent glare 299 74 8 80.2

7 Oct Early glare, late darkness 959 37 40 96.3

8 Oct Partly cloudy 898 1 5 99.9

11 Oct Mostly cloudy 330 0 1 100

14 Oct Early glare, clear later 598 38 0 94.0

Total 5086 424 251 92.3

FIG. 5. Plots of PPV and TPR are plotted as a function of the

threshold of the Hough transform peak ratio mt. Thin curves in

blue (PPV) and red (TPR) are daily values (12 lines each), while

the dashed (PPV) and dashed–dotted (TPR) curves are for the full

dataset.
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chosen here to be 0.58 to reduce computation time and to

ensure robust statistics in the maximization.

Additionally, there is some uncertainty in the actual

horizon location. The assumption made in deriving Eqs.

(3) and (4) was of a horizon located infinitely far from

the camera. For a number of reasons, including the

curvature of the earth and atmospheric scattering, the

distance to the ‘‘apparent horizon’’ is actually finite (see

French 1982; Bohren and Fraser 1986). Ignoring atmo-

spheric effects and assuming an observer height much

less than the earth’s radius, the apparent horizon dis-

tance is

D’
ffiffiffiffiffiffiffiffiffiffiffi
2RH

p
, (7)

where R is the radius of the earth and H is the height of

the observer. So, for our camera located at H 5 10.7m,

the distance to the apparent horizon is roughly 11.7 km.

This distance can be shortened as a result of atmospheric

scattering, which decreases the contrast between sea and

sky (Bohren and Fraser 1986). Alternatively, the dis-

tance can be lengthened as much as 10% as a result of

atmospheric refraction (French 1982).

Figure 6 shows the errors in r from assuming an in-

finite horizon, for s 5 758, t 5 08, and H 5 10.7m. This

camera pose is representative of a typical view during

this experiment and will be used repeatedly in the fol-

lowing analysis. At the estimated horizon distance of

11.7 km, the error in r is only 0.6 pixels, which is less than

the uncertainty noted above. As the apparent horizon

nears the camera, the horizon appears lower in the im-

age, and the errors in r increase. This error is not sen-

sitive to changes in s, but scales proportional toH. Since

D scales with H1/2, these errors will become slightly

more pronounced for higher cameras. This plot is also

useful in estimating the errors stemming from using the

horizon information under nonideal conditions. For

example, if a coastline obscures the horizon at a distance

of 1 km, then an error of 6 pixels can be expected in r.

The uncertainty in s and t is directly related to the

uncertainty in r and u through Eqs. (3) and (4). Around

the reference orientation (t 5 08, s 5 758), an error of

60.58 in u leads to errors of60.558 in t and60.268 in s.

Around the same value, errors of 61 pixel in r have no

effect on t but correspond to errors of 0.098 in s.

Therefore, under ideal lighting, the horizon method as

described here is accurate to within 0.68 in t and 0.38 ins.
In section 2, it was shown that the projected co-

ordinates (x, y, z) are functions of the pixel coordinates

(u, y), the intrinsic parameters (fu, fy, cu, cy), the camera

angles (s, t, g), and the camera height H. Since z of the

water surface is taken to be 2H, the uncertainty in z is

simply equal to the uncertainty in H. However, the

errors in x and y are functions of the uncertainties of

all the parameters,

Dx5 x(u, y;H1DH, s1Ds, t1Dt, g1Dg, fu, fy, cu, cy)

2 x(u, y;H, s, t, g, fu, fy , cu, cy) ,

(8)

Dy5 y(u, y;H1DH, s1Ds, t1Dt, g1Dg, fu, fy, cu, cy)

2 y(u, y;H, s, t, g, fu, fy , cu, cy) .

(9)

Potential errors in fu, fy, cu, and cy are not addressed here

based on the positive results of the calibration pro-

cedure, which showed average errors of less than one

pixel in the calibration images. In section 3, it was shown

that after stabilization, the error in incidence and roll

angles were on the order of Ds ;0.38 and Dt ;0.68, re-
spectively The horizon technique cannot be used to es-

timateH and g, so these uncertainties must be estimated

from other sources. Term DH is a function of the sea

surface elevation variability, or wave height. During this

experiment, the average wave height was roughly 2m,

which will be used as a representative value of DH. The

specifications for the pan-tilt stabilization unit give azi-

muth errors of Dg , 0.258 for underlying sine-wave

motions at 1Hz, although the system tended to drift in

azimuth on longer time scales.

Figures 7 and 8 show the errors in x and y resulting

from these sources, around the reference state of s5 758,
t 5 08, g 5 08, and H 5 10.7m. Figure 7 shows the

camera field of view in pixel coordinates, with the area

above the horizon colored gray. Pixels are colored by

error components Dx and Dy for the errors in t, s, g,

andH discussed above. In Fig. 8, these errors are shown

as a function of y, for vertical slices in the left, middle,

and right of the image. The errors grow as y increases

FIG. 6. Uncertainty in image horizon location (Dr, pixels) for

finite horizon distances. The line shown is for s 5 758, t 5 08, and
H 5 10.7m.
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for both components and all uncertainty sources. For

all sources except g, uncertainty in y is larger than in x.

The most severe source of error is in Dy because of DH.

For uncertainty inH, the relative errors, Dy/y and Dx/x,
are equal to DH/H, or 18.6% in this case. So, at a dis-

tance of 100m, Dy is nearly 20m for DH5 2m, whereas

all other errors are less than 5m at this distance. Al-

though this error analysis was performed around one

camera pose, with single values for Dt, Ds, Dg, and DH,

it would be easy to adapt this procedure to different

camera views and error magnitudes.

b. Uncertainty in L(c)

Figure 7 demonstrates that errors in the assumed

camera height can lead to large uncertainties during

rectification, even after stabilization in roll and in-

cidence. The manifestation of these uncertainties will

vary depending on the application. As a case study, we

demonstrate the result of such errors on estimates of

L(c), a common remotely sensed wave measurement

(see, e.g., Gemmrich et al. 2008; Thomson et al. 2009;

Kleiss and Melville 2010; Schwendeman et al. 2014).

TermL(c) is defined as the sum of all breaking-wave

crest lengths per unit area and speed. It has become com-

monly used in estimatingwave energydissipation as a result

of breaking (see Phillips 1985). Calculation ofL(c) requires
the estimation ofwave crest lengthLi and speed ci formany

breaking events. Then the calculation is carried out by

binning the events by ci, summing overLi, and applying the

proper normalization. The final formula for L(c) is

L(c)5
�
i
Li

AN dc
, (10)

where N is the total observed events, A is the spatial

domain, and dc is the speed bandwidth, such that the

summation is over all Li with speeds (c 2 dc/2) , ci ,
(c 1 dc/2). If the breaking waves are observed from

a moving camera, it is clear that estimates of the crest

lengths and speeds will be affected by the camera mo-

tion, but it is not apparent how these errors will propa-

gate through the L(c) computation.

The sensitivity of L(c) to errors of this kind can be

examined through the use of synthetic data. These

FIG. 7. Uncertainty in rectification around a reference camera orientation of s 5 758, t 5 08, g 5 08, and H 5 10.7m. The errors

are shown in (a)–(d) x and (e)–(h) y at each pixel (u, y) for corresponding errors of (a),(e)Dt5 0.68; (b),(f)Ds5 0.38; (c),(g)Dg5 0.58; and
(d),(h) DH 5 2m. The gray region represents the pixels above the horizon in the image.
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synthetic data have a known distribution of L and c,

making errors easy to determine. Moreover, in practice

there are many subtle variations for determining Li and

ci that are mostly avoided with the synthetic data. The

creation of the synthetic data proceeds as follows: Line

segments with constant length 2m are randomly given

a starting position within a domain of 30m , y , 50m

and 210m , x , 10m. They are assigned a speed from

a Gaussian distribution centered around 3m s21 with

a standard deviation of 1m s21. They are propagated

forward with that speed, over a duration of 2 s, with their

position recorded every dt 5 1/(15Hz). Next, these

crests are ‘‘observed’’ from a camera at the familiar pose

of s 5 758, t 5 08, g 5 08, and H 5 10.7m. The camera

is subject to a sinusoidal oscillation in height, with

DH5 2m (i.e., amplitude of 1m), at a period of T5 4 s,

to simulate a shipboard camera in a rough sea state.

Each wave crest is randomly given a start time, which

determines the camera phase during the event. The

observer, however, is not aware that the camera height

is changing and therefore the observer attributes the

camera motion to the crests themselves. Examples of

true and apparent crest motions are shown in Figs. 9a,b

for two scenarios: crests moving directly across the im-

age, in the 1x direction, and directly away from the

camera, in the 1y direction.

Figures 9c,d show the results of calculating L(c) as in
Eq. (10) for the true and apparent crest motion. Over

10 000 crests were simulated in each case to ensure ro-

bust statistics. In making Fig. 9c, Li is calculated as the

Dy between the two endpoints of the crest, and ci isDx/dt
(vice versa for Fig. 9d). The true L(c) distribution is

shown in black. Five cases are tested for each scenario,

the first being the base case from Figs. 9a,b (DH 5 2m,

T 5 4 s), in blue. The red line shows the results for

halving DH (DH 5 1m, T 5 4 s) and the green line for

doubling T (DH5 2m, T5 8 s). The cyan curve is a low-

motion case (DH 5 0.25m, T 5 4 s). The magenta dis-

tribution is for a similar scenario, with the exception that

the camera is looking down froma nadir position (s5 08).
The results from the synthetic data lead to a number

of conclusions. First, in all cases, sinusoidal errors in

camera height tended to broaden the observed L(c)
from the true distribution, while the total sum of

breaking crests [equal to the integral of L(c)] stayed

within 1%. Thus, the measurement of crest length was

unbiased by the camera motion, but the crests speeds

were biased toward more extreme values. This is espe-

cially true for the scenario with crests moving away from

the camera, where for the large camera motions, the

peak is obscured completely. This orientation appears to

be a worse-case scenario for observing L(c), although
the errors may bemanageable for lower sea states, as the

FIG. 8. Uncertainty in rectification around a reference camera

orientation ofs5 758, t5 08, g5 08, andH5 10.7m. TheDx (blue)
and Dy (red) errors are shown as a function of distance from the

ship (y) for corresponding errors of (a) Dt 5 0.68, (b) Ds 5 0.38,
(c) Dg 5 0.58, and (d) DH 5 2m. Curves are plotted for three

constant pixel columns, corresponding to lines in the middle

(u 5 360, solid line), left (u 5 120, dotted line with crosses), and

right (u 5 540, dotted line with diamonds) of the image.
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DH 5 0.25m case shows. For both geometries, the

curves are nearly identical for halving wave height (red)

as for the doubling wave period (green), suggesting that

the errors scale with the vertical velocity of the camera

motion. Finally, these plots show that the errors are not

restricted to oblique views, and in fact are as large for

nadir camera orientations (magenta) as for x-propagating

crests under similar sea states (left, blue).

It should be noted that the above-mentioned case

study is an idealized model for shipboard camera mo-

tion. The relationship between sea state and ship motion

will depend greatly on the ship, and in most cases the

vertical motion of the camera will be less than the

significant wave height. Additionally, the frequency of

camera motion will depend on the size of the ship rela-

tive to components in the incident wave spectrum.

However, even for a camera without any underlying

motion, there are uncertainties in this rectification as

a result of projecting a wavy sea surface onto a flat plane.

Acceptable uncertainties will vary with application; these

simulations of L(c) suggest that camera height variations

less than 1m are necessary for high-quality results.

c. Limitations

Here we summarize the limitations of this horizon

stabilization method, many of which have already been

FIG. 9. Error in L(c) as a result of varying camera height with synthetic breaking waves for (a),(c) breaking waves

propagating in the1x direction and (b),(d) breaking waves propagating in the1y direction. (a),(b) Three examples

of the true breaker propagation (black) and the apparent propagation (blue) for sinusoidal camera motion of DH5
2m at T5 4 s. (c),(d) The resulting L(c) for Gaussian input centered at 3m s21 (black) for DH5 2m, T5 4 s (blue),

DH5 1m, T5 4 s (red), DH5 2m, T5 8 s (green, dashed), DH5 0.25m, T5 4 s (cyan), and DH5 2m, T5 4 s, at

s 5 08 (i.e., nadir) (magenta, dashed).
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mentioned. The most fundamental requirement is that

the horizon be visible in the camera field of view. This is

not guaranteed if the platform is subject to largemotions

or the camera lens has a narrow field of view. The ac-

curacy assessment reveals that the method is especially

sensitive to the lighting conditions (see Table 2). Possi-

ble complications include glare from direct or reflected

sunlight, and lack of contrast as a result of low light,

heavy clouds, or rain. Furthermore, the Hough trans-

form detection method requires the horizon to be the

most well-defined line in the image, meaning obstacles

or other instrumentation in the field of viewmay impede

its detection. In that case, one of the several other ho-

rizon detection algorithms (e.g., Bao et al. 2005; Morris

et al. 2007; Zhang et al. 2011; Thurrowgood et al. 2009;

Moore et al. 2011a; Fefilatyev et al. 2012) may be more

suitable. Finally, if a coastline is used in place of the

horizon, at distances less than roughly 10 km, the camera

angle calculation will be negatively impacted, as shown

Fig. 6.

The horizon only provides information on the camera

incidence and roll angles and cannot be used to calculate

the heading angle and x, y, and z positions. On large

ships and in low sea states, as in this dataset, the as-

sumption of small motions in these other degrees of

freedom may be reasonable. The two most problematic

of these unknowns are the heading and camera height,

because small errors in these variables lead to rectifi-

cation errors that become large as the distance from the

camera increases (as shown in Figs. 7, 8). One option is

to use some combination of GPS, IMU, and magnetic

compass data to estimate these other motions. Here, the

overlapping pitch-and-roll estimates from the video and

GPS/IMU may be useful simply to synchronize the data

streams. This unfortunately does not solve the issue of

noise (at short time scales) and drift (at longer time

scales) from which these systems can suffer. Ideally, the

camera frames themselves could also be used to esti-

mate these other variables. Toward that end, Moore

et al. (2011b) and Thurrowgood et al. (2014) showed that

by using two cameras with fish-eye lenses oriented sky-

ward, they could create a ‘‘visual compass’’—a nearly

complete sky panorama that they could compare with an

individual view to calculate the relative heading of their

UAV. Unfortunately, our limited view of the sky in this

dataset makes this approach challenging, but future

experiments may take advantage of this method. Simi-

larly, the height of the camera could be estimated visu-

ally using a stereo camera system and fitting a plane to

the three-dimensional points on the water surface, as in

Benetazzo (2006). This assumes that the camera field of

view covers a sufficiently large footprint that the fitted

plane approximates the mean water level. Note also that

this provides its own estimate of the camera pitch and

roll, potentially making the horizon method redundant.

However, stereo imaging brings with it a host of signif-

icant processing challenges, and thus researchers may

still be drawn to this relatively simple method if the

conditions are suitable.

5. Conclusions

The horizon line, if it is visible and unobstructed, can

be used to calculate the incidence (or pitch) and roll

angles of shipboard cameras in the absence of stationary

ground control points or external IMU systems. The

Hough transform is shown to be a robust and compu-

tationally efficient means for horizon detection and

a derived quality control metric is effective for isolating

spurious horizons. Upon detecting the horizon, the

conversion to the incidence and roll of the camera is

exact and given in Eqs. (3) and (4). The performance of

the horizon tracking technique is largely dependent on

the lighting conditions.

For images shown here, the uncertainties in incidence

and roll were determined to be on the order of 0.38 and
0.68, respectively. The effect of horizon distance is

negligible in this case, though larger uncertainties are

possible if the apparent horizon is within a few kilo-

meters of the camera as a result of poor atmospheric

conditions or distant land. The largest source of un-

certainty in rectification is due to camera height vari-

ations from waves. The percent errors in x and y are

similar to the ratio of DH/H. These errors can in turn

negatively affect estimates of such quantities asL(c), as
a result of the biasing of wave crest speeds.

The implementation of our method in MATLAB is

available as an open source toolbox via the MATLAB

File Exchange under the name Horizon Stabilization.

The package includes all codes for horizon detection,

image stabilization, rectification, and error analysis.

These codes require either the MATLAB Computer

Vision System Toolbox or the Image Processing Tool-

box for implementation of the Hough transform.
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