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Acoustic Doppler sensors used for flow measurements at energetic
tidal sites present an inherent ‘‘Doppler noise’’ in the measured sig-
nal, varying with hardware configuration and flow conditions. At
scales comparable to the sensors’ sampling frequencies, the corre-
sponding perturbations notably contaminate the signal, and cannot
be corrected in the time series.

At such scales, dynamic phenomena are of particular interest in
the process of increasing reliability and effectiveness of tidal tur-
bines, and are mostly addressed in terms of statistics. In the case
of inflow speed variations, the bias due to Doppler noise should
be taken into account, and can be assessed via manufacturer spec-
ifications.

Here, a method is presented that enables a direct estimation of the
Doppler noise strength from the measured signal itself. Inspired
from polynomial least square regression, it is based on a spectral
analysis of the measured signal respect to turbulence theory, under
the hypothesis of a white Doppler noise contamination. The subse-
quent limitations are discussed and illustrated by practical cases.

The values found are generally higher than suggested by manufac-
turers, but still in the same order of magnitude. The use of the highest
sampling frequency available is recommended.
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Introduction

Tidal streams represent a great resource for renewable energy, with the fundamental advantage of
being highly predictable on the timescales of electricity consumption. In contrast, the behavior of TECs
with respect to dynamic, short-term variations of tidal stream is not fully understood yet, which rep-
resents an important challenge as fatigue loads cannot be neglected in the design of such structures.
Also, suitable instrumentation and techniques for measuring those flow characteristics optimally is
not clearly identified yet. As they are already widely accepted as a tool for tidal resource assessment,
effort is drawn on improving the possibilities of bottom-mounted Divergent-beam Acoustic Doppler
Profilers (DADPs2), though they were not initially designed for this purpose [1–6].

Such sensors nevertheless present some inherent drawbacks for the purpose of measuring flow
dynamics. First of them is the presence of an inherent measurement noise, that have been shown
to affect Doppler measurements significantly when it comes to analyzing dynamic effects with DADPs
[5], but also to a certain extent with Acoustic Doppler Velocimeters (ADVs) despite their higher accu-
racy and precision [7].

Estimates of the Doppler noise bias, depending on the configuration of the sensors, are given by
manufacturers’ documentation and software [8–9]. It can also be estimated by averaging the high-fre-
quency end of the signal spectra [10], when the measurement sampling frequency is high enough.

In this paper, a method is presented that enables estimating Doppler noise contamination of the
signal, with much lower requirement on the sampling frequency.

The hypothesis and mathematical development are detailed in the next chapter. The method is
then applied to different datasets: first, single-point high-resolution ADV data is used to assess the
robustness of the method; the procedure is then run on DADP data, as such sensors have extra capa-
bilities to measure flow speeds across the whole water column. Conclusions are finally drawn
accordingly.

It has to be noted that this method can also be used for directly assessing TKE dissipation rate from
noise-contaminated measurements, but that is not in the focus of this paper.
Theory

Hypothesis and their justification

The hypotheses of the method are based on the one hand on the characteristics of the flow, and on
the other hand on the analysis of the acquisition method.
Inertial range and frozen turbulence hypotheses
With speeds of O(1 m s�1), length scales of O(10 m), density of O(1000 kg m�3) and kinematic vis-

cosity of O(10�3 Pa s), tidal flows relevant for energy extraction have Reynolds numbers around 107

and are therefore fully turbulent. According to Kolmogorov’s theory, in the length scale domain rang-
ing from the integral scale to the Kolmogorov scale and called the inertial range, the Turbulent Kinetic
Energy Density (TKED) varies with wavenumber k as
2 The
refers t
the ‘‘AW
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TKEDðkÞ ¼ Ce2=3k�5=3
; ð1Þ
with C being the Kolmogorov constant and e being the turbulent kinetic energy dissipation rate.
Furthermore, assuming that the turbulent eddies are advected by a mean flow U, and that the speed

fluctuations u respect to this moving frame of reference are small in comparison with U, one can as-
sume through the Frozen Turbulence Hypothesis (FTH) that the frequencies f of phenomena recorded
at a fix point of observation are related to the wavenumbers by f = k/U. Considering that the TKED is
acronym ‘‘ADCP’’ is often used for naming such sensors, but is a trademark of Teledyne RD Instruments and theoretically
o their products only. ‘‘DADP’’ is therefore used here generically, as the method applies equally on other products such as

AC’’ or ‘‘Aquadopp Profiler’’ from Nortek.
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equal to the Power Spectral Density (PSD) S of the velocity fluctuations, one can write that in the iner-
tial range,
Fig. 1.
Mean s
figure l
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Sðf Þ ¼ K � f�5=3; ð2Þ
with K being a constant.
In Fig. 1, the low-frequency end of the inertial range can be observed around 0.1 Hz. As summarized

by Durgesh et al., it is expected to extend in the high frequencies beyond 103 Hz in the flows of interest
[10], but in Fig. 1 is obscured by Doppler noise.

White noise, and relation with the standard deviation of measured speed
The dynamic phenomena of interest come out as variations in the measured speed signal. As

its values are real, corresponding spectral analysis can be performed as single-sided PSD estimate,
whose integral is an estimate of the signal variance. From eq. (2), the PSD estimates of the signal
should tend to zero with increasing frequencies. For analyses of measured signals, this is not the
case because of measurement noise. Such additional measurement fluctuations add variance to
the signal:
r2
measured ¼ r2

physical þ r2
noise: ð3Þ
From a spectral point of view, this noise-induced variance is distributed as additional PSD layer
over the whole frequency domain. It is commonly accepted (e.g. [11,12]) that the errors in consecutive
acoustic pings are uncorrelated, and therefore that this increase in PSD is statistically independent of
the frequency. This can be referred to as ‘‘white noise’’ as a parallel to white light covering all frequen-
cies of the visible light spectra.

As a consequence:

� at high frequencies, the measured spectrum is saturated by noise and converges to the noise PSD,
denoted N in this paper, rather than tending to zero. This is clearly illustrated in [10] with the figure
hereunder, where B represents the additional noise-related variance (Fig. 2).
� The variance of the measured signal is biased by the integral of N over the bandwidth of the spectra.
Example of measured spectra measured with an ADV (red), with proposed analysis performed on the green bandwidth.
peed is 1.54 m.s�1, estimated noise standard deviation is 3.5 cm.s�1. (For interpretation of the references to colour in this
egend, the reader is referred to the web version of this article.)
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Fig. 2. Schematic showing the effect of white noise contamination in the auto-spectral density function: (a) schematic of auto-
spectral density function of clean signal, (b) schematic of auto-spectral density function of white noise, and (c) schematic of
auto-spectral density function of clean signal with white noise. Axis are in logarithmic scale. Source: [10].
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Also, with:

� the high-end frequency of the spectra equal to half the sampling frequency fs,
� the low-end frequency of the spectra, depending on the spectral analysis segment duration,

being negligible with respect to fs,

the bias in measured variance due to the noise can be approximated by
Please
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(2013
r2
noise � N � fs=2: ð4Þ
Limitations of the method respect to the hypothesis

Beam separation
In the case of of DADP data post-processed with standard methods, speed estimates measured at a

given elevation z above the sensor are based on acoustic measurements performed at different refer-
ence points of the corresponding horizontal layer. Those points are distant one from another, of a dis-
tance called ‘‘beam separation’’ and very similar to z for diverging beam angles of 20–25o [6]. One can
then define a Beam Separation critical frequency
fBS ¼ U=z; ð5Þ
corresponding to the time one particle of the ambient flow needs to cover the beam separation.
While observing a phenomenon occurring in the flow at a frequency f, in the case where no Doppler
noise corruption occurs:

� if f� fBS, the manifestations of the phenomena at the different reference acoustic measure-
ment points tend to be the same, hence an expected good fidelity of the measurement.

� if f� fBS, the manifestations of the phenomena at the reference points are not expected to be
correlated. The individual measurements are therefore expected to be intrinsically corrupted.
Nevertheless, their magnitude is expected to stay proportional to the magnitude of the actual
phenomena, via a factor that depends on the slant angle of the acoustic beams. In terms of
spectral analysis, the PSD estimate at such frequency is multiplied by the square of this factor.
With a logarithmic y-axis graph, this implies a vertical translation of the PSD curve.

In the inertial range, both of those two cases lead to a speed PSD proportional to f�5/3 as in Eq. (2),
which is one base hypothesis here. Nevertheless, in the transition between those two domains, dis-
crepancies are expected. They can affect the regression process while occurring in a part of analysis
bandwidth not saturated by noise. The Beam Separation critical frequency is typically in the 0.1–1 Hz
domain, given values of U and z typical for tidal energy sites.
cite this article in press as: J.-B. Richard et al., Method for identification of Doppler noise levels
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Waves
In addition to the turbulence caused by the tidal flow itself, surface waves, when present, can be an

important source of variation of the water speed over time. This is due to the induced orbital speeds,
which extend down the water column up to a depth of half the corresponding wavelength. Those fluc-
tuations obey different laws compared to turbulence. In velocity spectra, they lead to a PSD raise in the
frequency range of wave-related surface elevation spectra, typically in the 0.1–1 Hz domain.

In the case of DADP measurements, a precise assessment of this variation in the PSD requires cou-
pling the precise knowledge of the wave-induced velocity with the intrinsic post-processing of the
sensor, directly related to its geometry. This is not covered in the present study.

Noise pattern
In the low-frequency domain of flow speed measurements, the physical phenomenon largely pre-

vails in the PSD magnitude. As a consequence, there is relatively less knowledge of the noise pattern in
this part of the spectra bandwidth than there is for the high-frequency side. One could therefore con-
sider the white noise hypothesis not to be very robust, but the impact of this uncertainty is quite neg-
ligible due to the relatively little importance of low-frequency domains while integrating PSDs of same
order of magnitude over the whole bandwidth.

Least-square regression
In order to assess the noise saturation level of such spectra, a method is derived from least-square

polynomial regression. It aims at fitting, over a given reference bandwidth, a S(f) spectrum with a two-
parameter curve of equation
Pleas
in tu
(2013
Y ¼ K � f�5=3 þ N; ð6Þ
with K = ae2/3 and N being the PSD of the Doppler noise.
Let the spectrum being numerically defined as discrete values Si at frequencies fi, for each data

point i of the reference bandwidth. The differences di between the measured spectra and the fitted
curve are:
di ¼ Si � ðN þ K � f�5=3
i Þ: ð7Þ
The least-square procedure fits the curve to the experimental data by minimizing an error E de-
fined as the sum of the square of those individual offsets, optionally weighted with coefficients
ci P 0. With M data points taken into consideration in the measured spectra, this sum to be minimized
as a function of the parameters N and K is:
EðN;KÞ ¼
XM

i¼1

cid
2
i ¼

XM

i¼1

ci½Si � ðN þ K � f�5=3
i Þ�

2
: ð8Þ
As E is both continuous and differentiable for N and K, if a minimum of E exists, then the partial
derivative of E with respect to N and K must be null at this minimum, which can be written as a
set of two equations,
@E
@N ¼ �2

XM

i¼1

ci½Si � ðN þ Kf�5=3
i Þ� ¼ 0

@E
@K ¼ �2

XM

i¼1

cif
�5=3
i ½Si � ðN þ Kf�5=3

i Þ� ¼ 0

8>>>><
>>>>:

9>>>>=
>>>>;
; ð9Þ
that is eventually equivalent to the well-defined linear system:
XM

i¼1

ci

XM

i¼1

cif
�5=3
i

XM

i¼1

cif
�5=3
i

XM

i¼1

cif
�10=3
i

2
66664

3
77775

N
K

� �
¼

XM

i¼1

ciSi

XM

i¼1

ciSif
�5=3
i

2
66664

3
77775; ð10Þ
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which can be easily solved numerically for N and K.
Two weighting schemes are investigated in this paper. In a first formulation, all weighting coeffi-

cients are set equal. This simplest and neutral approach is not expected to be the most robust, due to
the PSDs of the signal varying in orders of magnitude in the domain of interest: relatively small dis-
crepancies from the hypothesis in the PSDs from the low-frequency side of the reference bandwidth
are anticipated to potentially have a significant impact on the final estimates.

Second, as the considered spectra are typically presented in log–log coordinates, a corresponding
weighting scheme is implemented, with weighting coefficients intended to account for logarithmic
evolution of PSDs on the frequency range and to balance the evolution of density of information with
a logarithmic x-axis.
Application of the regression method on different measurement datasets

Though the main objective is to quantify the noise bias in DADP measurements, the method is first
applied on data measured with ADV. This is because those are more precise and have a much higher
temporal resolution, and can therefore be used both as reference and for simulating poorer quality
measurements of the same phenomena. Subsequent comparisons then provide information on the
efficiency and robustness of the method.

Application of the method on ADV data for reference considerations, and subsequent analysis

The ADV measurements were recorded during 4 days of February 2011, at a sampling frequency of
32 Hz, in Puget Sound, WA, USA. The hardware used was a 6 MHz Nortek ADV. Data collection is de-
scribed in [5], with data preparation and quality control being documented in [13].

As these data do not come from DADP but from single-point sensor, they are not subject to beam
separation consideration discussed above. Also, the measurement was performed in a channel with
relatively quiet wave climate, and more than 15 m under the mean free surface, and traces of wave
orbital velocity are therefore expected to be negligible. This fidelity of the dataset respect to the meth-
od’s hypotheses makes it ideal for a first level of testing.

The quantity analyzed here is the measured instantaneous magnitude of the velocity. The signal is
treated as 1256 non-overlapping segments of 5 min duration (i.e., 9600 points per sample at 32 Hz).
After removal of the mean and linear components, the PSD estimate of each segment is calculated
through Matlab’s Pwelch function with default parameters (8 windows, modified by a Hamming filter,
each overlapping by 50%). The regression algorithm is then applied to different portions of the ob-
tained spectra.

First, an analysis is performed without weighting using the last two decades of the spectra, that is
to say from 0.16 to 16 Hz. This bandwidth extends to the maximum available high frequency for
approaching noise saturation, and starts just beyond the integral scale on the low frequency end.
The obtained curve fitting and the corresponding values of K and N are therefore reliable and used
as reference. Two extreme examples are presented in Fig. 3.

At this stage, one can deduct important characteristics of this measurement. First, the estimated
noise standard deviation varies with respect to the mean speed, as illustrated in Fig. 4. It clearly ap-
pears that this noise bias is increasing with the measured speed. One can also see that, apart from
some cases at very low speeds, the computed bias is above the 0.02 m.s�1 reference value reported
in [5].

The second key figure deducted from this reference fit is the cutting frequency defining the frontier
between a low frequency domain where the PSD of the physical speed prevails on the noise, and a high
frequency domain where the noise dominates. We denote it fcut in this paper:
Please
in tur
(2013
fcut ¼
N
K

� ��3=5

: ð11Þ
It is found varying from 0.2 to 5 Hz, increasing with the mean speed., as can be seen in Fig. 5. This is
consistent with an increase in TKE with speed (i.e., increasing signal to noise ratio).
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Fig. 4. Noise standard deviations for ADV measurement: references computed with the method applied on the last two decades
of the spectra, and plotted against the corresponding mean speed. Linear trend is calculated for non-slack conditions.

Fig. 3. Example reference fittings for very low (0.17 m.s�1, top) and very high (1.83 m.s�1, bottom) mean speeds. Estimated
noise standard deviations are 2.6 and 4.6 cm.s�1, respectively.
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With those characteristics of the high-resolution measurement, the next step is to investigate the
robustness of the method by artificially lowering the quality of the data. This is done by reducing the
bandwidth used in the analysis: decreasing its upper bound is equivalent to analyzing the same mea-
surement recorded at a lower sampling frequency, provided that this change in sampling frequency
only results from a change in ensemble averaging without decimation. In other words, the noise level
of the individual acoustic pings is not changed, only the overall quantity of available information is
affected by averaging (i.e. loss of high-frequency contents).

Namely, one-decade parts of the spectra are used for the following test analyses. For each segment,
2 test bandwidths are defined based on the reference cutting frequency. The first one is centered on it,
that is to say ranges from

ffiffiffiffiffiffiffi
0:1
p

� fcut to
ffiffiffiffiffiffi
10
p

� fcut , for capturing the transition between target and
noise-dominated parts of the spectra. The second one extends only on the low-frequency side of fcut,
and therefore contains relatively low noise.
Please cite this article in press as: J.-B. Richard et al., Method for identification of Doppler noise levels
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Fig. 5. Cutting frequencies (fcut) for ADV measurements: references plotted against the corresponding mean speeds.
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The method is applied on each of the two spectrum extracts, both with and without the weighting
scheme described. Fig. 6 presents the noise estimates obtained in those 4 cases, compared against the
reference noise estimates, for the 1256 segments.

Graph (a) of Fig. 6 shows that with input data reduced to the ‘‘transition’’ bandwidth, the algorithm
without weightings gives quite acceptable noise estimates.

For lower frequency bandwidths containing just one side of the transition, the results, illustrated in
graph (b), are scattered more widely aside the references. In addition, the model presents robustness
limits: for some segments, the regression gives negative estimates for the noise variance. This corre-
sponds graphically to a vertical spectra asymptote instead of an horizontal one.

As can be seen on graph (d), the number of those inconsistencies falls when using the weighting
coefficients in the regression: it goes from 125 to 50, corresponding to 10% and 4% of the segments,
respectively. The distributions of those errors respect to the mean speed are detailed in Fig. 7. For both
approaches, the proportion of errors is greater at low speeds, whether with reference to the total num-
ber of errors in the results or respect to the total number of cases for a given mean speed range. This
trend is clearer when using the weightings, that also somehow reduce the dispersion of the noise esti-
mates for those low-frequency bandwidths.

Nevertheless, as can be seen in graphs (c) and (d) of Fig. 6, the weightings lead to an underestima-
tion of the noise intensity, at least on average, for both of the two bandwidth types used here.

Application of the method on DADP data, and subsequent analysis

After application on the previous dataset, considered ideal for testing the method within its
hypothesis, the method is applied on DADP data. One of the particular points here is the beam spread
consideration.

This second dataset has been measured at the same place and time with the ADV data analysed
here, and is also described in [5]. It is performed with a 600 kHz RDI Workhorse ADCP and the data
are recorded in beam coordinate, i.e. before post-processing [8]. The sampling frequency is 2 Hz,
bin size is 0.5 m with the ADV measuring in the horizontal layer of bin 4.

The data is analysed in segments of 10 min duration, corresponding to 1200 point length. Points
discarded by quality control (strength of backscattered signal under threshold) represent between
3% and 3.5% of the signal for bins 1–20. They are not replaced by any correction method: only seg-
ments of consecutive valid data are analysed, representing 40% of the total measurement time series.
Please cite this article in press as: J.-B. Richard et al., Method for identification of Doppler noise levels
in turbulent flow measurements dedicated to tidal energy, International Journal of Marine Energy
(2013), http://dx.doi.org/10.1016/j.ijome.2013.11.005
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Fig. 6. Comparisons of noise standard deviations: test analyses against reference. Dashed lines mark 1:1 agreement. Solid lines
are the linear trends. Left and right plots are for regression without and with weightings, respectively. Top plots correspond to
analyses on bandwidth centred on fcut, while bottom plots correspond to pre-fcut bandwidth. Test analyses that gave negative
noise variance estimates are indicated by red points on the 1:1 agreement line.

Fig. 7. Distributions of analyses respect to the mean speed for non-weighted (a) and weighted (b) regressions. Top histograms
describe the overall distribution of the 1256 segments, middle histograms shows distributions of inconsistent pre-fcut analyses
that estimate a negative noise variance, bottom histograms draw which proportion of each top-histogram bar consists of such
failed analyses.
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The corresponding spectra being almost saturated by noise, analyses are performed on the last dec-
ade without the weighting scheme. Both beam speeds and horizontal velocity magnitude are investi-
gated (Fig. 8).
Please cite this article in press as: J.-B. Richard et al., Method for identification of Doppler noise levels
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Fig. 8. Example analysis on Thomson’s [5] ADCP data. Due to quite high noise level, the elevation of the f�5/3 slope
corresponding to the flow characteristics can hardly be assessed directly, but the noise estimation is assumed to be good. Mean
speed is 0.75 m.s�1, noise estimated standard deviation is 0.15 m.s�1, turbulence intensity is 22% without correction and
estimated to 7% after noise correction.
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As horizontal speed analyses are subject to be altered by the beam separation aliasing effects, an
indicative equivalent horizontal speed component noise standard deviation is calculated from the
beam speed noise standard deviations: assuming the pitch and roll influence are negligible, each hor-
izontal speed component is a linear function of two beam speeds in the form:
Please
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(2013
x ¼ 1
2 sinðhÞ ðb1 � b2Þ; ð12Þ
with h the beam slant angle [8]. The corresponding variance can be written:
r2
x ¼ ð

1
2 sinðhÞÞ

2

½ðr2
b1
þ r2

b2
Þ � 2Covðb1; b2Þ�; ð13Þ
Under the previous assumption that a part of it is due to flow dynamics and the other one is due to
Doppler noise, and that

� at given flow conditions, the noise variances of the beam speeds are equal to a value rnoise beam;
� noise in each beam speed is independant from any other quantity, i.e. coviariances between noises

of different beams, and covariances between noise and instant speed, are null;

it comes:
rnoisex ¼
1ffiffiffi

2
p

sinðhÞ
rnoisebeam

ð14Þ
independently of what correlations between flow speeds in measured beam velocities could be. In
other words, the noise in the inclined beams is projected onto the horizontal plane.

The results of the analyses on bin 20, 10, and 4 are illustrated in Fig. 9, with top-to-bottom order
referring to the position of the measurements in the water column.

One of the first things that one can notice is that for a given mean speed and elevation, the noise
contamination of the four beam speeds has a very similar intensity.
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Fig. 9. Noise standard deviations calculated for bins 20 (a), 10 (b), and 4 (c) of Thomson ADCP data, as a function of mean speed.
Positions in the water column are 12.65, 7.65, and 4.65 meters over bottom, respectively. Black dots correspond to the noise on
horizontal speed magnitude calculated from the PSD of horizontal velocity, coloured dots to noise beam speed signals
calculated from the PSD of beam velocities, while coloured crosses are beam speed noise standard deviations scaled to
horizontal speed component equivalent. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Also, a discrepancy between horizontal speed magnitude noise and horizontal equivalents based on
beam analysis is clear at low speeds, under 0.6 m.s�1. This is because those equivalents refer to the
two components of the speed. They have an impact on both magnitude and directionality, the later
being not represented here and with increasing importance with decreasing speed.

Apart from that, the horizontal equivalents appear to match the horizontal estimates quite well on
the rest of the velocity range. This indicates that beam spread does not perturbate the analyses on hor-
izontal speed in this dataset, and that beam speed analysis could be used to avoid beam spread effects
while assessing the noise contamination of horizontal velocity measurement.

The next point of interest is the values found for the standard deviation due to Doppler noise. As
reported in [5], the PlanADCP software indicates a reference of 0.156 m s�1. It appears here that the
contaminations are slightly higher. They also tend to increases with the mean speed, this being more
sensitive in the lower part of the water column. The results shown in Fig. 9c are consistent with the
value of 0.174 m s�1 found experimentally in [5] by comparison of bin 4 data with ADV data for speeds
above 0.8 m s�1.
Conclusions and future work

A mathematical method for assessing Doppler noise contamination in tidal flow speed measure-
ment performed with hardware based on acoustic Doppler principle has been described, with its
hypothesis and their limitations. Its application on two reference datasets has been presented.

The analyses on ADV data show that, with input signal respecting well the hypothesis, the method
is expected to be stable and accurate for sampling frequencies half a decade greater than a cutting fre-
quency where the measurement noise and the fluctuations of the flow speed have the same PSD. With
a sampling frequency equal to this cutting frequency, the stability of the model is affected but can be
somewhat improved by applying a weighting scheme in the mathematical model.

Further work could determine appropriate time-series treatment to be applied on those estimates,
if necessary calculated in parallel with different weighting schemes, that would aim at correcting un-
der- or overestimations, scattering, and missing values. Such treatment should make use of segment
overlapping for getting greater density of estimates over time and eventually real-time treatment
capabilities.

Analyses on ADCP data provided information on other aspects and perspectives of the method.
They show good agreement with a recent study enquiring the same topic by other means, and pro-
vided confidence in overcoming beam spread effect if necessary.

Nevertheless, study on other datasets with apparent lower noise contamination (not shown here)
demonstrated that waves can have a strong impact on the robustness of the method, as it has been
reported to be the case for the variance method [4]. This is believed to be possible to address by appro-
priate weighting in the regression, filtering out the corresponding frequencies on a bandwidth as small
as possible.

This work seeking a better knowledge of limitations inherent to flow measurement sensors for the
purpose of the characterisation of tidal flow dynamics is part of the research activities of the MaRINET
project. In this framework, the method is planned to be applied on different hardwares, and different
configurations of same hardware, by the end of 2013 [14].

It is also part of an international initiative, so far informal, aiming at a better understanding of the
interaction between tidal flow turbulence and tidal turbines. International collaboration is essential to
advancing the state of the art in tidal turbulence measurements.
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