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Abstract— Acoustic Doppler sensors used for flow measurements 
at energetic tidal sites present an inherent “Doppler noise” in the 
measured signal, varying with hardware configuration and flow 
conditions. At scales comparable to the sensors’ sampling 
frequencies, the corresponding perturbations notably 
contaminate the signal, and cannot be corrected in the time 
series. 
At such scales, dynamic phenomena are of particular interest in 
the process of increasing reliability and effectiveness of tidal 
turbines, and are mostly addressed in terms of statistics. In the 
case of inflow speed variations, the bias due to Doppler noise 
should be taken into account, and can be assessed via 
manufacturer specifications.  
Here, a method is presented that enables a direct estimation of 
the Doppler noise strength from the measured signal itself. 
Inspired from polynomial least square regression, it is based on a 
spectral analysis of the measured signal respect to turbulence 
theory, under the hypothesis of a white Doppler noise 
contamination. The subsequent limitations are discussed and 
illustrated by practical cases. 
The values found are generally higher than suggested by 
manufacturers, but still in the same order of magnitude. The use 
of the highest sampling frequency available is recommended. 
 
Keywords— Acoustic, Doppler, Measurement, Noise, 
Regression, Sampling, Tidal, Turbulence. 

I. INTRODUCTION 
Tidal streams represent a great resource for renewable 

energy, with the fundamental advantage of being highly 
predictable on the timescales of electricity consumption. In 
contrast, the behavior of TECs with respect to dynamic, short-
term variations of tidal stream is not fully understood yet, 
which represents an important challenge as fatigue loads 
cannot be neglected in the design of such structures. Also, 
suitable instrumentation and techniques for measuring those 
flow characteristics optimally is not clearly identified yet. As 
they are already widely accepted as a tool for tidal resource 
assessment, effort is drawn on improving the possibilities of 
bottom-mounted Divergent-beam Acoustic Doppler Profilers 

(DADPs 1

[1]
), though they were not initially designed for this 

purpose -[6]. 
Such sensors nevertheless present some inherent drawbacks 

for the purpose of measuring flow dynamics. First of them is 
the presence of an inherent measurement noise, that have been 
shown to affect Doppler measurements significantly when it 
comes to analyzing dynamic effects with DADPs [5], but also 
to a certain extent with Acoustic Doppler Velocimeters 
(ADVs) despite their higher accuracy and precision [7].  

 

 
Fig. 1: Example of measured spectra measured with an ADV (red), with 
proposed analysis performed on the green bandwidth.  Mean speed is 1.54 
m.s-1, estimated noise standard deviation is 3.5 cm.s-1. 

Estimates of the Doppler noise bias, depending on the 
configuration of the sensors, are given by manufacturers’ 

                                                 
1The acronym “ADCP” is often used for naming such sensors, but is a trademark of 
Teledyne RD Instruments and theoretically refers to their products only. “DADP” is 
therefore used here generically, as the method applies equally on other products such as 
the “AWAC” or “Aquadopp Profiler” from Nortek. 
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documentation and software [8]-[9]. It can also be estimated 
by averaging the high-frequency end of the signal spectra [10], 
when the measurement sampling frequency is high enough. 

 
In this paper, a method is presented that enables estimating 

Doppler noise contamination of the signal, with much lower 
requirement on the sampling frequency. 

The hypothesis and mathematical development are detailed 
in chapter II. The method is then applied to different datasets: 
first, single-point high-resolution ADV data is used to assess 
the robustness of the method in part III.A; the procedure is 
then run on DADP data, as such sensors have extra 
capabilities to measure flow speeds across the whole water 
column. This is presented in part III.B. Conclusions are finally 
drawn in chapter IV. 

It has to be noted that this method can also be used for 
directly assessing TKE dissipation rate from noise-
contaminated measurements, but that is not in the focus of this 
paper. 

II. THEORY 

A. Hypothesis and their justification 
The hypotheses of the method are based on the one hand on 

the characteristics of the flow, and on the other hand on the 
analysis of the acquisition method. 

1)  Inertial Range and Frozen Turbulence Hypotheses:  With 
speeds of O(1m.s-1), length scales of O(10m), density of 
O(1000kg.m-3) and kinematic viscosity of O(10-3Pa.s) , tidal 
flows relevant for energy extraction have Reynolds numbers 
around 107 and are therefore fully turbulent. According to 
Kolmogorov’s theory, in the length scale domain ranging 
from the integral scale to the Kolmogorov scale and called the 
inertial range, the Turbulent Kinetic Energy Density (TKED) 
varies with wavenumber k as 

 ( ) 3/53/2 −kC=kTKED ε , (1) 
with C being the Kolmogorov constant and ε being the 
turbulent kinetic energy dissipation rate. 

Furthermore, assuming that the turbulent eddies are 
advected by a mean flow U, and that the speed fluctuations u 
respect to this moving frame of reference are small in 
comparison with U, one can assume through the Frozen 
Turbulence Hypothesis (FTH) that the frequencies f of 
phenomena recorded at a fix point of observation are related 
to the wavenumbers by f = k/U. Considering that the TKED is 
equal to the Power Spectral Density (PSD) S of the velocity 
fluctuations, one can write that in the inertial range, 
 ( ) 3/5−× fK=fS , (2) 
with K being a constant. 

In Fig. 1, the low-frequency end of the inertial range can be 
observed around 0.1 Hz. As summarized by Durgesh et al, it is 
expected to extend in the high frequencies beyond 103 Hz in 
the flows of interest [10], but in Fig. 1 is obscured by Doppler 
noise. 

 

2)  White Noise, and Relation with the Standard Deviation of 
Measured Speed:   

The dynamic phenomena of interest come out as variations 
in the measured speed signal. As its values are real, 
corresponding spectral analysis can be performed as single-
sided PSD estimate, whose integral is an estimate of the signal 
variance. From equation (2), the PSD estimates of the signal 
should tend to zero with increasing frequencies. For analyses 
of measured signals, this is not the case because of 
measurement noise. Such additional measurement fluctuations 
add variance to the signal: 
 222

noisephysicalmeasured σ+σ=σ . (3) 
From a spectral point of view, this noise-induced variance 

is distributed as additional PSD layer over the whole 
frequency domain. It is commonly accepted (e.g. [11],[12]) 
that the errors in consecutive acoustic pings are uncorrelated, 
and therefore that this increase in PSD is statistically 
independent of the frequency. This can be referred to as 
“white noise” as a parallel to white light covering all 
frequencies of the visible light spectra. 

As a consequence: 
• at high frequencies, the measured spectrum is saturated 

by noise and converges to the noise PSD, denoted N in 
this paper, rather than tending to zero. This is clearly 
illustrated in [10] with the figure hereunder, where B 
represents the additional noise-related variance: 

 

 
Fig. 2: Schematic showing the effect of white noise contamination in the auto-
spectral density function: (a) schematic of auto-spectral density function of 
clean signal, (b) schematic of auto-spectral density function of white noise, 
and (c) schematic of auto-spectral density function of clean signal with white 
noise. Axis are in logarithmic scale. Source: [10].  

• The variance of the measured signal is biased by the 
integral of N over the bandwidth of the spectra. 

Also, with: 
• the high-end frequency of the spectra equal to half the 

sampling frequency fs, 
• the low-end frequency of the spectra, depending on the 

spectral analysis segment duration, being negligible 
with respect to fs, 

the bias in measured variance due to the noise can be 
approximated by 

 2/2
snoise fNσ ×≈ . (4) 

B. Limitations of the Method Respect to the Hypothesis 

1)  Beam Separation:   
In the case of of DADP data post-processed with standard 

methods, speed estimates measured at a given elevation z 
above the sensor are based on acoustic measurements 



performed at different reference points of the corresponding 
horizontal layer. Those points are distant one from another, of 
a distance called “beam separation” and very similar to z for 
diverging beam angles of 20-25o [6]. One can then define a 
Beam Separation critical frequency 
 zUf BS /= , (5) 
corresponding to the time one particle of the ambient flow 
needs to cover the beam separation. While observing a 
phenomenon occurring in the flow at a frequency f, in the case 
where no Doppler noise corruption occurs: 

• if f<<fBS, the manifestations of the phenomena at the 
different reference acoustic measurement points tend to 
be the same, hence an expected good fidelity of the 
measurement. 

• If f>>fBS, the manifestations of the phenomena at the 
reference points are not expected to be correlated. The 
individual measurements are therefore expected to be 
intrinsically corrupted. Nevertheless, their magnitude is 
expected to stay proportional to the magnitude of the 
actual phenomena, via a factor that depends on the 
slant angle of the acoustic beams. In terms of spectral 
analysis, the PSD estimate at such frequency is 
multiplied by the square of this factor. With a 
logarithmic y-axis graph, this implies a vertical 
translation of the PSD curve. 

In the inertial range, both of those two cases lead to a speed 
PSD proportional to f-5/3 as in Eq. (2), which is one base 
hypothesis here. Nevertheless, in the transition between those 
two domains, discrepancies are expected. They can affect the 
regression process while occurring in a part of analysis 
bandwidth not saturated by noise. The Beam Separation 
critical frequency is typically in the 0.1-1 Hz domain, given 
values of U and z typical for tidal energy sites. 

2)  Waves:   
In addition to the turbulence caused by the tidal flow itself, 

surface waves, when present, can be an important source of 
variation of the water speed over time. This is due to the 
induced orbital speeds, which extend down the water column 
up to a depth of half the corresponding wavelength. Those 
fluctuations obey different laws compared to turbulence. In 
velocity spectra, they lead to a PSD raise in the frequency 
range of wave-related surface elevation spectra, typically in 
the 0.1-1Hz domain. 

In the case of DADP measurements, a precise assessment 
of this variation in the PSD requires coupling the precise 
knowledge of the wave-induced velocity with the intrinsic 
post-processing of the sensor, directly related to its geometry. 
This is not covered in the present study. 

 

3)  Noise Pattern:   
In the low-frequency domain of flow speed measurements, 

the physical phenomenon largely prevails in the PSD 
magnitude. As a consequence, there is relatively less 
knowledge of the noise pattern in this part of the spectra 
bandwidth than there is for the high-frequency side. One could 

therefore consider the white noise hypothesis not to be very 
robust, but the impact of this uncertainty is quite negligible 
due to the relatively little importance of low-frequency 
domains while integrating PSDs of same order of magnitude 
over the whole bandwidth.  

C. Least-Square Regression 
In order to assess the noise saturation level of such spectra, 

a method is derived from least-square polynomial regression. 
It aims at fitting, over a given reference bandwidth, a S(f) 
spectrum with a two-parameter curve of equation 
 ( )NfKY +×= − 3/5 , (6) 

 
with K = αε2/3 and N being the PSD of the Doppler noise. 
Let the spectrum being numerically defined as discrete 

values Si at frequencies fi, for each data point i of the reference 
bandwidth. The differences di between the measured spectra 
and the fitted curve are:  
 ( )3/5−×−= iii fK+NSd . (7) 

 
The least-square procedure fits the curve to the 

experimental data by minimizing an error E defined as the 
sum of the square of those individual offsets, optionally 
weighted with coefficients ci ≥ 0. With M data points taken 
into consideration in the measured spectra, this sum to be 
minimized as a function of the parameters N and K is:  

 ( ) ( )[ ]∑∑ −×−=
M

=i
iii

M

=i
ii fK+NScdc=KN,E

1

23/5

1

2 . (8) 

 
As E is both continuous and differentiable for N and K, if a 

minimum of E exists, then the partial derivative of E with 
respect to N and K must be null at this minimum, which can 
be written as a set of two equations, 
 ( )[ ]

( )[ ] 
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that is eventually equivalent to the well-defined linear system:  
 


















































−−−

−

∑

∑

∑∑

∑∑

3/5

1

1

3/10

1

3/5

1

3/5

11

ii

M

=i
i

i

M

=i
i

i

M

=i
ii

M

=i
i

i

M

=i
i

M

=i
i

fSc

Sc=

K

N

fcfc

fcc , (10) 

which can be easily solved numerically for N and K.  
 
Two weighting schemes are investigated in this paper. In a 

first formulation, all weighting coefficients are set equal. This 
simplest and neutral approach is not expected to be the most 
robust, due to the PSDs of the signal varying in orders of 
magnitude in the domain of interest: relatively small 
discrepancies from the hypothesis in the PSDs from the low-



frequency side of the reference bandwidth are anticipated to 
potentially have a significant impact on the final estimates. 

Second, as the considered spectra are typically presented in 
log-log coordinates, a corresponding weighting scheme is 
implemented, with weighting coefficients intended to account 
for logarithmic evolution of PSDs on the frequency range and 
to balance the evolution of density of information with a 
logarithmic x-axis. 

III. APPLICATION OF THE REGRESSION METHOD ON DIFFERENT 
MEASUREMENT  DATASETS 

Though the main objective is to quantify the noise bias in 
DADP measurements, the method is first applied on data 
measured with ADV. This is because those are more precise 
and have a much higher temporal resolution, and can therefore 
be used both as reference and for simulating poorer quality 
measurements of the same phenomena. Subsequent 
comparisons then provide information on the efficiency and 
robustness of the method. 

A. Application of the method on ADV data for reference 
considerations, and subsequent analysis 

The ADV measurements were recorded during 4 days of 
February 2011, at a sampling frequency of 32 Hz, in Puget 
Sound, WA, USA. The hardware used was a 6MHz Nortek 
ADV. Data collection is described in [5], with data 
preparation and quality control being documented in [13]. 

As these data do not come from DADP but from single-
point sensor, they are not subject to beam separation 
consideration discussed in II.B. Also, the measurement was 
performed in a channel with relatively quiet wave climate, and 
more than 15 m under the mean free surface, and traces of 
wave orbital velocity are therefore expected to be negligible. 
This fidelity of the dataset respect to the method’s hypotheses 
makes it ideal for a first level of testing.  

The quantity analyzed here is the measured instantaneous 
magnitude of the velocity. The signal is treated as 1256 non-
overlapping segments of 5 minute duration (i.e., 9600 points 
per sample at 32 Hz). After removal of the mean and linear 
components, the PSD estimate of each segment is calculated 
through Matlab’s Pwelch function with default parameters (8 
windows, modified by a Hamming filter, each overlapping by 
50%). The regression algorithm is then applied to different 
portions of the obtained spectra. 

First, an analysis is performed without weighting using the 
last two decades of the spectra, that is to say from 0.16 to 16 
Hz. This bandwidth extends to the maximum available high 
frequency for approaching noise saturation, and starts just 
beyond the integral scale on the low frequency end. The 
obtained curve fitting and the corresponding values of K and 
N are therefore reliable and used as reference. Two extreme 
examples are presented in Fig. 3. 

 

 

 
Fig. 3: Example reference fittings for very low (0.17 m.s-1, top) and very high 
(1.83 m.s-1, bottom) mean speeds. Estimated noise standard deviations are 2.6 
and 4.6 cm.s-1, respectively. 

At this stage, one can deduct important characteristics of 
this measurement. First, the estimated noise standard 
deviation varies with respect to the mean speed, as illustrated 
in Fig. 4. It clearly appears that this noise bias is increasing 
with the measured speed. One can also see that, apart from 
some cases at very low speeds, the computed bias is above the 
0.02 m.s-1 reference value reported in [5]. 

 



 
Fig. 4: Noise standard deviations for ADV measurement: references 
computed with the method applied on the last two decades of the spectra, and 
plotted against the corresponding mean speed. Linear trend is calculated for 
non-slack conditions.  

The second key figure deducted from this reference fit is 
the cutting frequency defining the frontier between a low 
frequency domain where the PSD of the physical speed 
prevails on the noise, and a high frequency domain where the 
noise dominates. We denote it fcut in this paper:  

 
5/3−







=

K
Nfcut . (11) 

 
It is found varying from 0.2 to 5 Hz, increasing with the 

mean speed., as can be seen in Fig. 5. This is consistent with 
an increase in TKE with speed (i.e., increasing signal to noise 
ratio). 

 

 
Fig. 5: Cutting frequencies (fcut) for ADV measurements: references plotted 
against the corresponding mean speeds. 

With those characteristics of the high-resolution 
measurement, the next step is to investigate the robustness of 
the method by artificially lowering the quality of the data. 
This is done by reducing the bandwidth used in the analysis: 
decreasing its upper bound is equivalent to analyzing the same 
measurement recorded at a lower sampling frequency, 
provided that this change in sampling frequency only results 
from a change in ensemble averaging without decimation. In 
other words, the noise level of the individual acoustic pings is 
not changed, only the overall quantity of available information 
is affected by averaging (i.e. loss of high-frequency contents). 

Namely, one-decade parts of the spectra are used for the 
following test analyses. For each segment, 2 test bandwidths 
are defined based on the reference cutting frequency. The first 
one is centered on it, that is to say ranges from cutf×1.0  to 

cutf×10 , for capturing the transition between target and 
noise-dominated parts of the spectra. The second one extends 
only on the low-frequency side of fcut, and therefore contains 
relatively low noise. 

 
The method is applied on each of the two spectrum extracts, 

both with and without the weighting scheme described in 
§II.C. Fig. 6 presents the noise estimates obtained in those 4 
cases, compared against the reference noise estimates, for the 
1256 segments. 

 
Graph (a) of Fig. 6 shows that with input data reduced to 

the “transition” bandwidth, the algorithm without weightings 
gives quite acceptable noise estimates. 

For lower frequency bandwidths containing just one side of 
the transition, the results, illustrated in graph (b), are scattered 
more widely aside the references. In addition, the model 
presents robustness limits: for some segments, the regression 
gives negative estimates for the noise variance. This 
corresponds graphically to a vertical spectra asymptote instead 
of an horizontal one. 

As can be seen on graph (d), the number of those 
inconsistencies falls when using the weighting coefficients in 
the regression: it goes from 125 to 50, corresponding to 10% 
and 4% of the segments, respectively. The distributions of 
those errors respect to the mean speed are detailed in Fig. 7. 
For both approaches, the proportion of errors is greater at low 
speeds, whether with reference to the total number of errors in 
the results or respect to the total number of cases for a given 
mean speed range. This trend is clearer when using the 
weightings, that also somehow reduce the dispersion of the 
noise estimates for those low-frequency bandwidths. 

Nevertheless, as can be seen in graphs (c) and (d) of Fig. 6, 
the weightings lead to an underestimation of the noise 
intensity, at least on average, for both of the two bandwidth 
types used here. 

 

 



 
Fig. 6: Comparisons of noise standard deviations: test analyses against reference. Dashed lines mark 1:1 agreement.Solid lines are the linear trends. Left and 
right plots are for regression without and with weightings, respectively. Top plots correspond to analyses on bandwidth centred on fcut, while bottom plots 
correspond to pre-fcut bandwidth. Test analyses that gave negative noise variance estimates are indicated by red points on the 1:1 agreement line. 

 
Fig. 7: Distributions of analyses respect to the mean speed for non-weighted (a) and weighted (b) regressions. Top histograms describe the overall distribution 
of the 1256 segments, middle histograms shows distributions of inconsistent pre-fcut analyses that estimate a negative noise variance, bottom histograms draw 
which proportion of each top-histogram bar consists of such failed analyses. 



B. Application of the method on DADP data, and subsequent 
analysis 

 
After application on the previous dataset, considered ideal 

for testing the method within its hypothesis,  the method is 
applied on DADP data. One of the particular points here is the 
beam spread consideration. 

 
This second dataset has been measured at the same place 

and time with the ADV data analysed in §III.A, and is also 
described in [5]. It is performed with a 600kHz RDI 
Workhorse ADCP and the data are recorded in beam 
coordinate, i.e. before post-processing [8]. The sampling 
frequency is 2Hz, bin size is 0.5m with the ADV measuring in 
the horizontal layer of bin 4. 

The data is analysed in segments of 10 minute duration, 
corresponding to 1200 point length. Points discarded by 
quality control (strength of backscattered signal under 
threshold) represent between 3 and 3.5% of the signal for bins 
1 to 20. They are not replaced by any correction method: only 
segments of consecutive valid data are analysed, representing 
40% of the total measurement time series. 

The corresponding spectra being almost saturated by noise, 
analyses are performed on the last decade without the 
weighting scheme. Both beam speeds and horizontal velocity 
magnitude are investigated. 

 

 
Fig. 8: Example analysis on Thomson’s [5] ADCP data. Due to quite high 
noise level, the elevation of the f-5/3 slope corresponding to the flow 
characteristics can hardly be assessed directly, but the noise estimation is 
assumed to be good. Mean speed is 0.75 m.s-1, noise estimated standard 
deviation is 0.15 m.s-1, turbulence intensity is 22% without correction and 
estimated to 7% after noise correction. 

As horizontal speed analyses are subject to be altered by 
the beam separation aliasing effects discussed in §II.B, an 
indicative equivalent horizontal speed component noise 
standard deviation is calculated from the beam speed noise 
standard deviations: assuming the pitch and roll influence are 

negligible, each horizontal speed component is a linear 
function of two beam speeds in the form: 

 )(
)sin(2

1
21 bb=x −

θ
, (12) 

with θ the beam slant angle [8]. The corresponding 
variance can be written: 

 [ ]),(2)(
)sin(2

1
21

22
2

2
21

bbCov= bbx −+







σσ

θ
σ . (13) 

Under the previous assumption that a part of it is due to flow 
dynamics and the other one is due to Doppler noise, and that: 

• at given flow conditions, the noise variances of the 
beam speeds are equal to a value beamnoiseσ ; 

• noise in each beam speed is independant from any 
other quantity, i.e. coviariances between noises of 
different beams, and covariances between noise and 
instant speed, are null; 

it comes: 

 
beamnoisexnoise = σ

θ
σ

)sin(2
1 , (14) 

independently of what correlations between flow speeds in 
measured beam velocities could be. In other words, the noise 
in the inclined beams is projected onto the horizontal plane. 

 
The results of the analyses on bin 20, 10, and 4 are 

illustrated in Fig. 9, with top-to-bottom order referring to the 
position of the measurements in the water column. 

 
One of the first things that one can notice is that for a given 

mean speed and elevation, the noise contamination of the four 
beam speeds has a very similar intensity. 

Also, a discrepancy between horizontal speed magnitude 
noise and horizontal equivalents based on beam analysis is 
clear at low speeds, under 0.6 m.s-1. This is because those 
equivalents refer to the two components of the speed. They 
have an impact on both magnitude and directionality, the later 
being not represented here and with increasing importance 
with decreasing speed. 

Appart from that, the horizontal equivalents appear to 
match the horizontal estimates quite well on the rest of the 
velocity range. This indicates that beam spread does not 
perturbate the analyses on horizontal speed in this dataset, and 
that beam speed analysis could be used to avoid beam spread 
effects while assessing the noise contamination of horizontal 
velocity measurement. 

 
The next point of interest is the values found for the 

standard deviation due to Doppler noise. As reported in [5], 
the PlanADCP software indicates a reference of 0.156 m s-1. It 
appears here that the contaminations are slightly higher. They 
also tend to increases with the mean speed, this being more 
sentive in the lower part of the water column. The results 
shown in Fig. 9c are consistent with the value of 0.174 m.s-1 
found experimentally in [5] by comparison of bin 4 data with 
ADV data for speeds above 0.8 m.s-1. 



 
Fig. 9: Noise standard deviations calculated for bins 20 (a), 10 (b), and 4 (c) 
of Thomson ADCP data, as a function of mean speed. Positions in the water 
column are 12.65, 7.65, and 4.65 meters over bottom, respectively. Black dots 
correspond to the noise on horizontal speed magnitude calculated from the 
PSD of horizontal velocity, coloured dots to noise beam speed signals 
calculated from the PSD of beam velocities, while coloured crosses are beam 
speed noise standard deviations scaled to horizontal speed component 
equivalent. 

IV. CONCLUSIONS AND FUTURE WORK 
A mathematical method for assessing Doppler noise 

contamination in tidal flow speed measurement performed 
with hardware based on acoustic Doppler principle has been 
described, with its hypothesis and their limitations. Its 
application on two reference datasets has been presented. 

 
The analyses on ADV data show that, with input signal 

respecting well the hypothesis, the method is expected to be 
stable and accurate for sampling frequencies half a decade 
greater than a cutting frequency where the measurement noise 
and the fluctuations of the flow speed have the same PSD. 
With a sampling frequency equal to this cutting frequency, the 
stability of the model is affected but can be somewhat 
improved by applying a weighting scheme in the 
mathematical model. 

Further work could determine appropriate time-series 
treatment to be applied on those estimates, if necessary 
calculated in parallel with different weighting schemes, that 
would aim at correcting under- or overestimations, scattering, 
and missing values. Such treatment should make use of 
segment overlapping for getting greater density of estimates 
over time and eventually real-time treatment capabilities. 

 
Analyses on ADCP data provided information on other 

aspects and perspectives of the method. They show good 
agreement with a recent study enquiring the same topic by 
other means, and provided confidence in overcoming beam 
spread effect if necessary. 

Nevertheless, study on other datasets with apparent lower 
noise contamination (not shown here) demonstrated that 
waves can have a strong impact on the robustness of the 
method, as it has been reported to be the case for the variance 
method [4]. This is believed to be possible to address by 
appropriate weighting in the regression, filtering out the 
corresponding frequencies on a bandwidth as small as possible. 

 
This work seeking a better knowledge of limitations 

inherent to flow measurement sensors for the purpose of the 
characterisation of tidal flow dynamics is part of the research 
activities of the MaRINET project. In this framework, the 
method is planned to be applied on different hardwares, and 
and different configurations of same hardware, by the end of 
2013 [14]. 

It is also part of an international initiative, so far informal, 
aiming at a better understanding of the interaction between 
tidal flow turbulence and tidal turbines. International 
collaboration is essential to advancing the state of the art in 
tidal turbulence measurements. 
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