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Abstract—This paper presents a statistical extreme value anal-
ysis of maximum velocity perturbations from the mean flow speed
in a tidal stream. This study was performed using tidal velocity
data measured using both an Acoustic Doppler Velocimeter
(ADV) and an Acoustic Doppler Current Profiler (ADCP) at the
same location which allows for direct comparison of predictions.
The extreme value analysis implements a Peak-Over-Threshold
method to explore the effect of perturbation length and time
scale on the magnitude of a 50-year perturbation.

Index Terms—Tidal Stream, Turbulence, Extreme Value Anal-
ysis, Acoustic Doppler Velocimeter

NOMENCLATURE

h = Depth of water column
kw = Wave number
k = Number of exceedances
l = Pareto distribution log-likelihood
m = Number of observation in N years
n = Number of observations per year
p = Declustering threshold
r = Declustering run length
t = Time
u = Velocity perturbation, U − 〈U〉
ut = GPD threshold
x = Measured values
y = Threshold excesses, x− ut
z = Distance from the seabed
H = Generalized Pareto distribution function
H̃ = Empirical distribution function
Hs = Significant wave height
I = Normalized turbulence intensity
L = Averaging length scale
M = Number of observations
N = Return period
Np = Number of pings per ensemble
T = Temporal averaging period
Tp = Peak wave period
U = Principal axis component of velocity
ζu = Exceedance probability
λ = Wavelength
µ = Location factor
ξ = Shape factor
σ = Scale factor
〈〉 = Mean value

I. INTRODUCTION

Installations of tidal current energy converters are inherently
exposed to highly energetic flow conditions. While the astro-
nomically driven tidal cycles are well understood and can be
modeled to predict mean tidal flows, the instantaneous current
velocity in the turbulent flow field can be shown to signif-
icantly deviate from this [1]. This observation has important
implications for numerous design considerations, including the
dynamic loading conditions on the turbine blades, support
structures and seabed connections. It has also been proposed
that hydrodynamic lifting surfaces could be used to stabilize
devices on the seabed through the generation of down force
from the tidal flow itself [2]. In all of these situations, it is
valuable to have an understanding of the magnitude of the
maximum velocity perturbations that can be expected in the
tidal flow.

II. DATA ACQUISITION

This analysis was performed using tidal stream flow mea-
surements taken in the Puget Sound, Washington, using ADV
and ADCP devices simultaneously. The purpose of the de-
ployment was to compare the performance of ADCP measure-
ments, which are known to have a higher error at sampling
rates of the order of 1Hz, against the ADV measurements
which are known to be highly accurate at high sampling
frequencies. These devices were mounted on a tripod with
the ADV sample volume located z = 4.8m above the seabed,
and the ADCP measuring the adjacent water column in 0.5m
bins. In order to compare the measured velocity values, the
ADCP bin used in this analysis was centered at 4.71m above
the seabed. The operational settings of the two devices is
summarized in Table I.

TABLE I
ACQUISITION SETTINGS OF ADV AND ADCP

Rate Burst Sampling Standard Error
Sample Length Interval Velocity

(Hz) (s) (min) (m/s)

ADV 32 64 10 0.041

ADCP 2 64 30 0.1952

1 Taken from Nortek Vector deployment software
2 Taken from RDI’s PlanADCP software



A sample of the simultaneous velocity measurements from
the two devices is shown in Fig. 1. This plot clearly shows
the effect of Doppler noise on the ADCP readings. While
the variance can be partially corrected for standard error
using Equation 5 from [3], this analysis deals with individual
realizations of velocity measurements so this correction cannot
be applied. Note that the differences between the ADV and
ADCP signals in this figure can be attributed to clock drift on
the order of 5s per day.
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Fig. 1. Comparison of ADV and ADVP velocity time series

The tidal stream velocity at this site reaches 2m/s in peak
spring conditions and a mean depth of h = 22m. More detailed
explanations of the instrumentation tripod deployment can be
found in [3] and [4].

III. DATA PREPARATION

A. Orientation of Data

While some tidal stream turbines may be developed with
the capacity to vary their orientation, the majority of first
generation designs operate in a bidirectional manner aligned
with the principal flow direction. As such, the analysis de-
scribed in this paper was primarily concerned with the flow
perturbations along this axis, referred to as the ‘stream-wise’
direction. To begin, the velocity data from both the ADCP
and the ADV were rotated from Earth coordinates to the
coordinate system aligned with the principal axis (U ,V ,W ).
The principal axis direction is calculated using a least square
regression algorithm, to maximize the flow energy along the
axis direction.

As we are interested in the deviation from the mean flow
velocity, the flow perturbation in the stream-wise direction is
calculated as u = U − 〈U〉. The mean velocity component,
〈U〉, is calculated over the full 64s sample. This allows
the use of the maximum amount of points in the averaging
calculation for statistical robustness without causing any sig-
nificant changes in the underlying statistical requirement of
stationarity.

Because the perturbation velocities are symmetrically dis-
tributed about the mean velocity, only the magnitudes of
the perturbations are considered in this paper. The resulting
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Fig. 2. Distribution of velocity perturbations for different mean flow speeds

extreme perturbation values can then be assumed to occur both
above or below the mean velocity.

B. Mean Velocity Effects

At flow velocities greater than 1m/s, the normalized tur-
bulence intensity, I =

√
〈u2〉/ 〈U〉 can be shown to reach a

steady state value of approximately 10% in both [3] in Puget
Sound (USA) using the present data set, as well as velocity
measurements taken in Orkney (UK) [5]. This demonstrates
the physical principal whereby larger fluctuations occur at the
higher flow speeds. Using all the data in the extreme value
analysis in a single data set, the overall maximum fluctuation
can be calculated, and it can be implied that this would
occur during the maximum flow speed of the site. This is
the approach used in the analysis reported in this paper.

It is also of interest to observe how the maximum pertur-
bation changes as a function of the mean flow speed. The
distributions of the velocity perturbations divided into 0.5m/s
bins of mean velocities are shown in Fig. 2. This plot clearly
shows the effect of the significant Doppler noise introduced
into the ADCP measurements, discussed further in Section
VI-A, by the much wider distribution of fluctuations at all
mean flow speeds. The increase in the distribution width as
a function of flow speed is also evident. The dependence on
flow speed is an interesting subject for future analysis, but is
not pursued in this paper owing to the increased error margins
attributed to dividing an already limited data set into smaller
subsets.

C. Time-scale Averaging

Performing an analysis on the raw data collected by the
ADV would allow the peak fluctuation with a time-scale of
1/32s to be deduced (0.5s for the ADCP readings). However a
fluctuation of such a time-scale is unlikely to have a significant
influence on structural loads or hydrodynamic performance.
This follows the classical theory of turbulent energy cascade,
where Kolmogorov showed that the smaller scales contain the
least energy.

To increase the effective duration of the flow perturbation,a
central moving average was calculated over the averaging



windows of T = {0.5s, 2.0s, 5.0s, 10.0s}. The velocity per-
turbation at time, t, averaged over a temporal window of T
seconds can be expressed mathematically by Equation 1.

〈u (t, T )〉 =
1
T

∫ t+T/2

t−T/2
u (t) dt (1)

A sample of the instantaneous velocity measurements com-
pared with the 2s averaged values for the ADV is shown in
Fig. 3. Because individual points have significant influence
on the extreme value analysis, the limits of the data set with
insufficient points to average over the full averaging window
were discarded (the first and last 32 points in the example
shown in Fig. 3).
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Fig. 3. Comparison of instantaneous and averaged ADV velocities, using
temporal averaging window of T = 2s

D. Length-scale Averaging

In a similar argument to time-scale averaging, the impact
of effective length-scale of the fluctuations is also of interest.
Assuming Taylor’s hypothesis of frozen turbulence, the tem-
poral window for a moving average with a specified length-
scale, L, must increase as the convection velocity decreases
in accordance to the relationship T = L/ 〈U (t〉). The moving
average was calculated over the spacial averaging windows of
L = {0.5m, 2.0m, 5.0m, 10.0m}.

E. Wave Induced Velocity Fluctuations

Waves at the site are fetch-limited from all directions and
achieve a maximum state of Hs = 1m, Tp = 4s during a
large winter storm. This gives a wavelength of λ = 25m
using linear theory, which is be considered as a deep water
wave under the condition of λ/2 < h. As such, the orbital
velocities decay as a function of cosh(kwz)/cosh(kwh) so
that the 0.8m/s orbital velocity at the surface will be 0.01m/s
at the depth of the ADV. This is an order of magnitude less
than the turbulent fluctuations measured by the ADV and so
no adjustment for the wave induced velocity fluctuations was
made in this analysis.

F. Declustering

One of the key assumptions made when using the chosen
statistical method for the prediction of extreme values is the
independence of data in the set [6]. Generating a data set
using the moving average over a specified time or length
scale inherently makes each data point dependent on the
surrounding values, therefore invalidating this assumption. In
order to overcome this, the data was filtered to obtain a set of
independent exceedances of a threshold, in a process known
as declustering.

The specific declustering technique used is called ‘runs
declustering’ and involves the following procedure. Firstly a
threshold, p, is defined and when a data point exceeds this
value, a cluster is started. This cluster is terminated when a
specified declustering run length of r points fall below the
threshold. The maximum absolute value of each cluster is
recorded, and all other values are set to zero [7].

IV. EXTREME VALUE ANALYSIS

A. An Introduction to the Theory

The Generalized Extreme Value (GEV) Theory describes
how the maximum values of independent and identically
distributed random variables can be fitted to a singular dis-
tribution. This allows their behavior to be extrapolated into
the future in the prediction of extreme events. This shape of
this distribution is governed by the inputs of a location factor
(µ), scale factor (σ) and shape factor (ξ).

The challenge remains to estimate these parameters with
very limited duration of data, relative to the 50 year time
scale prediction. A key requirement of the GEV theory is
that only one value from each observation period (epoch) is
used in the model. This is often an inefficient use of data set,
which becomes particularly significant when historic data is
limited. One modification of the GEV approach is to use a
Peak-Over-Threshold (POT) method. This approach is based
on the Generalized Pareto Distribution (GPD) and makes use
of each data point above a specified threshold [8]. In this way,
more information can be extracted from the limited data set,
than when only the epoch maximum is used.

Let x represent a sequence of independent and identically
distributed measurements (which in this case are the declus-
tered velocity perturbations), and ut represent the threshold
selected. The GPD function, H , describes the distribution
function of a variable X as a function of the threshold excesses
(y = x − ut), conditional on X > ut, and is described
mathematically by Equation 2.

H (y) = Pr {X > x | X > ut}

=

 1−
(
1 + ξy

σ

)−1/ξ

when ξ 6= 0

1− exp
(−y
σ

)
when ξ = 0

(2)

The values of the shape and scale parameters are calcu-
lated by the optimization of the log-likelihood function of



Equation 3 to a maximum, provided (1 + ξyi/σ) > 0 for
i = 1, . . . , k where k is the number of threshold exceedances.

l (σ, ξ) =



−k · log (σ)− (1 + 1/ξ)
k∑
i=1

log (1 + ξyi/σ)

when ξ 6= 0

−k · log (σ)− σ−1

k∑
i=1

yi

when ξ = 0
(3)

B. Threshold Selection

One of the main challenges with the GPD method relative
to GEV method is the selection of the threshold above which
data peaks are considered. The shape and scale factors are
highly sensitive to the threshold selection. When the threshold
is set very low, the GPD is biased by the values further from
the extremes, however setting a very high threshold results
in limiting the number of exceedances, leading to excessive
variance in the model. One approach recommended in [6] is
to plot the optimized shape and scale parameters for a range of
possible threshold values, as in Figure 4. Using this technique,
the variance of the parameters, and therefore the distribution,
can be seen to increase as the threshold increased. The highest
threshold which returns stable values of the shape and scale
parameters was selected, in a bias-variance trade-off. For the
example shown in Figure 4, a threshold of ut = 0.2m/s was
selected.
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Fig. 4. Stability analysis of GPD parameters with range of thresholds;
T = 2.0s, p = 0.001m/s, r = 10

A sample scatter plot of the perturbations over the acquisi-
tion time is presented in Figure 5. The selected threshold is
shown in blue. For a data set of length M , the exceedance
probability is defined by the parameter ζu = k/M .

C. Statistical Analysis Program

The majority of the statistical analyses outlined in this
paper were performed using the ‘extRemes’ toolkit within

Fig. 5. Example scatter plot indicating threshold selection; ut = 0.20m/s,
T = 2.0s

the statistical software program R [9]. This toolkit is an
implementation of many techniques described in [6], and
provides a graphical user interface to the ‘ismev’ package.
More information about the capabilities of the toolbox can be
found in [10].

V. ANALYSIS RESULTS

A. Analysis Parameters

The extreme value analysis was carried out for the time
and length scale variations specified. Runs declustering was
performed on the perturbation magnitudes using a declustering
threshold of p = 0.001m/s and run length of r = 10. In this
way, a new cluster was initiated whenever the perturbation
changed direction for longer than 10 data points. For each
analysis, the values of σ and ξ which maximize the log-
likelihood expression in Equation 3 are calculated. The results
of the analysis is an N -year return level, defined as the
perturbation magnitude that is expected to be exceed once
every N years. If the number of observations per year is
represented by n, the number of observations in the N years
is m = n × N such that an N -year and an m-observation
return level are interchangeable terms.

B. Diagnostics Plots

The ‘goodness of fit’ of the resulting GPD model to the
real data can be visualized in a number of useful diagnostic
plots; the probability plot, quantile plot, density plot, and the
return level plot [6]. The inferences made from each plot are
briefly described in the following sections and example plots
are shown in Figure 6. The coordinates of the information
presented in each plot are summarized in Table II.

The probability and quantile plots represent a compari-
son between the empirical distribution function of H̃ (x) =
i/ (k + 1) for x1 ≤ xi ≤ . . . ≤ xk and the GPD model.
When these two functions are well matched, both of these
plots indicate the correlation with a linear scatter plot with



TABLE II
COORDINATES OF DIAGNOSTIC PLOTS

Probability Plot
{(
H (xi) ,

i
n+1

)
: i = 1, . . . , k

}
Quantile Plot

{(
H−1

(
i

n+1

)
, xi
)

: i = 1, . . . , k
}

Density Plot (H,x)

Return Level
(
N,
(
ut + σ

ξ

(
(mζ)ξ − 1

)))

a gradient of unity. The two plots both compare these two
functions, but in differing ways, such that one may appear
to demonstrate an acceptable fit while the other does not.
Firstly, the probability plot provides a direct comparison of
the probability of occurrence of a perturbation of a specific
magnitude. However, the quantile plot compares the perturba-
tion magnitudes predicted by the two models over the range
of probabilities of 0 to 1. In other words, the Probability
plot compares the probabilities predicted by the models for
the range of perturbation magnitudes, and the Quantile plot
compares the perturbation magnitudes predicted by the models
for the range of probabilities. In this way, these two plots
present the same information on a different scale [6].

The density plot depicts a histogram of occurrences above
discrete bands of perturbation magnitudes, normalized by the
total number of threshold exceedances. In this way the GPD
can be overlaid to observe how closely the model fits the
distribution of the threshold excesses.

The return level plot shows the N -year return level as
a function of return period, N , with associated 95% delta-
method confidence intervals. An example is shown in Figure 7.
Overlaid on this plot are the magnitudes of the velocity data
points plotted against their expected return period. Because the
data set being used is 17 days in duration, the greatest return
period that can be plotted is 17/365 = 0.047 years.
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Fig. 7. Sample Return Level plot for ADV perturbations; ut=0.20, T =2.0s

C. Results Summary

The resulting estimations of 50-year horizontal stream-wise
velocity perturbations and associated confidence intervals are
shown in Figure 8 and Figure 9. The confidence intervals
shown in these plots are based on the variation of the profile
log-likelihood with respect to the return level. The delta-
method confidence interval shown in the return level plot is
a symmetrical and un-conservative method of calculating the
variance. The profile log-likelihood confidence interval, on the
other hand, incorporates the skew in variance which has the
effect of excluding the possibility of including a perturbation
magnitude less than the maximum observed fluctuation. In this
way the profile log-likelihood confidence interval offers a more
realistic approximation of the expected errors [6].
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Fig. 8. Effects of perturbation time-scale on the 50-year velocity perturbation
magnitude
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Fig. 9. Effects of perturbation length-scale on the 50-year velocity pertur-
bation magnitude

VI. DISCUSSION AND LIMITATIONS

A. Discrepancies between ADV and ADCP results

The results of the extreme value analysis show obvious
discrepancies between the two data sets. This is primarily
due to the more significant Doppler noise in the ADCP
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Fig. 6. Diagnostic Plots for GPD calculated for ADV velocity perturbations; ut=0.20, T =2.0s, p=0.001m/s, r=10

measurement (Table I). The maximum sampling frequency of
the ADCP at 2Hz also contributes to the greater variance as
fewer points are averaged for both the time and length scale
analyses. With significantly less Doppler noise and greater
sampling rates, the results of the analysis using the ADV data
are taken as the benchmark of accuracy, and any discrepancy
is attributed to these limitations of ADCP operation. Again,
when the standard deviation of the velocity is of interest,
in the calculation of turbulence intensity, the distribution can
be partially corrected for the standard error of the device as
explained in [3]. However, this could not be implemented in
this analysis where the individual instances of the velocity
measurements were of interest.

Figure 8 and Figure 9 show that the ADCP analysis signifi-
cantly over-estimates the extreme value predictions beyond the
confidence interval of the ADV analysis for averaging scales
less than 5s and 5m (indicated with a red dashed line). From
this we can infer that in this range, the ADCP results are
invalid, with no statistically similarity to the ADV benchmark.

Doppler noise theoretically decreases with 1/
√
Np, with

Np being the number of pings in the ensemble, and this is
responsible for the convergence of results over longer time and
length scales. However the difference between the standard
error of the ADCP and ADV is significant over all ensemble
durations used in this analysis, as shown in Figure 10. While
the averaging period of 5s results in a noise reduction to 32%
of the raw ADCP measurement error (when N = 10), this is
still almost twice that of the ADV without any averaging. The
influence of Doppler noise on the distribution of simulated
turbulence intensities is examined in greater detail in [11]. As
the averaging window tends to 64s, the extreme fluctuations
approach zero as expected.

Interestingly, the differing beam configurations of the two
devices act to decrease the velocity fluctuations of the ADCP
relative to the ADV. The beams of an ADV are convergent
to enable the velocity coordinates of a very small volume
to be deduced. Conversely, the ADCP beams are directed in
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Fig. 10. The influence of averaging period on Doppler uncertainty

a diverging configuration. The underlying assumption of the
ADCP is that the flow is homogeneous over the sample area,
such that a velocity component measured by each beam in each
different location can be transformed to calculate the velocity
components of one location, notionally centralized above the
ADCP device [12]. As such, the velocity component measured
in each beam bin are effectively averaged through the vector
transformation process. This has the effect of decreasing
the measured velocity perturbations. In other words, without
accounting for Doppler uncertainty, one would expect the
ADV data to show stronger perturbations.

B. Shape Factor

The key similarity between all observations was the shape
factor consistently being optimized to a value below zero.
In accordance with Equation 2, the return level increases
exponentially with the return period when ξ > 0, linearly
when ξ = 0, and reaches an asymptotic limit when ξ < 0
of ut − σ/ξ. In all extreme value analyses performed, ξ < 0,
resulting in the asymptotic behavior shown in Figure 7.



C. Duration of Data Set

The key limitation to this analysis is the length of data
acquisition from both of the devices. It is very difficult to
predict a 50-year event from one month of data, and this
has resulted in significant confidence intervals in the expected
values. Ideally, several years of data is required to perform the
analysis to an acceptable level of confidence. With the recent
increase of interest in instrumentation of tidally energetic
sites for the application of tidal stream power, this may be
a possibility in the future. However the present analysis offers
a useful starting point for ongoing analysis.

VII. CONCLUSION

This paper presents an extreme value analysis using velocity
perturbations measured using both ADV and ADCP devices
mounted on a large instrumentation tripod in an energetic
tidal stream. The results indicate large discrepancies between
the measurements of the two devices, owing primarily to
the increased Doppler noise of the ADCP readings. This
observation is important to recognize in a time when ADCPs
are increasingly being used to measure flows in tidal energetic
flows in the context of tidal stream power. While proven
to effectively measure the mean flow velocity over long
averaging periods, this data analysis highlights the risk of over-
conservative design decisions if these instruments are used to
define extreme events.

A 50-year velocity perturbation from a 64s mean velocity
was predicted to range between 0.30m/s and 0.78m/s over the
range of temporal averaging periods examined in the analysis,
to 95% confidence. The ADCP perturbations consistently
exceeded that of the ADV predictions, though convergence of
results is apparent at higher averaging durations. Significant
confidence intervals are included in the presentation of the
results which will be reduced with continued measurement of
high frequency point measurements.
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