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Abstract Surface elevation records from two locations in the northeast Pacific are used to examine
rogue waves and the relationship to wave groups. Three hundred individual rogue waves with heights
greater than 2.2 times the significant wave height are found in analyzing >2 × 106 wave groups. In contrast
to recent nonlinear modeling results, we do not find that rogue waves occur at the front of wave groups.
There is a tendency for steep waves to occur at the front of a group, but these are not the largest waves
of the group and do not meet the rogue wave criterion. Rogue waves are most commonly located in the
center of the group, but their height ratio to the neighboring crest is greater than in the average wave
group. Assessing group dynamics in terms of spectral width suggests that random superposition of
nonlinear waves is sufficient to explain the observations of individual rogue waves.

1. Background

Rogue waves are individual waves that are large compared to the surrounding average sea state. They are
commonly defined as waves with a trough-to-crest height Hx ≥ 2.2Hs (note, some studies use Hx ≥ 2.0Hs), or
a crest height 𝜂x ≥ 1.25Hs, where Hs is the significant wave height [e.g., Dysthe et al., 2008]. Assuming linear
theory and a narrowbanded spectrum, the distribution of wave heights is given by the Rayleigh distribu-
tion [Longuet-Higgins, 1952]. Several related probability distributions for wave heights or crest heights exist
for more realistic wave conditions. (For a summary see, e.g., Gemmrich and Garrett [2011].) Following these
rogue wave definitions, which are purely based on the ratio of the height of an individual wave relative to the
background sea state, the likelihood of rogue waves can be calculated from the theoretical distributions. The
Rayleigh distribution is generally seen as lower limit, i.e., giving the lowest probabilities for extreme waves,
and a rogue wave, Hx ≥2.2Hs, occurs on average every≈1.6×104 waves. Of course, of main interest are rogue
waves in high sea states. Mariners sometimes describe rogue waves as a “wall of water,” implying not only a
long crest but also a rather stark increase in height compared to the previous crest. Others reported rogue
waves to occur in small groups, referred to “three sisters,” with a gradual buildup in height.

The generation of rogue waves in deep water and the absence of currents can be broadly attributed to two
possible mechanisms [Garrett and Gemmrich, 2009]: (i) the random superposition of linear waves, modified
by nonresonant higher-order bound waves [e.g., Gemmrich and Garrett, 2011] or (ii) the result of resonant
third-order modulational instabilities [e.g., Janssen, 2003]. Neither mechanism can be ruled out by the limited
observational evidence of the occurrence rate and the maximum height of rogue waves. The modulational
instability has been demonstrated in laboratory experiments [Onorato et al., 2004] and evaluated in numerical
simulations [see Toffoli et al., 2010]; its relevance for oceanic applications however has been questioned,
mainly due to the requirements of narrow spectral bandwidth and narrow directional spreading and the onset
of wave breaking prior to the full evolution of the rogue wave. Most studies of rogue waves concentrate on
occurrence rates and/or wave heights, and little is known about the shape and persistence of rogue waves
[Baschek and Imai, 2011; Christou and Ewans, 2014; Romolo and Arena, 2015].

A recent mathematical study predicts that “large waves tend to move to the front of a wave packet meaning
that the locally largest wave is relatively bigger than the wave preceding it” [Adcock et al., 2015]. The authors
started from a linear random wavefield and simulated the theoretical nonlinear evolution of the largest waves
according to the nonlinear Schroedinger equation [Trulsen and Dysthe, 1996]. They also found that the non-
linear evolution does not significantly alter the resulting maximum crest height, but it extends the temporal
persistence as well as the width of the extreme crest.
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The findings of Adcock et al. [2015] on the sudden increase in crest height are related to the concept of
“unexpected waves,” i.e., waves that are a factor 𝛼 times higher than any of the preceding n waves [Gemmrich
and Garrett, 2008, 2010]. Based on linear simulations, a wave that is at least twice as high (𝛼 = 2) as any of
the preceding n = 30 waves occurs on average every 3 × 104 waves, or about twice as often if simulations
include the second-order Stokes corrections. Unexpected waves are not necessarily large waves. In fact, only
<20% are rogue waves with Hx > 2.2 Hs. The likelihood of “unexpected rogue waves,” conditioned on 𝜂x>𝜉Hs,
is given in Fedele [2016]. Adcock et al. [2015] find 𝛼 ≤ 3 for the bulk of their simulations but do not specifically
consider the length of the quiescent period n, or the amplification factor 𝜉.

2. Wave Group and Rogue Wave Data Analysis

Observations of the width and persistence of rogue waves would require long-term observations of the sea
surface at a spatial coverage of O(1 km2) and a sampling rate of a few seconds, preferable in the open ocean.
Such data have been obtained with marine radar or stereographic video [Lund et al., 2014; Benetazzo et al.,
2015], but record lengths are usually too short for a statistical analysis of extreme events. However, the shape
of wave groups and the relative height change between successive crests can be studied from fixed location
time series, which are readily available. Here we use two records from the North Pacific: an open ocean data
set at Station P (50∘N, 145∘W), obtained with a Datawell waverider buoy from June 2010 to January 2014,
with 0.8 m < Hs < 11.7 m. The other data set, Hecate Strait, was recorded July 2014 to June 2015 with a
moored pressure recorder 16 m below the mean surface in 134 m water depth. The location (52∘49.24’’N,
129∘50.75’’W) is in a wide coastal strait subject to frequent storms, and in this record 0.2 m < Hs < 4.5 m.
The depth attenuation of pressure fluctuations implies a gradual attenuation of the high-frequency wave
components, and therefore, Hs and Hx values are slightly biased low. A reconstruction of the high-frequency
components could be done based on higher-order corrections. However, the result would only reflect the
applied theory, rather than providing more insight, and is therefore not attempted [Forristall, 2000].

There are ≈ 6.1×106 waves in the Station P record, and ≈ 2.5×106 in the Hecate Strait record. The height and
time of each crest and trough is extracted from the surface elevation time series 𝜂(t) using the MATLAB tool-
box WAFO [Brodtkorb et al., 2000]. The significant wave height Hs is a statistical descriptor of the characteristic
wave height and depends on the actual record length [Gemmrich et al., 2016] and the calculation method.
Here we base Hs on 40 min data segments and calculate it as the average of the one third highest waves, H1∕3,
as well as the commonly used quantity Hstd = 4𝜎(𝜂) based on the standard deviation 𝜎. In narrowbanded
wavefields Hs = Hstd. At both locations we find Hstd >H1∕3, indicative of broadbanded spectra. The number of
“rogue waves” at Station P are (209, 33) based on the wave height condition Hx > 2.2Hs and (363, 68) if based
on crest height 𝜂x > 1.25Hs, and Hs = H1∕3 and Hs = Hstd, respectively. The corresponding numbers of rogue
waves in the Hecate Strait record are (91, 29) and (44, 11) . For a linear, narrowbanded wavefield the distribu-
tion of wave heights and crest heights are given by Rayleigh distributions, and the exceedance probabilities
are P(H∕Hs > z) = exp(−2z2) and P(𝜂∕Hs > z) = exp(−8z2) [Longuet-Higgins, 1952], both yielding a straight
line on a plot ln(− ln(P)) versus ln(z) [see, e.g., Gemmrich and Garrett, 2011]. The wave height exceedance data
from both records are above the Rayleigh curve, i.e., are less frequent than the Rayleigh prediction, indicating
a broadbanded wavefield, whereas the crest height data are below the Rayleigh line, i.e., are more frequent,
indicating a deviation from a purely linear wavefield (Figure 1). Reasonable agreement can be achieved with
empirical crest height distributions allowing for nonlinear effects, [e.g., Kriebel and Dawson, 1993]. Interest-
ingly, the Station P data show a pronounced curvature of the exceedance probability plot at large values of
z which has been observed previously and is not consistent with standard models of wave and crest height
distributions [Dysthe et al., 2008; Gemmrich and Garrett, 2011]. This curvature suggests a dramatic increase in
the occurrence of rare large waves and might be associated with a pronounced role of higher-order bound
waves [Gemmrich and Garrett, 2011].

The wavefields at both locations are clearly not narrowbanded, and in the following analysis the surface ele-
vation records are normalized by the significant wave height, �̃�(t) = 𝜂(t)∕Hs(t), where Hs = H1∕3. Individual
wave groups are identified by local minima min of the wave envelope , with min < 0.25Hs. To calculate
the envelope , we use complex demodulation, centered at the mean dominant wave frequency 𝜔p and a
filter cutoff of 0.4𝜔p. For each group we identify each individual crest and its normalized height 𝜂c = 𝜂c∕Hs.
In particular, the locally largest crest including its position ix and height 𝜂x = 𝜂x∕Hs are recorded. The data set
at Station P consists of ≈ 1.4 × 106 wave groups, the Hecate Strait record of ≈ 4.5 × 105.
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Figure 1. Exceedance probabilities for (top row) wave heights and (bottom row) crest heights for (left column) Station P
and (right column) Hecate Strait. The filled symbols are representative points, whereas the open symbols represent
individual records. The solid lines show the Rayleigh distributions and the dashed lines the distribution suggested by
Kriebel and Dawson [1993] with R = 0.25. Values of the exceedance probability P are shown on the right-hand axis.

3. Asymmetry of Wave Groups

A key finding of the simulations by Adcock et al. [2015] is the asymmetry of the groups that contain the largest
waves. A strong asymmetry of the wave envelope has been reported from wave tank observations [Shemer
et al., 2001], and nonlinear simulations of the Euler equation [Slunyaev, 2015], but to our knowledge not in
open ocean data.

Figure 2. Normalized surface elevation record showing definitions of
wave group parameters. (Hecate Strait 14 July 2014, 16:57 UTC). Blue
line: wave group with group asymmetry 𝜁 = 0.44 (equation (1)), and
step sizes 𝜎1 = 0.2518, 𝜎2 = 0.4882 (equation (2)).

The degree of group asymmetry can be
assessed by the relative position of the
largest crest within a wave group:

𝜁 =
ix − 1

Nc − 1
, (1)

where Nc is the number of crests within
the group and ix is the index of the largest
crest (1 ≤ ix ≤ Nc) and 0 ≤ 𝜁 < 0.5 indi-
cates that the largest crest occurs toward
the front of the group. For example, the
wave group highlighted in Figure 2 con-
sists of Nc = 10 crests with the fourth crest
being the largest, 𝜁 = 0.444. In both data
sets the largest crests occur at any posi-
tion within the wave groups, but symmet-
ric groups, 0.34 < 𝜁 < 0.66, are slightly
more common than groups with the max-
imum near the front (𝜁 < 0.34) or near
the rear (𝜁 > 0.66) (Figures 3a and 3e).
Limiting the analysis to rogue waves,
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Figure 3. Wave group asymmetry, given as the relative position of the largest crest within a wave group 𝜁 (equation (1)).
(a–d) Station P . (e–g) Hecate Strait. Distributions of 𝜁 (Figures 3a and 3e) and 𝜁 as function of the group length Nc
(Figures 3b and 3f), the normalized crest height (Figures 3c and 3g), and as function of wave steepness (Figure 3d). Error
bars indicate the data spread of ±1 standard deviation. Black circles indicate all data, black triangles and black bars
indicate groups with 𝜂x < 1.25Hs , and red triangles and red bars indicate groups with 𝜂x ≥ 1.25Hs .

the predominance of symmetric wave groups becomes more prominent. In fact, rogue waves occurring in the
first third of a group is the least common case (Figures 3a and 3e).

The most common cases are nearly symmetric wave groups. To propagate the largest crest toward the front
of the group would require a certain time for the group to stay coherent, i.e., a minimum group length Nc. This
minimum period is expected to decrease with increasing wave nonlinearity. Thus, one could expect a depen-
dence of the relative crest position on the group length, the relative wave height, and the wave steepness.
On average the largest crest position is in the middle of the group, 𝜁 ≈ 0.5, independent of the group length
(Figures 3b and 3f) and the normalized height of the crest (Figures 3c and 3g). Furthermore, smaller crests
span the entire range of positions within the group, but large waves, including rogue waves, are concentrated
near the center (Figures 3c and 3g). This is consistent with the complex growth behavior of nonbreaking crests
within wave groups, where faster waves, moving toward the front of the group, are associated with decreasing
height [Banner et al., 2014].
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Figure 4. (a and c) Step size 𝜎1 (equation (2)) relative to prior crest. (b and d) Step size 𝜎2 (equation (2)) relative to
following crest. For groups with 𝜂x < 1.25Hs (black) and groups with rogue waves, 𝜂x ≥ 1.25Hs (red). Station P
(Figures 4a and 4b) and Hecate Strait (Figures 4c and 4d).

The nonlinearity of the largest wave depends on its steepness 𝜂xkx , rather than solely its height. Here we
take 𝜂x kav as a measure of the characteristic wave group steepness, where kav is the average wave number
of all waves within the group. This is a robust measure but, being based on the linear dispersion relation,
likely underestimates the true wave steepness. There is a clear trend of wave groups becoming asymmet-
ric and the largest waves occurring closer to the beginning of the group with increasing group steepness
(Figure 3d), qualitatively consistent with the modeling results of Adcock et al. [2015]. Note that the surface
elevation inferred from the pressure sensor is not suitable for a meaningful analysis of wave steepness and
spectral shape.

4. Unexpectedness of Large Waves

The notion of a large wave being “wall like” implies a long crest length and a wave being significantly larger
than the previous crest. Only the latter property may be addressed from point observations, and here it is
measured by the relative step size of the largest crest height 𝜂x in relation to the prior crest 𝜂1, or the following
crest 𝜂2 (Figure 2):

𝜎1 =
𝜂x − 𝜂1

𝜂x
, 𝜎2 =

𝜂x − 𝜂2

𝜂x
. (2)

Gemmrich and Garrett [2008] introduced the term “unexpected wave” for waves at least twice as high as any
of the preceding na = 30 waves. To describe a wave crest as a “wall of water” is a subjective definition, at best.
Here we suggest 0.5 ≪ 𝜎1 ≤ 1.0 as a criterion for a wave being wall like but do not impose any condition on
the minimum length n of the quiescent period.

In most cases the highest crest within a group follows a gradual buildup and wave heights gradually decline
afterward (Figure 4). However, rogue waves (𝜂x ≥ 1.25) tend to be noticeable larger than the neighboring
waves, and the most common relative step size is 𝜎1,2 ≈ 0.6 to 0.7 for the Station P data, and somewhat less
for the coastal region.
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Figure 5. Step size 𝜎1 of the largest crest within a wave group relative to prior crest (equation (2)), as function of the
normalized crest height, for (a) Station P and (b) Hecate Strait, and for Station P only as function of (c) wave steepness
and (d) spectral band width 𝜈. Error bars mark the data spread of ±1 standard deviation. Colored circles indicate the
position of the largest crest within the group (blue: front, yellow: center, and cyan: rear). Black triangles indicate groups
with 𝜂x < 1.25Hs and red triangles 𝜂x ≥ 1.25Hs .

Perhaps not surprisingly, the relative step size 𝜎1 increases with increasing relative height 𝜂x of the locally
largest crest (Figures 5a and 5b). Thus, wave groups do not scale with the maximum crest height, but smaller
crests occur amongst similar crest heights, resulting in a relatively flat wave envelope, whereas the larger crests
tend to be significantly larger than the neighboring crests and the wave envelope is more peaked. Given the
same relative crest height, the step size is about 9% higher for crests occurring near the front of the group,
𝜁 < 0.33, compared to groups with 𝜁 > 0.33. The largest average step size is 0.69 and is associated with the
rare cases of rogue waves near the beginning of a wave group (𝜂x ≥ 1.25, 𝜁 < 0.33).

The characteristic group steepness 𝜂xkav has the strongest impact on the step size𝜎1 (Figure 5c). Near the front
of the groups, we find an average step size 𝜎1 ≈ 0.5 for 𝜂xkav ≤ 0.05, increasing to 𝜎1 = 0.87 at the steepest
waves, 𝜂xkav > 0.35. If the largest crest occurs in the middle or toward the end of a group, the average step
size is about 8% less than for waves of the same steepness, but occurring near the front of the group. Rogue
waves follow a similar dependence of step size on wave group steepness, but in this data set, rogue waves are
by far not the steepest locally largest waves and 𝜂xkav < 0.28 (Figure 5c).

The strength of nonlinear focusing also depends on the spectral bandwidth, besides the wave steepness
[Janssen, 2003]. Wave groups in sea states with a narrow spectral band stay coherent for longer periods
than in a broadbanded spectrum. This allows for nonlinear instabilities, like the modulational instability or
Benjamin-Feir instability, to be more effective. A common, low-order measure of the spectral width is as
follows:

𝜈 =

[
m0m2

m2
1

− 1

]1∕2

, (3)
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where mn = ∫ 𝜔nS(𝜔)d𝜔 is the nth moment of the surface elevation spectrum S(𝜔). Larger values of 𝜈 imply
a more broadbanded spectrum. Typical values for wave conditions during a storm are 𝜈 ≈ 0.3 to 0.5 [Massel,
2013]. At Station P the bandwidth parameter, calculated from 30 min records, ranges from 𝜈 = 0.35 to 0.85,
and the relative step size 𝜎1 increases, on average, from 𝜎 = 0.43 to 0.57 (Figure 5d). In a broader spectrum
there is a greater likelihood of a wave crest being preceded by a much smaller crest, than in a narrowbanded
spectrum, Thus, the increase in step size for broader spectra may not be due to an increased height of the
largest waves, but rather the more variable sequence of crest heights. In fact, in this data set rogue waves
occur at intermediate spectral bandwith 0.43 < 𝜈 < 0.57, and there is no correlation between step size and
spectral bandwidth in the rogue wave subset (Figure 5d).

The ratio between the wave steepness and the bandwidth defines the so-called Benjamin-Feir Index (BFI)
as a measure of nonlinear focusing. Larger BFI values indicate a greater probability of rogue wave occur-
rences [Onorato et al., 2001; Janssen, 2003] and therefore should also affect the shape of the wave envelope.
In the data set at hand, neither the relative position 𝜁 nor the step size 𝜎1 depends systematically on BFI (not
shown). Furthermore, the subset of rogue waves, 𝜂x ≥ 1.25, spans only the lowest third of the BFI values. Thus,
Benjamin-Feir instability is likely not a prominent mechanism causing rogue waves in these data sets.

5. Conclusions

Based on a large open ocean data set of>106 wave groups, there is no evidence of asymmetric wave envelopes
for large waves, contrary to the result of recent numerical simulations [Adcock et al., 2015]. As pointed out by
an anonymous reviewer, asymmetric wave groups might be the consequence of symmetric initial conditions
in numerical simulations and wave tank experiments [Lo and Mei, 1985]. Most commonly, the locally largest
crest is about twice as high as its predecessor. However, in the case of rogue waves, defined as 𝜂x ≥ 1.25, the
preceding crests reach only 20% to 40% of the rogue crest height, contrary to the notion of a gradual buildup,
which mariners sometime label “three sisters.” The asymmetry of wave groups and the crest height increases
relative to the predecessor, both are positively correlated with the wave steepness. However, rogue waves are
not necessarily steep and tend to occur in the middle of the wave group. Since there is also a positive corre-
lation of the spectral bandwidth and the step size, and no significant correlation with the group asymmetry,
we expect that nonlinear modulational focusing does not play a noticeable role in the formation of isolated
large waves [see also Trulsen et al., 2015; Fedele et al., 2016]. Linear superposition of higher order Stokes waves
seems to be a sufficient mechanism that can explain the existence of unexpected, wall-like rogue waves, as
well as the observed occurrence rates of rogue waves [Gemmrich and Garrett, 2008, 2011].
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