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a b s t r a c t

Velocity spectra are essential in characterizing turbulent flows. The Acoustic Doppler Velocimeter (ADV)
provides three-dimensional time series data at a single point in space which are used for calculating
velocity spectra. However, ADV data are susceptible to contamination from various sources, including
instrument noise, which is the intrinsic limit to the accuracy of acoustic Doppler processing. This
contamination results in a flattening of the velocity spectra at high frequencies ðOð10Þ HzÞ. This paper
demonstrates two elementary methods for attenuating instrument noise and improving velocity spectra.
First, a “Noise Auto-Correlation” (NAC) approach utilizes the correlation and spectral properties of
instrument noise to identify and attenuate the noise in the spectra. Second, a Proper Orthogonal
Decomposition (POD) approach utilizes a modal decomposition of the data and attenuates the
instrument noise by neglecting the higher-order modes in a time-series reconstruction. The methods
are applied to ADV data collected in a tidal channel with maximum horizontal mean currents up to 2 m/s.
The spectra estimated using both approaches exhibit an f�5/3 slope, consistent with a turbulent inertial
sub-range, over a wider frequency range than the raw spectra. In contrast, a Gaussian filter approach
yields spectra with a sharp decrease at high frequencies. In an example application, the extended inertial
sub-range from the NAC method increased the confidence in estimating the turbulent dissipation rate,
which requires fitting the amplitude of the f�5/3 region. The resulting dissipation rates have smaller
uncertainties and are more consistent with an assumed local balance to shear production, especially for
mean horizontal currents less than 0.8 m/s.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic Doppler Velocimeter (ADV) data are commonly used
for performing field measurements in rivers and oceans [1–5].
The ADV measures fluid velocity by comparing the Doppler phase
shift of coherent acoustic pulses along three axes, which are
then transformed to horizontal and vertical components. In con-
trast to an Acoustic Doppler Current Profiler (ADCP), the ADV
samples rapidly ðOð10Þ HzÞ from a single small sampling volume
(Oð10�2Þm diameterÞ. The rapid sampling is useful for estimating
the turbulent intensity, Reynolds stresses, and velocity spectra.
Velocity spectra are useful in characterizing fluid flow and are also
used as an input specification for synthetic turbulence generators
(e.g., TurbSim [6] and computational fluid dynamics (CFD) simula-
tions). These simulations require inflow turbulence conditions for
calculations of dynamic forces acting on Marine and Hydro-Kinetic
(MHK) energy conversion devices (see [7]). This study focuses on

accurate estimation of velocity spectra from ADV measurements
that are contaminated with noise, for application in CFD simula-
tions for MHK devices.

ADV measurements are contaminated by Doppler noise,
which is the intrinsic limit in determining a unique Doppler shift
from finite length pulses [8–10]. Doppler noise, also called
“instrument noise”, can introduce significant error in the calcu-
lated statistical parameters and spectra. Several previous papers
have addressed Doppler noise and its effect on the calculated
spectra and statistical parameters [5,8–10,59]. These studies have
shown that the Doppler noise has properties similar to that of
white noise [8,9]. In the absence of noise, velocity spectra are
expected to exhibit an f�5/3 slope, in the inertial sub-range [11–
13]. Nikora and Goring [8] showed that the spurious flattening at
high frequencies is significantly greater for the horizontal u and v

components of velocity as compared to the vertical w component
of velocity, and is a result of the ADV beam geometry. Motivated
by the many applications of velocity spectra, this study examines
the effectiveness of two elementary techniques to minimize
the contamination by noise in velocity spectra calculated from
ADV data.
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ADV measurements are also contaminated by spikes, which are
random outliers that can occur due to interference of previous
pulses reflected from the flow boundaries or due to the presence
of bubbles, sediments, etc. in the flow. Several previous papers
have demonstrated methods to identify, remove and replace
spikes in ADV data [14–18]. For example, Elgar and Raubenheimer
[14] and Elgar et al. [16] have used the backscattered acoustic
signal strength and correlation of successive pings to identify
spikes. Once the spike has been identified, it can be replaced with
the running average without significantly influencing statistical
quantities [18]. Another technique that is commonly used to
de-spike ADV data is Phase-Space-Thresholding (PST) [19]. This
technique is based on the premise that the first and second
derivatives of the turbulent velocity component form an ellipsoid
in 3D phase space. This ellipsoid is projected into 2D space and
data points located outside a previously determined threshold are
identified as spikes and eliminated. The PST approach is an
iterative procedure wherein iterations are stopped when no new
spikes can be identified. There are several variations of this
approach, such as 3D-PST and PST-L, detailed descriptions of
which are given in [15,17]. In the present study, an existing
method for despiking from [16] is applied, and we restrict our
investigation to Doppler noise.

One existing technique to remove Doppler noise from ADV data is
a low-pass Gaussian digital filter [10,20–23]. Although this technique
is capable of eliminating Doppler noise from the total variance, the
spectra calculated from filtered data exhibit a sharp decrease at high
frequencies. In contrast, Hurther and Lemmin [24], using a four beam
Doppler system, estimated the noise spectrum from cross-spectra
evaluations of two independent and simultaneous measurements of
the same vertical velocity component. After the correction, spectra
obtained by Hurther and Lemmin [24] exhibit an f�5/3 slope out to
the highest frequency (Nyquist frequency).

The present study explores two different approaches for
attenuating noise and thereby improving velocity spectra at high
frequencies. The first approach, termed the “Noise Auto-Correla-
tion” (NAC) approach, utilizes assumed spectral and correlation
properties of the noise to subtract noise from the velocity spectra.
The NAC approach is analogous to the Hurther and Lemmin [24]
approach, but differs in that they estimate the noise variance using
the difference between two independent measures of vertical
velocity, whereas in this study the noise variance is estimated
from the flattening of the raw velocity spectra. The second
approach uses Proper Orthogonal Decomposition (POD) to decom-
pose the velocity data in a series of modes. In POD, the maximum
possible fraction of TKE is captured for a projection onto a given
number of modes. Combinations of POD modes identify the
energetic structures in turbulent data fields [25–29]. Low-order
reconstructions of the ADV data are performed using a reduced
number of POD modes which are associated only with the ener-
getic structures in the turbulent flows. This eliminates the random
and less energetic fluctuations associated with instrument noise.

The field measurements and raw velocity spectra are described
in Section 2 and the methods to attenuate noise from velocity
spectra follow in Section 3. Before detailing the NAC and POD
approaches (Sections 3.1 and 3.2, respectively), the assumptions
implicit to both methods are described in Sections 3 and 2.1.
Results, in the form of noise-corrected spectra from both methods,
are presented in Section 4. The noise-corrected spectra are
compared with spectra from a Gaussian filter approach in
Section 4.3 and evaluated for theoretical isotropy in Section 4.4.
Finally, an example application is given in Section 5, where the
NAC method is used to reduce uncertainties in estimating the
turbulent dissipation rates from the field data set, especially
during weak tidal flows. The NAC method estimates of dissipation
rates are also more consistent with an assumed TKE budget,

wherein shear production balances dissipation. Conclusions are
stated in Section 6.

2. Field measurements

ADV measurements were collected in Puget Sound, WA (USA)
using a 6-MHz Nortek Vector ADV. The site is near Nodule Point on
Marrowstone Island at 481 01'55:154'' N 122139'40:326'' W and
22 m water depth, as shown in Fig. 1. The ADV was mounted on a
tripod that was 4.6 m above the sea bed (the intended hub height
for a tidal energy turbine), and it acquired continuous data at a
sampling frequency fs of 32 Hz for four and a-half days during
spring tide in February 2011. The mean horizontal currents ranged
from 0 to 2 m/s. The measurement location was sufficiently deep
(17 m below the water surface at mean lower low water) where
the influence of wave orbital velocities may be neglected. The
measurement location is in close proximity to headlands, which
can cause flow separation and produce large eddies, depending on
the balance of tidal advection, bottom friction, and local accelera-
tion due to the headland geometry. In a prior deployment at the
same location, the tripod was instrumented with a HOBO Pendant-
G for collecting acceleration data. Results indicate that tripod
motion (e.g., strumming at the natural frequency) is unlikely to
bias measurements. For further details about the measurement
site location and data, see [5,30–32].

The raw data acquired from the ADV are shown in Fig. 2(a),
where a few spikes are obvious in the raw data. The flow velocity
did not exceed the preset velocity range of the ADV (see [5,30]),
and there was no contamination from the flow boundary (ADV
was positioned facing upward). Thus, these are treated as spikes
and removed according to Elgar and Raubenheimer [14] and Elgar
et al. [16]. The spikes constitute less than 1% of all data, thus a

Fig. 1. Regional map, bathymetry, and location of ADVmeasurements at Marrowstone
Island site in Puget Sound, northwest of Seattle, WA.
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Fig. 2. Data from ADV: (a) raw velocity data and (b) velocity data after QC step.
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more advanced algorithm was not necessary. Before performing
this Quality Control (QC), the continuous data are broken into sets
of 300 s (5 min) data records, each containing 9600 data points,
which yields 1256 independent data records. This ensures that the
velocity measurements are stationary (i.e., stable mean and
variance) for each set, which is essential for implementing a de-
spiking approach, calculating statistical quantities, and calculating
velocity spectra [33]. Furthermore, two-sample Kolmogorov–
Smirnov test is performed to validate that the samples for a given
record have the same distribution with a 5% significance level. The
QC routine removes data with low pulse-to-pulse correlations,
which are associated with spikes in the ADV data. A low correla-
tion cut-off c value [14,16] is determined using the equation
c¼ 30þ40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f s=f max

p
where fs is the actual sampling frequency

and fmax is the maximum possible sampling frequency. The average
acoustic correlations for the ADV measurements performed for
this investigation are 93.35, 96.70 and 96.72 for beam-1, beam-2,
and beam-3 respectively, while the minimum values of the
average acoustic correlations are 88.85, 93.62 and 93.42 for
beam-1, beam-2, and beam-3 respectively. The number of spurious
points is less than 1% of the total points, and these spurious data
points are replaced with the running mean. It has been shown that
interpolation of data along the small gaps between data points
that have been replaced by the running mean does not signifi-
cantly alter the spectra or the second order moments, provided
only a few data points are replaced [14,16,18]. The approach used
here successfully eliminates the obvious spikes from the entire
raw data, as shown in Fig. 2(b). The ADV data set from which
spikes have been removed will be referred to as QC ADV data in
the remainder of the paper.

2.1. Flow scales

The ADV data were collected in an energetic tidal channel with
a well-developed bottom boundary layer (BBL). In such a boundary
layer, the theoretical expectation is for a turbulent cascade to
occur which transfers energy from the large scale eddies (limited
by the depth or the stratification) to the small scale eddies (limited
by viscosity). In frequency, this cascade occurs in the f�5/3 inertial
sub-range, assuming advection of a frozen field (i.e., Taylor's
hypothesis f ¼ 〈u〉=L). The extent of this frequency range can be
estimated from the energetics of the flow. Independent estimates
of the turbulent dissipation rates ϵ (using the structure function of
collocated ADCP data, see [5,34,35]) range from 10�6 to 10�4 m2/s3.
The Kolmovgorov scale, at which viscosity ν acts and limits the
inertial sub-range, is given by Lk ¼ ðν3=ϵÞ1=4, and thus ranges from
10�3 to 10�4 m. Converting this length scale to frequency by
advection of a mean flow of O(1) m/s, we expect the inertial sub-
range will extend to a frequency of 103–104 Hz. This is well beyond

the 16 Hz maximum (i.e., Nyquist frequency) of the following
analysis, and thus we expect the true spectra to follow an f�5/3

slope throughout the higher frequencies.
Another consideration for the high frequency spectra is the

sampling volume of the measurement. Using the 0.014 m diameter
sampling volume setting in the Nortek configuration software, the
corresponding maximum frequency for accurate measurements is
f ¼ 〈u〉=L¼ 1=0:014¼ 71 Hz, which is again greater than the 16 Hz
maximum (i.e., Nyquist frequency) of the following analysis. At
lower speeds this frequency will decrease (and vice-versa), and at
0.22 m/s the frequency becomes equal to the 16 Hz Nyquist
frequency of our data. Thus, the sampling volume is sufficiently
small for accurate high-frequency measurements in all but the
weakest tidal conditions (horizontal mean currents less than
0.22 m/s occur for only 6% of the data set).

The lowest frequency of the inertial sub-range is set by the size
of the large energy-containing eddies, and for isotropy, these must
be smaller than the distance to the boundary (4.6 m) or the
Ozimdov length. Since the site is well-mixed, the distance to the
boundary is the limiting scale, and, again using Taylor's frozen
turbulence hypothesis, suggests that the lower bound for the
inertial sub-range is �0.2 Hz. Thus, we expect, from dynamical
arguments alone, to observe isotropic f�5/3 spectra from approxi-
mately 10�1–104 Hz, and deviations in the spectra from the f�5/3

slope in this range suggest noise contamination in the ADV data.

2.2. Spectra

The observed TKE varied significantly during each tidal cycle,
and the 1256 records of QC ADV data are divided into two groups:
slack and non-slack tidal conditions. The slack tidal and non-slack
tidal conditions are the time periods when the mean horizontal
velocity magnitudes for a record are less than and greater than
0.8 m/s respectively [5,30]. This cutoff is chosen primarily for
relevance to tidal energy turbines, which typically begin to extract
power at O(1) m/s. However, the 0.8 m/s criterion is also relevant
to the conditions for which noise creates uncertainty in the
turbulent dissipation rate (see Section 5).

There are 525 data records of slack tidal condition and 731 data
records of non-slack tidal condition, with each record containing
300 s of data and 9600 data points. The energy spectra of the u, v,
and w velocity components are calculated for each ADV data
record using the Fast Fourier Transform (FFT) algorithm on
Hamming-tapered windows of 1024-points each with 50% overlap.
This yields approximately 47 equivalent Degrees of Freedom (DOF)
[36]. The mean velocity spectra for the non-slack and slack tidal
conditions are shown in Fig. 3(a) and (b) respectively. The energy
in the spectra decreases with increasing frequency, with a flat
noise-floor at high frequencies. The mean spectra for all
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Fig. 3. Mean velocity spectra of QC ADV data for u, v, and w components: (a) non-slack tidal condition and (b) slack tidal condition.
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components of velocity are similar, suggesting a quasi-isotropic
turbulence, except at high frequencies, where the noise-floor is
lower in the vertical velocity spectra than in the horizontal
velocity spectra. This difference in noise is a well-known conse-
quence of the ADV beam alignment (30 deg from vertical, 60 deg
from horizontal) [9,37].

As shown in Fig. 4(a)–(c) for slack and non-slack tidal condi-
tions, the gray lines represent the spectra associated with each QC
ADV data record, and the solid and dash red, green and blue lines
represent the ensemble-averaged spectra for u, v and w compo-
nents of velocity for slack and non-slack tidal conditions respec-
tively. The spectra for the individual records exhibit significant
fluctuations from one record to the next, suggesting that there is a
significant change in TKE even for the non-slack tidal condition.
The ensemble-averaged spectra shown in these figures have an
f�5/3 slope in the inertial sub-range [11–13,38], which is typical for
turbulent flows, and indicative of classic Kolmogorov cascade of
energies from the larger to smaller scale eddies. As discussed in
Section 2.1, the inertial sub-range should extend from the fre-
quency range of Oð10�1Þ–Oð104Þ Hz. However, it is observed from
these figures that the ensemble-averaged spectra for u and v

components of velocity display a flattening at frequencies greater
than 1 Hz for horizontal components (i.e., a deviation from the f�5/3

slope in the inertial sub-range). This is consistent with the effect
of instrument noise observed by Nikora and Goring [8] and
Voulgaris and Trowbridge [9]. Nikora and Goring [8] defined a
characteristic frequency (fb), which separates two regions in the
spectra: (1) the region where TKE is much larger than the
instrument noise energy (i.e., for f r f b) and (2) the region where
TKE is comparable to the instrument noise energy (i.e., for f Z f b).
The flattening of the spectra is always observed in the region of
comparable turbulence and instrument noise energies (i.e., for the
region in spectra with f Z f b). For this study, the characteristic
frequencies for non-slack and slack tidal conditions, for both u and

v spectra, are observed to be approximately 2.5 Hz and 1.0 Hz,
respectively. For vertical spectra, the flattening associated with
noise is only evident during slack conditions; however, this is still
sufficient to degrade estimates of the turbulent dissipation (see
Section 5).

3. Methods

3.1. “Noise Auto-Correlation” (NAC)

Studies by Nikora and Goring [8], Voulgaris and Trowbridge [9],
and Garcia et al. [10] have shown that ADV noise is well
approximated as Gaussian white noise. They have also shown that
the presence of instrument noise in the spectra is associated with
flattening of spectra at higher frequencies. The following “Noise
Auto-Correlation” (NAC) approach exploits the properties of white
noise to identify and attenuate the contribution of instrument
noise from the spectra. Although elementary in theory, this classic
treatment of noise is appealing because it is simple, direct, and
computationally efficient. More advanced techniques, which might
treat any nonlinear effects and relax the assumptions on the noise,
may be required for other applications.

First, the time series (x(t)) is assumed to be contaminated with
white noise, and is expressed as the summation of the true signal
(xs(t)) and white noise (wn(t)),

xðtÞ ¼ xsðtÞþwnðtÞ; ð1Þ
where t is time. The auto-correlation ðRx;xðτÞÞ calculation of the
data is

Rx;xðτÞ ¼ E½xðtÞxðtþτÞ�; ð2Þ
where E represents the expected value, t is time, and τ represents the
time-lag associated with auto-correlation. The auto-correlation given

Fig. 4. Ensemble-averaged spectra for the non-slack (solid colors) and slack (dashed colors) tidal conditions: (a)–(c), u, v, and w components of velocity respectively. Gray
lines represent the spectra calculated from individual data records of 300 s each. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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Fig. 5. Schematic showing the effect of white noise contamination in the auto-correlation function: (a) schematic of auto-correlation function of clean signal, (b) schematic
of auto-correlation function of white noise, and (c) schematic of auto-correlation function of clean signal with white noise.
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by Eq. (2) can also be expressed as the summation of auto-correlations
(i.e., Rxs ;xs and Rwn;wn) and cross-correlations (i.e., Rxs ;wn and Rwn;xs ) of
the true signal and white noise [39,40],

Rx;xðτÞ ¼ Rxs ;xs ðτÞþRwn;wnðτÞþRxs ;wnðτÞ|fflfflfflfflffl{zfflfflfflfflffl}
0

þRwn;xs ðτÞ|fflfflfflfflffl{zfflfflfflfflffl}
0

: ð3Þ

In Eq. (3), it should be noted that the cross-correlation between true
signal and white noise will approach zero for long time series [39,40].
Therefore, Rx,x is expressed as the summation of auto-correlation of
true signal and white noise only, as shown in Eq. (3). The auto-
correlation function of white noise is a delta function with magnitude
equal to the total variance of the white noise (i.e., B) at zero time-lag.
Therefore, it is expected that the auto-correlation function of a signal
contaminated with white noise would exhibit a spike at zero time-lag,
since Rx;xðτÞ is the summation of the auto-correlation of clean signal
and white noise, schematic of which is shown in Fig. 5(a)–(c).

Similarly, the spectrum ðSx;xðf ÞÞ calculated from the contami-
nated data can also be expressed as the summation of the true
spectrum ðSxs ;xs ðf ÞÞ and the noise spectrum ðSwn;wnðf ÞÞ,
Sx;xðf Þ ¼ Sxs ;xs ðf ÞþSwn;wnðf Þ; ð4Þ
where f is the frequency in Hz. The spectrum of the white noise
acquires a constant value at all frequencies and the total energy in
the white noise (i.e., B) is the area under the spectrum, as shown
in Fig. 6(b). At higher frequencies, where the spectrum of clean
signal has energy comparable to the spectrum of white noise, the
spectrum of contaminated signal is expected to flatten out, as
schematically shown in Fig. 6(a)–(c). Nikora and Goring [8] in their
study have suggested that the flattening of the spectra is always
observed in the frequency with comparable spectral energies of
clean signal and instrument noise. Furthermore, they have also
estimated the energy contribution of instrument noise (i.e., B) by
calculating the area of the rectangular region extending over all
frequencies, with energy levels equal to those of the flattened
portion of the spectrum [8,10].

If the energy contribution from the white noise (i.e., B) is
known, the auto-correlation function of the clean signal (i.e.,
Rxs ;xs ðτÞ) can be estimated using the following sets of

Rwn;wnðτÞ ¼
B if τ¼ 0;
0 otherwise:

�
ð5Þ

Rxs ;xs ðτÞ ¼ Rx;xðτÞ�Rwn;wnðτÞ: ð6Þ
Finally, the spectra ðSxsxs ðf ÞÞ of the clean data can be estimated by
Fourier transforming the auto-correlation of the true signal deter-
mined using Eq. (6), given as

Sxsxs ðf Þ ¼
Z 1

�1
Rxs ;xs ðτÞe� i2πf τ dτ: ð7Þ

Here, the NAC approach requires estimating the energy con-
tribution of instrument noise (i.e., B) from the raw spectra, and

then using Eqs. (5) and (6) to obtain the auto-correlation function
of the noise-removed data. An independent a priori estimate of
the noise variance would be preferable; however, that is not
possible for a pulse coherent Doppler system, because the noise
depends on the correlations of all the pulse pairs (i.e., it is not
expected to be constant across all conditions or data records).
After determining B, one can calculate the Fourier transform of the
noise-removed auto-correlation function to estimate the noise-
corrected spectra. Again, it should be noted that the NAC approach
is only capable of attenuating the instrument noise from the
spectra because instrument noise is assumed to be white noise.
Unlike the POD method in the following section, the NAC approach
can only estimate noise-corrected frequency spectra, and not
noise-corrected time series data.

3.2. Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) has been used in fluid
dynamics for at least 40 years (Lumley [25]). Singular System
Analysis, Karhunen–Loeve decomposition, Principle Component
Analysis [41], and Singular Value Decomposition (SVD), are names
of POD implementations in other disciplines (see [26]). POD is a
robust, unambiguous technique, and when applied to a turbulent
flow field data set, it can identify dominant features or structures
in the data set. Decomposition of the turbulent flow field data by
this technique provides a set of modes, and the combination of
these modes can be used to represent flow structures containing
most of the energy. Moreover, these POD modes are orthogonal
and optimal, thus, they provide a compact representation of struc-
tures in the flow. POD has been used to study axisymmetric jets
[27,28], shear layer flows [42], axisymmetric wakes [43], coherent
structures in turbulent flows [44], and, in the field of wind energy
by [45]. Here, POD is used to identify and attenuate noise from the
ADV data by performing a low-order reconstruction of the ADV
data using only selective, low-order POD modes.

When applied to the turbulent velocity data set, the POD
technique yields a set of optimal basis functions or POD modes
(ϕ's). These POD modes are optimal in the sense that they
maximize the projection of the turbulent data sets on to the
POD modes in a mean square sense, expressed as (see [25,26])

〈jðu;ϕÞj2〉
JϕJ2

; ð8Þ

where 〈:〉 is the average operator, ð�; �Þ represents the inner product,
j � j represents the modulus, and J � J is the L2-norm. Maximization
of 〈jðu;ϕÞj2〉 when subjected to the constraint JϕJ2 ¼ 1, leads to an
integral eigenvalue problem given as (for detailed derivation see
[25,26])Z
Ω
〈uðtÞ � uðt'Þ〉ϕ dt ¼ λϕðtÞ; ð9Þ
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Fig. 6. Schematic showing the effect of white noise contamination in the auto-spectral density function: (a) schematic of auto-spectral density function of clean signal,
(b) schematic of auto-spectral density function of white noise, and (c) schematic of auto-spectral density function of clean signal with white noise.
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where Ω is the domain of interest, u is the velocity field (can
be either vector or scalar quantities), � is the tensor product,
〈uðtÞ � uðt'Þ〉 is the ensemble-averaged autocorrelation tensor of
the velocity records forming the kernel of the POD, and λ is the
energy associated with each POD mode.

After discretization of Eq. (9), the matrix formulation of the
POD implementation for a turbulent data field (see [46–48]) is
given by

½Ruu�fϕg ¼ λfϕg; ð10Þ
where Ruu is the ensemble-averaged correlation tensor matrix, ϕ
is the POD mode, and λ is the energy captured by each POD mode.
The correlation matrix calculated from the turbulent data set is
also referred to as the POD kernel. For the POD implementation
used in this study, ADV data were broken into 64 s records each
containing 2048 data points, which yielded 2478 and 3410 data
records for the slack and non-slack tidal conditions respectively.
This is in contrast to the 300 s records used for the NAC method,
and is necessary to constrain the size of the kernel matrix and thus
the computational time. The resulting POD kernel matrix for each
record is 2048 � 2048, yielding 2048 ϕ's and λ's. The slack and
non-slack tidal conditions are defined as less than or greater than
a horizontal mean flow of 0.8 m/s respectively.

Once determined, these POD modes can be used to reconstruct
each velocity component as

unðtÞ ¼ ∑
N

p ¼ 1
anpϕp; ð11Þ

where unðtÞ is the nth velocity data record, apn is the time-varying
coefficient for the pth POD mode and the nth velocity data record,
and N represents number of modes used for reconstructions. If all
the POD modes (i.e., N¼2048 for this study) are used in the
velocity field reconstruction, it should yield the original velocity
data set or record. However, when a limited number of POD modes
are used (i.e., No2048), the reconstructed velocity field is referred
to as a low-order reconstruction. The time-varying POD coeffi-
cients (ap) are obtained by projecting the velocity data field from
each record onto the POD modes. For this study, there are 3140
and 2478 time varying coefficients associated with each POD mode
for non-slack and slack tidal conditions respectively. The relevance
of these POD modes (ϕp) in representing the coherent or energetic
structures can be ascertained by analyzing the energy captured by
each of these modes (i.e., λp) and also by analyzing the time-
varying coefficients associated with these modes.

Since these POD modes are optimal and orthogonal,

ðϕi;ϕjÞ ¼ δij; ð12Þ

〈aian

j 〉¼ δijλi; ð13Þ

where δij is the Kronecker delta, an

j is the conjugate of aj, 〈〉

ensemble-averaging, and ð�Þ represents the inner product. These
relationships are used for the verification of POD results.

When applied to a turbulent data set, the POD modes can be
analyzed to identify the modes that are associated with non-
coherent, low-energy, high frequency fluctuations in the flow field.
Since the instrument noise is assumed to be white noise, it is
expected that the contribution from the instrument noise will be
non-coherent and will have low energy. Therefore, in a low-order
reconstruction, the modes associated with noise are excluded.
Similarly, Singular Spectrum Analysis (SSA) [49] is used to
obtain information about the signal to noise separation when
the noise is uncorrelated in time (i.e., white noise) in analysis of
climatic time series. Durgesh et al. [44] demonstrated the ability
of POD to filter small scale fluctuations in a swirling jet and a
turbulent wake, and capture coherent structures by performing
low-order reconstructions.

4. Results

4.1. NAC implementation

The NAC method described in Section 3 is implemented on the
QC ADV data to correct for instrument noise. The results presented
here will focus on the non-slack tidal condition (i.e., data records
with the mean horizontal velocity magnitude greater than 0.8 m/s),
since these are of greater operational interest for tidal energy
turbines. However, the application in Section 5 emphasizes the slack
conditions.

The first step in this approach is to estimate the noise variance,
B, from the raw spectra [8]. At frequencies greater than a
characteristic frequency (fb), flattening of the spectra is observed,
as shown in Fig. 4(a) and (b). At these frequencies, the spectra are
dominated by instrument noise; therefore, the flattened portion of
the spectra represents the energy level (or variance) contributed
by instrument noise [8,10]. The area of the rectangular region
extending over all frequencies, with energy levels equal to those of
the flattened portion of the spectra, can provide an estimate of
total energy from instrument noise, since it exhibits behavior
similar to that of Gaussian white noise [8]. A schematic represent-
ing the total contribution from instrument noise for a single
component of velocity is shown in Fig. 6, the same approach is
also used to calculate instrument noise contribution for v and w
components of velocity. This approach has also been used by
Nikora and Goring [8], Garcia et al. [10], Romagnoli et al. [50] to
estimate the contribution of instrument noise (Doppler noise) in
ADV data. Here, to obtain an accurate estimate of the energy in
the instrument noise, the mean energy value of the spectra from
12–16 Hz is used.

The average noise energies (variances) obtained are Buu �
0:0017 m2=s2 and Bvv � 0:0010 m2=s2 for the u and v horizontal
components of velocity, respectively. The corresponding horizon-
tal error velocity is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BuuþBvv

p
, which is converted to along

beam error with cos ð551Þ. The values and qualitative dependence
on the mean flow speed are similar to as observed by Nikora and
Goring [8].

The second step in the NAC approach is to calculate the auto-
correlation of the true signal (i.e., Ruu;NAC and Rvv;NAC) by subtract-
ing the contribution of instrument noise from the auto-correlation
values (i.e., Ruu, and Rvv),

Ruu;NACðτÞ ¼
RuuðτÞ�B if τ¼ 0;
RuuðτÞ otherwise;

(
ð14Þ

where B is the total energy or variance from the instrument noise.
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Fig. 7. Dimensionless autocorrelation function for “u” velocity component (without
and with Doppler noise corrections) using NAC approach and technique provided
by Romagnoli et al. [50].
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The ensemble-averaged Ruu, Rvv, and Rww as a function of time-
lag (τ), for non-slack tidal condition, are shown in Fig. 8.
As observed in the figure, the auto-correlation values approach
zero with an increase in τ, which is as expected for turbulent
flows. Fig. 9(a) and (b) shows the mean Ruu and Rvv close to zero τ.
As observed in the figures, the auto-correlations (i.e., Ruu and Rvv)
show a spike or jump in value at zero τ, while Rww shows a
correlation curve without the presence of a spike, as observed
in Fig. 9(c). A spike in auto-correlation at zero τ is consistent
with contamination by Gaussian white noise (see Eqs. (3), (6),
and Fig. 5).

Ruu;NAC and Rvv;NAC are estimated using Eq. (14), and are shown
in Fig. 9(a) and (b) respectively. As observed in the figures, the
spike in auto-correlation at zero time-lag is reduced after remov-
ing the estimated contribution of instrument noise (B). These
corrected auto-correlation values are then used to calculate
spectra (i.e., Suu;NAC and Svv;NAC) using Eq. (7). The ensemble-
averaged NAC spectra for u and v components of velocity, for
the non-slack tidal condition, are shown in Fig. 10(a) and
(b) respectively. As observed in these figures, there is more than
an order of magnitude reduction in instrument noise level for both
components of horizontal velocity at frequencies above fb. Further-
more, the spectra exhibit an extended f�5/3 inertial sub-range. In
order to quantify deviation of corrected spectra from the expected
f�5/3 slope behavior, the mean square error (MSE) is calculated.
The MSE is the sum of the square of the difference between the
corrected spectra and the expected f�5/3 slope behavior, given as

MSE¼ ∑
f ¼ f 2

f ¼ f 1

ðScorrectedðf Þ�Sðf ÞÞ2; ð15Þ

where Scorrected(f) represents the corrected spectra, S(f) represents
expected spectra with the f�5/3 slope over the range of frequencies
f1 and f2 in the inertial sub-range. A lower value of MSE will
demonstrate the effectiveness of an approach in reducing the
effect of Doppler noise in the estimated spectra. MSE is calculated
for the NAC implementation, and is shown in Fig. 11. As observed
in the figure, there is a significant decrease in the MSE value for
NAC spectra compared with the MSE value obtained for raw
spectra. A similar behavior is also observed for the slack tidal
condition, as shown in Fig. 12. In contrast to non-slack tidal
condition, the w-component of velocity spectra is also affected
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by Doppler noise for the slack tidal condition, as observed in
Fig. 12(c), and the NAC approach is able to reduce this effect on
velocity spectra. It should also be noted that NAC spectra from
each 300 s record still exhibit significant variability, similar to the
raw spectra, and ensemble averaging of several spectra is required
to obtain smooth spectra.

A recent study done by Romagnoli et al. [50] used a similar
approach to estimate energy in Doppler noise, which was used to
correct the velocity spectra. The corrected velocity spectra were
then used to obtain auto-correlation functions, for accurate esti-
mation of integral time length scales. A comparison of noise
removed autocorrelation functions obtained using the approach
developed by Romagnoli et al., and the NAC approach is shown
in Fig. 7. As observed from the figure, both these techniques are
capable of removing noise from the auto-correlation functions and
provide similar results. It should be noted that the focus of this
study is to obtain an accurate estimate of the velocity spectra for
performing simulations. Hence, in contrast to the Romagnoli et al.
approach, the NAC method uses estimated energy in the Doppler
noise to first correct the auto-correlation function, and then the
Fourier transform of the corrected auto-correlation function is
used to obtain an accurate estimation of the velocity spectra (with
the f�5/3 slope in the inertial sub-range).

4.2. POD implementation

The POD method is used to identify and attenuate the con-
tribution of instrument noise from the QC ADV data and provide a
comparison with the results obtained by the NAC method since no
direct observations of the true spectra at higher frequencies are
available. The POD analysis is performed separately for u and v

components of velocity during non-slack and slack tidal condi-
tions. The detailed implementation and results for the non-slack
condition, and certain relevant results for the slack tidal condition,
are presented here.

For both components of horizontal velocity, POD modes and
the energy in them are determined using the discretized POD
equation, given in Eq. (10). The first six POD modes (dimensionless
basis functions) obtained for u component of velocity, which are
optimized for the velocity fluctuations, are shown in Fig. 13(a)–(f)
(a similar result is obtained for v component of velocity, not
shown). As observed from these figures, the modes have a
definitive structure to them and they show an increase in number
of peaks and valleys with an increase in mode number, as well as a
shift in the location of peaks and valleys. This suggests that the
combination of modes may identify coherent structures present in
the turbulent flow data and may also represent advection of
coherent structures (see [51–53]). The cumulative energy captured
by the POD modes for u component of velocity is shown in Fig. 14.
As observed in the figure, the higher order modes have captured
significantly lower energy as compared to lower order POD modes.
This suggests that the higher order POD modes may be associated
with noise which is not energetic. A similar behavior is also
observed for the v component of velocity (not shown here).

A low-order reconstruction is performed as shown in Fig. 13(g)
(using Eq. (11)). As observed in the figure, a low-order reconstruc-
tion using first six POD modes is able to accurately capture the low
frequency fluctuations. However, when the 359 POD modes which
capture �80% of total energy (as can be seen from Fig. 14) are used
for the low-order reconstruction, the reconstructed velocity data
follow the original ADV data trend, while suppressing the high
frequency fluctuations in the data.

In the following paragraphs, two versions of POD noise-correction,
implemented for the u component of velocity, during non-slack tidal
condition, are discussed in detail. These are implemented for v

component of velocity as well (both non-slack and slack tidal
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conditions), however the implementation is not discussed in detail
here because the results are similar.

The first version assumes that the spectra for the energetic tidal
flow follow an f�5/3 slope in the inertial sub-range of the spectra.
Several low-order reconstructions are calculated using Eq. (11),
where N varies from 1 to 2048, which yield 3410 low-order-
reconstructed velocity data records (i.e., total number of records in
non-slack tidal condition) for each value of N. Spectra are then
estimated from these low-order-reconstructed velocity data
records for each value of N, and an ensemble-averaged spectrum
is calculated from these spectra. Then, the MSE of the ensemble-
averaged spectrum from the expected f�5/3 slope in the inertial
sub-range (here, the frequency in the range of 1–8 Hz) is calcu-
lated, using Eq. (15). The MSE as a function of mode number (N)
used for the reconstruction is shown in Fig. 15. As observed in the

figure, the MSE shows a significant variation with change in the
mode number used for the low-order reconstruction. A physical
explanation for the MSE is that initially, each additional mode
captures additional information about coherent turbulence, but,
above a certain number of POD modes (i.e., Noptimal), they are
dominated by noise. The ensemble-averaged spectrum (i.e., Suu,POD)
calculated from these low-order reconstructions is shown
in Fig. 10(a). As observed in the figure, low-order reconstruction
using Noptimal¼359 modes is able to accurately capture the behavior
of the spectra by attenuating instrument noise, and exhibits an f�5/3

slope in the inertial sub-range.
The second version estimates the Noptimal modes a priori,

without assuming an f�5/3 slope. In this approach, the λ's are
related to the TKE (or variance 〈u'2〉) by

〈u'2〉¼ 1
2048

∑
2048

i ¼ 1
λi: ð16Þ

The variances for the u and v components of velocity for slack and
non-slack tidal conditions are calculated directly from QC-ADV
data and λs. The variances obtained from both these approaches
have identical values. This suggests that the λs can be used to
represent the total TKE from the ADV data. Now in a low-order
reconstruction, if only a certain number of POD modes are used
such that the cumulative TKE from the excluded POD modes is
exactly equal to contribution from instrument noise i.e., B, this will
yield ADV data with reduced instrument noise. The relationship
between the cumulative TKE of the excluded modes (i.e., B) and
Noptimal can mathematically be defined as

〈u'2〉�B¼ 1
2048

∑
Noptimal

i ¼ 1
λi: ð17Þ

If the contribution from instrument noise i.e., B is known, the
above equation can be used to estimate Noptimal. Using the B values
from the NAC implementation results in Noptimal values similar
to the Noptimal obtained by assuming an f�5/3 slope. This
self-consistency in the two versions of POD suggests an effective
removal of noise, given a priori assumptions about either the noise
or the true signal. Although POD requires significant assumptions,
it has the advantage of retaining time domain information.

The ensemble-averaged spectrum (i.e., Suu,POD) calculated from
the low-order reconstructions using Noptimal modes is shown in
Fig. 10(a). There is an order of magnitude decrease in the noise
floor level compared to the ensemble-averaged raw spectrum
(i.e., Suu). The POD spectrum extends the f�5/3 inertial sub-range,
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and there is a decrease in the MSE error from the expected f�5/3

slope (see Fig. 11).
A similar analysis for the v component of velocity (not presented

here) shows that Noptimal¼397 POD modes. The ensemble-averaged
spectrum for v component of velocity (for non-slack tidal condition)
calculated from low-order reconstructions using 397 POD modes, is
shown in Fig. 10(b), and exhibits a result similar to that of u
component of velocity. The POD technique is also implemented for
the slack tidal condition, and the resulting spectra for the slack tidal
condition are shown in Fig. 12. These spectra exhibit a trend similar
to that of the non-slack condition, suggesting that this approach can
also be implemented in the case where turbulent flows are less
energetic.

Even though the NAC and POD approaches are inherently
different, they yield similar noise-corrected spectral results, cor-
roborating the effective attenuation of instrument noise from QC
ADV data. A separate comparison of the results for each of these
approaches with theoretical isotropy is given in Section 4.4.

4.3. Gaussian filter implementation

The results obtained using the NAC and POD approaches are
compared to results obtained using a conventional low-pass
Gaussian filter, which is commonly used to remove high frequency
noise (see [10,21–23]). For this purpose, a filter with a smoothing
function (w(t)) [20], is given as

wðtÞ ¼ ð2πs2Þ�0:5 exp� t2=2s2
;

s¼ lnð0:5Þ0:5
�2πf 250

 !0:5

; ð18Þ

where t is time, f50¼ fD/6, and fD¼32 Hz is the sampling frequency,
is used. The QC ADV data are filtered and used to calculate
the spectra for horizontal velocity components (i.e., Suu,Gauss and
Svv,Gauss) for non-slack tidal condition. The ensemble-averaged
spectra obtained after filtering the QC ADV data are shown in
Fig. 10. As observed in the figure, the instrument noise in the
filtered data is eliminated at higher frequencies. However, spectra
show a bump at a frequency of 8 Hz and shift away from the
expected f�5/3 slope in the inertial sub-range. Thus, although the
Gaussian low-pass filter is capable of correcting for the instrument
noise present at higher frequencies, it may not be able to do so at
lower frequencies, resulting in a bump in the spectra and a
deviation from the expected f�5/3 slope. Fig. 11 shows that there
is a decrease in the MSE of the spectra from the expected f�5/3

slope as compared to MSE of spectra obtained from QC ADV data,
but the NAC and POD methods have significant reduction in MSE.

A similar result is also observed for the slack tidal condition QC
ADV data, as shown in Fig. 12.

4.4. Evaluation of isotropy

To evaluate the effectiveness of NAC and POD approaches in
removing instrument noise from ADV data, the relationship
between the horizontal and vertical spectra provided by Lumley
and Terray [54] is utilized. The model spectra provided by Lumley
and Terray [54] for a frozen inertial-range turbulence advecting
past a fixed sensor is used to determine the ratio of spectra (R) for
horizontal and vertical components. This quasi-isotropic ratio,

R¼ ð12=21ÞðSuuðf ÞþSvvðf ÞÞ
Swwðf Þ

; ð19Þ

is predicted to be C1:0 in the inertial sub-range for the flow near
the seabed (neglecting wave motions). See articles by Lumley and
Terray [54], Trowbridge and Elgar [55], and Feddersen [18] for
detailed derivation and analyses. Fig. 16 shows the R values as a
function of frequency, calculated from the QC ADV data, and noise
removal approaches used in this study i.e., NAC, POD, and Gaussian
filter techniques. As observed from the figure, the spectra obtained
from QC ADV data and Gaussian low-pass filtered data acquire R
values significantly higher than unity in the inertial sub-range of
the spectra (i.e., for frequency higher than 2 Hz). However, for the
NAC and POD techniques, R values stay close to unity for most of
the inertial sub-range of the spectra (i.e., for frequencies from 1 to
8 Hz). The spectra obtained from NAC and POD approaches are
consistent with the isotropic spectra suggested by [54]. In spite of
the noise correction, at higher frequencies (i.e., frequencies higher
that 8 Hz), R value deviates significantly from its theoretical unit
value. This is because at these frequencies, the energy content
of Doppler noise is significantly higher (even after NAC or POD
technique) compared to energy content of u and v components of
velocity spectra. The w component of spectra will have signifi-
cantly lower energy compared to the noise contaminated spectra
of the horizontal velocity components at these frequencies. There-
fore, the ratio of SuuþSvv=Sww will show a significant deviation
from the expected result.

5. Application of NAC to improve estimates of the
turbulent dissipation rate

One common use of ADV spectra is to estimate the dissipation
rate of TKE. In this section, we apply the NAC method to the field
data and demonstrate improved estimates of the dissipation rate,
especially during less energetic (i.e., slack) tidal conditions. The
improvement is primarily in the confidence (reduced uncertainty)
of each dissipation estimate, however the NAC method also gives
dissipation estimates more consistent with an expected local TKE
budget. This application is restricted to the spectra of vertical
velocity; other applications might benefit from applying the NAC
method to horizontal velocities as well.

The dissipation rate ϵ is estimated from the ADV vertical
velocity spectra Sww(f) shown in Fig. 12(c)

Swwðf Þ ¼ aϵ2=3f �5=3; ð20Þ
where f is frequency and a is the Kolmogorov constant taken to be
0.69 for the vertical component [56–58]. The vertical component is
used because it has the lowest intrinsic Doppler noise (a result of
ADV geometry). This approach utilizes Taylor's ‘frozen field’
hypothesis, which infers a wavenumber k spectrum as a frequency
f spectrum advected past the ADV at a speed 〈u〉, such that f ¼ 〈u〉k.

First, the raw spectra Sww and the NAC spectra Sww,NAC are
calculated using 5-min bursts of the 32 Hz sampled ADV field data,

Fig. 16. Variation of R as a function of frequency. The horizontal dashed line
represents R values of 0.8 and 2.0.
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which have stationary mean and variance over the burst. Next, an
f�5/3 slope is fit to the spectra in the range of 1o f o10 Hz. The
fitting is forced to f�5/3 using MATLAB's roubustfit algorithm, and
the intercept is set to zero. The standard error of the fit is retained
and is propagated through Eq. (20) as a measure of the uncertainty
sϵ in the resulting ϵ values. The standard error is defined as the
rms error between the fit and the spectra, normalized by the
number of frequency bands used in the fitting.

The dissipation rates and uncertainties from all bursts are
shown in Fig. 17 as a function of the burst mean horizontal tidal
current 〈u〉. The dissipation rates are elevated during strong tidal
flows and are similar order of magnitude to estimate from other
energetic tidal channels [35]. The dissipation rates from the raw
spectra are consistently higher than the dissipation rates from the
NAC spectra. The reduction in dissipation is expected owing to the
reduction of velocity variance by the NAC method. The uncertain-
ties in dissipation rates from the raw spectra also are consistently
higher than the uncertainties from the NAC spectra. The reduction
in uncertainties is a result of better fits, over a wider range of
frequencies, to the f�5/3 inertial sub-range. For either method, the
16 Hz maximum frequency is still expected to be well within the
inertial sub-range, which should extend to Oð102Þ Hz during slack
conditions and Oð104Þ Hz during strong tidal flows (see scaling
discussion in Sections 3 and 2.1).

The difference between methods is most pronounced during
slack conditions ð〈u〉o0:8 m=sÞ, which is when Doppler noise is
mostly likely to contaminate the ADV measurements (because the
velocity signal is small compared with the noise). Under slack
conditions, the uncertainties in raw dissipation rates are almost a
factor of ten larger than the corresponding uncertainties in NAC
dissipation rates. During more energetic tidal conditions, the
vertical velocity spectra are elevated above the noise floor at most
or all frequencies, and thus there is less disparity between the
methods (although an overall bias is persistent).

Lacking independent measurements for validation of the dis-
sipation results, a reasonable requirement is for the uncertainty of
each dissipation rate to be small compared with the estimate itself
(i.e., sϵ5ϵ). For the raw estimates of dissipation, this condition is
only met during strong tidal flows (〈u〉40:8 m=s in Fig. 17). For
the NAC estimates of dissipation, this condition is met during all

except the weakest tidal flows (〈u〉40:1 m=s in Fig. 17). Thus, the
NAC method extends the range of conditions in which the
turbulent dissipation rate can be estimated with high confidence.

Another approach to evaluate the dissipation results is to assess
the TKE budget,

D
Dt

ðTKEÞþ∇ � T ¼P�ϵ; ð21Þ

where D=Dt is the material derivative (of the mean flow), T is the
turbulent transport, P is production (via shear and buoyancy)
and ϵ is dissipation rate (loss to heat and sound). In a well-
developed turbulent boundary layer, a balance between produc-
tion and dissipation is expected. Furthermore, in a well-mixed
environment, the production term will be dominated by Reynolds

stresses acting on the mean shear P ¼ � 〈u'w'〉dU=dz , and buoy-
ancy production can be neglected. Here, Reynolds stresses are
calculated directly from the ADV data, after rotation to principal
axes, and the shear is calculated from collocated ADCP data with
0.5 m vertical resolution (see [30]). There is, of course, noise
contamination in the estimation of Reynolds stresses 〈u'w'〉 from
ADV, because u' and w' share noise from the same acoustic beams.
However, this has a limited effect on the estimates because of the
high frequency nature of the noise [9]. (This is in contrast to
estimating the dissipation rate, which requires fidelity at high
frequencies.)

The shear production and dissipation rates are compared in
Fig. 18. The raw estimates of dissipation exceed shear production
consistently. The NAC estimates of dissipation, by contrast, are
scattered above and below the production. The rms error of
an assumed P�ϵ balance during all tidal conditions is 4.7�10�5

for raw estimates and 1.6�10�5 for NAC estimates. As in the
comparison of uncertainty, the difference in methods is most
pronounced during less energetic conditions (i.e., ϵo10�5 in
Fig. 18). The rms error of an assumed P�ϵ balance during slack
tidal conditions is 2.0�10�5 for the raw estimates and 0.6�10�5

for the NAC estimates. Thus, results from the NAC method are
more consistent, over a wider range of conditions, with the
expected dynamics of a turbulent bottom boundary layer.
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Fig. 17. Dissipation rates (top) and uncertainties (bottom) versus mean horizontal
speed obtained from raw spectra (red symbols) and NAC spectra (blue symbols).
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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Fig. 18. Shear production versus dissipation obtained from raw spectra (red
symbols) and NAC spectra (blue symbols). All tidal conditions shown, processed
in 5-min bursts. The dashed line indicates a 1:1 balance. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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6. Conclusions

ADV measurements were collected from a proposed tidal
energy site and used to evaluate two methods for noise-
correction of velocity spectra. The raw spectra were flat at higher
frequencies, consistent with previous studies on Doppler instru-
ment noise. Both NAC and POD approaches were effective in
decreasing the noise contamination of spectra, especially for high
frequencies. The attenuation of instrument noise extends observa-
tions of the f�5/3 inertial sub-range to more frequencies, and thus
gives a better fit (i.e., more points) when estimating the dissipa-
tion rate. Moreover, a wider subrange obtained from these
approaches may also be helpful in providing an accurate estima-
tion of the dissipation rate when ADV data are further contami-
nated by waves and platform vibrations at select frequencies.

In comparison, the NAC and POD techniques show better
agreement with an expected f�5/3 slope than a conventional
low-pass Gaussian filter approach. In the later approach, instru-
ment noise is only removed above the cut-off frequency of the
filter, and hence, the spectra may not be accurate just below the
cut-off frequency.

The NAC approach provides a straightforward method for
attenuating instrument noise in velocity spectra and does not
require prior knowledge of the spectral shape. However, the NAC
approach does not provide the noise-corrected data in the tem-
poral domain as all the operations required for NAC approach are
performed in the frequency domain. It should also be noted that
the NAC approach is implemented on the assumption that the
instrument noise has unlimited bandwidth, which needs to be
investigated further. The POD approach is capable of reducing
instrument noise in spectra and in the temporal domain. However,
the POD approach is more computationally intensive, requires
prior estimate of the noise level or spectral shape, and may not
work in flows without dominant large scale coherent structures.
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