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Abstract We examine the dependence of the penetration depth and fractional surface area (e.g., whitecap
coverage) of bubble plumes generated by breaking surface waves on various wind and wave parameters over a
wide range of sea state conditions in the North Pacific Ocean, including storms with sustained winds up to
22 m s− 1 and significant wave heights up to 10 m. Our observations include arrays of freely drifting SWIFT
buoys together with shipboard systems, which enabled concurrent high‐resolution measurements of wind,
waves, bubble plumes, and turbulence. We estimate bubble plume penetration depth from echograms extending
to depths of more than 30 m in a surface‐following reference frame collected by downward‐looking
echosounders integrated onboard the buoys. Our observations indicate that mean and maximum bubble plume
penetration depths exceed 10 and 30 m beneath the surface during high winds, respectively, with plume
residence times of many wave periods. They also establish strong correlations between bubble plume depths and
wind speeds, spectral wave steepness, and whitecap coverage. Interestingly, we observe a robust linear
correlation between plume depths, when scaled by the total significant wave height, and the inverse of wave age.
However, scaled plume depths exhibit non‐monotonic variations with increasing wind speeds. Additionally, we
explore the dependencies of the combined observations on various non‐dimensional predictors used for
whitecap coverage estimation. This study provides the first field evidence of a direct relation between bubble
plume penetration depth and whitecap coverage, suggesting that the volume of bubble plumes could be
estimated by remote sensing.

Plain Language Summary Quantifying the statistics of bubble plumes generated during ocean
surface wave breaking is essential to understanding the exchange between the ocean and the atmosphere. Bubble
plumes also cause important variations in underwater acoustics and optics. Recent studies also suggest that the
statistics of bubble plumes are skillful predictors for total energy loss during wave breaking, which is an
essential quantity for accurate wave forecasting. In this study, we examine how these bubble plume statistics
change with different wind and wave conditions, including during storms. We used echosounders on drifting
buoys to detect the bubbles and estimate how deep they go in the ocean. We also used shipboard camera systems
to measure the surface area of the bubble plumes. We successfully develop multiple empirical relationships that
allow us to predict how bubble plume depth and surface area change as a function of simple wind and wave
statistics. These statistics are readily available from existing forecast models or typical ocean buoys. Our
findings reveal that bubble plume depth is correlated with its visible surface area. This intriguing correlation
suggests that we might estimate the volume of bubble plumes simply by observing the ocean surface from
above.

1. Introduction
Air‐entraining breaking surface waves play a significant role in air‐sea exchanges of mass, heat, energy, and
momentum (Deike, 2022;Melville, 1996; Sullivan &McWilliams, 2010), and are also crucial in various technical
applications, such as the design of marine structures and underwater communications. Breaking waves inject a
relatively large volume of air into the water column as bubbles which then form intermittent bubble clouds at a
wide range of spatial scales, hereafter referred to as bubble plumes. The entrained bubbles change the optical
properties of the water column (Al‐Lashi et al., 2016; Terrill et al., 2001) and generate acoustic noise (Felizardo &
Melville, 1995; Manasseh et al., 2006), especially during the active breaking period.
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Quantifying the statistics of these bubble plumes (e.g., void fractions, size distributions, penetration depth, surface
area, and volume of bubble plumes averaged over many waves) is essential to obtain robust parameterizations of
fluxes at the ocean‐atmosphere interface and variations in underwater acoustics and optics. Recent studies,
including the present observations, also show that the statistics of bubble plume that represent the overall size of
bubble plumes are strongly correlated with total wave breaking dissipation (Callaghan, 2018; Callaghan
et al., 2016; Derakhti, Thomson, & Kirby, 2020; Schwendeman & Thomson, 2015a). This suggests that such
bubble plume statistics are skillful predictors for the corresponding energy and momentum exchange between the
ocean and atmosphere, especially in high sea states.

The statistics representing the overall size of bubble plumes for a given sea state may be defined, in a wave‐
averaged sense, as the long‐time (several minutes) average of the surface area and the penetration depth of in-
dividual bubble clouds. The former may be directly approximated from whitecap coverage W, representing the
average visible surface area of bubble plumes and surface foam patches per unit sea surface area. W is a
reasonably easily measurable quantity using optical video systems. Estimation of bubble plume depth is, how-
ever, challenging and rare, especially during active wave breaking period. This study provides concurrent ob-
servations of W and bubble plume penetration depth in various sea states.

Many previous studies have examined the dependence of W on wind speeds and sea states (Brumer et al., 2017;
Callaghan et al., 2008; Kleiss & Melville, 2010; Malila et al., 2022; Monahan & Muircheartaigh, 1980;
Schwendeman & Thomson, 2015a). Despite large scatter in the data, particularly for wind speeds less than
10 m s− 1, these recent field studies have established fairly consistent empirical formulations that allow for the
estimation of W based on specific wind and/or sea state parameters.

Fewer previous studies have reported mean values of the penetration depth of bubble plumes, Dbp, across a range
of wind speeds using upward‐looking sonars moored to the seabed or a platform (Czerski et al., 2022a, 2022b;
Dahl & Jessup, 1995; Strand et al., 2020; Thorpe, 1982, 1986; Vagle et al., 2010; Wang et al., 2016). These
observations show that Dbp tends to increase with higher wind speeds, ranging from [1–5] m at low winds to [7–
25] m during storms. However, our understanding of the dependence of the statistics of Dbp on wind and sea state
parameters remains limited.

In general, the evolution of bubble plumes can be characterized into two distinct stages. The first stage involves the
rapid injection of bubbles with relatively high void fractions, typically lasting only several seconds, within actively
breaking waves. This rapid injection process is closely associated with breaking events. The subsequent stage
involves the slower transport of smaller bubbles, typically with diameters below 100 μm, exhibiting much lower
void fractionswithin the surfacemixed layer. This transport process occurs over longer timescales and, as discussed
in detail below, contributes significantly to the observed depth distribution of bubbles when using sonars.

The main objective of this study is to understand and quantify the statistics characterizing the size of bubble
plumes, averaged over many waves (on the order of minutes), generated by breaking surface waves in the open
ocean. Our observations include arrays of freely drifting, surface‐following SWIFT buoys combined with
shipboard wind and optical video systems. This setup enabled us to make concurrent high‐resolution (HR)
measurements of wind, waves, whitecap coverage, bubble plumes, and turbulence across a wide range of sea state
conditions in the North Pacific Ocean, including storms with sustained winds up to 22 m s− 1 and significant wave
heights up to 10 m. We estimate bubble plume penetration depth from echograms, collected by downward‐
looking echosounders integrated onboard the buoys, that extend to depths of over 30 m in a surface‐following
reference frame.

We focus on examining the dependence of the statistics of the penetration depth of bubble plumes Dbp on various
wind and wave parameters and the relation betweenDbp statistics andW. Further, we comment on the role of wind
history on W values. In a planned companion paper, we also investigate dynamic relationships between these
bubble plume statistics and total wave breaking dissipation using our synchronized observations of bubble plumes
and dissipation rates.

The rest of this paper is organized as follows: Section 2 describes the observed environmental conditions and our
analysis for estimating bubble plume penetration depths. Section 3 describes the dependency of the bubble plume
statistics on various wind and sea state parameters. Discussion and a summary of the main findings are provided in
Sections 4 and 5, respectively.

Journal of Geophysical Research: Oceans 10.1029/2023JC019753

DERAKHTI ET AL. 2 of 29

 21699291, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

019753 by U
niversity O

f W
ashington, W

iley O
nline L

ibrary on [18/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2. Methods
2.1. Data

The present data set includes observations of wind, waves, air and sea temperature, near‐surface turbulence, time‐
depth images of acoustic backscatter (referred to as echograms), above‐ and subsurface optical imagery obtained
by freely drifting surface‐following SWIFT buoys (Thomson, 2012; Thomson et al., 2019), along with concurrent
shipboard measurements of wind, temperature, and whitecap coverage. These data were collected during an 18‐
day research cruise in the North Pacific Ocean (Figure 1a) in December 2019. The primary objective of the cruise
was to conduct concurrent observations of breaking surface gravity waves and the associated bubble plume
statistics. The secondary objective involved the replacement of a long‐term moored wave buoy at Ocean Station
PAPA (50°N, 145°W), which reports as CDIP 166 and NDBC 46246. Hereafter, we refer to the present data set
and cruise with the abbreviation PAPA.

The PAPA cruise, conducted aboard the R/V Sikuliaq, departed Dutch Harbor, AK, on 5 December 2019 and
ended in Seattle, WA, on 23 December 2019. Arrays of SWIFT buoys were deployed from the ship early in the
morning and usually recovered later the same day. Most shipboard and autonomous measurements were con-
ducted during local daylight hours, while eastward transits continued overnight. Figure 1a shows the PAPA cruise
track and the average locations of SWIFT buoys during each deployment along the transit. Figures 1b and 1d
illustrate the wide range of sea state conditions in the PAPA data set, including U10N(0.8–22 m s− 1), Hs(2.2–
10.0 m), Tm = f − 1m (6.6 − 11.6 s), Tp (6.5 – 14.6 s), Tair − Tsea (− 4.4–1.2°C), cm /U10N(0.6 – 17.5), dU10N/dt
(− 10.2–6.9 m s− 1/hr). These conditions encompassed a storm near Station PAPA with sustained wind speeds
reaching up to 22 m s− 1 and significant wave heights up to 10 m.We note that a significant portion of the data was
collected in the presence of persistent rain, although rain rates were not measured.

Raw SWIFT data were collected at sampling rates ranging from 0.5 to 5 Hz in bursts lasting 512 s, with intervals
of 12 min. Processed SWIFT data, including wave spectra and bubble plume statistics, are produced for each burst
for each buoy. Subsequently, concurrent bursts are averaged among the buoys, typically involving four of them.
During the cruise, more than 2,000 bursts of data were collected by arrays of two to six SWIFT buoys. A total of
599 processed data points are obtained at 12‐min intervals, spread across 14 daylight deployments. The statistics
obtained from the shipboard measurements, such as wind speeds and whitecap coverage, represent 10‐min
average values at times that the processed SWIFT data points are produced.

Two versions of SWIFT buoys were concurrently used here, the third generation buoys have uplooking Nortek
Aquadopp Doppler sonars (Thomson, 2012), and the fourth generation buoys have downlooking Nortek
Signature1000 Doppler sonars which enable synchronous measurements of acoustic backscatter (i.e., echo-
grams), broadband Doppler velocity profiles, and HR turbulence profiles through the near‐surface layer
(Thomson et al., 2019). This new SWIFT capability allows us to quantify the penetration depths of bubble plumes
in a surface‐following reference frame, with raw data capturing the time evolution within individual waves (i.e.,
phase‐resolved).

This section provides a detailed description of the methodologies we use to process echogram data and obtain
bubble plume statistics. The instrumentation and methods that are used to obtain the remaining environmental
variables and statistics, such as wind speeds, wave spectra, and whitecap coverage, are described in several
previous observational studies (Schwendeman & Thomson, 2015a; Thomson, 2012; Thomson et al., 2016, 2018),
and will be briefly summarized here for convenience.

2.2. Wind Statistics

We calculate the neutral 10‐m wind speed U10N (Figure 1b) following the method outlined by Hsu (2003) from
wind speed measurements at 10 Hz, which are corrected for ship motion and airflow distortion. These mea-
surements were obtained by three shipboard sonic anemometers (Metek Omni‐3) at approximately 16.5 m height
above the sea surface. The mean U10N values are obtained from 10‐min bursts of raw data. We note that the
atmospheric stability (Tair − Tsea) effect is often neglected when estimating 10‐m wind speed. Alternatively,U10N

is sometimes approximated using the mean wind profile power law, given by UPL
10 = Uz(10/z)1/7. Figure 1b

shows the observed range of shipboard measurements for UPL
10 = U16.5(10/16.5)1/7 (solid line) and the estimated

U10N values (circles). These estimates are provided for the times the processed SWIFT data are produced.
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During the PAPA cruise, the atmospheric stability was predominantly negative, with Tair − Tsea ranging between
− 4.4 and 1.2°C, as shown in Figure 1d. These values indicate unstable atmospheric boundary layer conditions.
Figure 2a illustrates that, in unstable atmospheric conditions,U10N values are larger thanUPL

10 by a margin ranging
from 2% to 30%. These differences tend to decrease with increasing wind speed or higher Tair − Tsea values.
Furthermore, Figure 2a demonstrates that the discrepancies between U10N and UPL

10 values remain within 2% for
stable atmospheric conditions (i.e., Tair − Tsea > 0).

Figure 1. Overview of (a) the cruise track (solid line) and average locations of the drifting SWIFT buoys (circles) during each
deployment along the transit, and (b–d) the observed range of environmental conditions. Here U10N, Hs, fm, Tair, and Tsea
represent 10‐min average neutral wind speed at 10 m above the sea surface, significant wave height, spectrally‐averaged
wave frequency, and air and water temperature, respectively. The color code in (b) and (d) shows the wave age and the air‐
side friction velocity, respectively. In (b), the horizontal line segments indicate the intervals during which data were collected
in the presence of persistent rain (rain rates were not measured). Local water depths during most of the deployments were
greater than 4,000 m.
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The friction velocity u∗ of the airflow can be readily estimated using a modified logarithmic mean wind profile
(Hsu, 2003), which accounts for atmospheric stability effects. Additionally, the air‐side friction velocity is
independently estimated using the inertial dissipation method, assuming neutral atmospheric stability, as
described in Thomson et al. (2018) and Yelland et al. (1994). However, robust estimates of u∗ are only achieved
for a fraction of the time due to the strict requirements that the ship's heading is within 60° of the wind and that the
turbulent wind spectra match an expected frequency to the power of − 5/3 shape. Figure 2b presents the two
estimates of u∗ against U10N during the PAPA cruise, with mean u* values calculated over 10‐min bursts. For

Figure 2. Observed range of wind and wave statistics against U10N (m/s) and equilibrium‐range mean square slope mss/Δf (s) (Equation 2). All variables are defined in
Sections 2.2 and 2.3.
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reference, the corresponding data from Schwendeman and Thomson (2015a), where u∗ values were estimated
using the inertial dissipation method, are also compiled in Figure 2b. Note that, for all relevant analyses in this
study, we use the u∗ values obtained from the modified logarithmic mean wind profile method (Hsu, 2003).

2.3. Wave Statistics

Wave spectral information, which includes the wave power spectral density E( f ) (m2s) and the frequency‐
dependent directional spread Δθ( f ), is obtained from a combination of GPS and IMU measurements collected
by the SWIFT buoys. These measurements cover the frequency range of 0.01–0.49 Hz with a resolution of
0.012 Hz, as described in Schwendeman and Thomson (2015a) and Thomson et al. (2018). As detailed below,
several bulk and spectral wave parameters are then calculated using E( f ) and Δθ( f ).

Figure 2c shows examples of the observed E( f ), color‐coded based on the corresponding U10N values, for
U10N > 10 m s− 1. The two vertical dotted lines in Figure 2c denote the equilibrium range, defined by Schwen-
deman and Thomson (2015a), which spans from

̅̅̅
2

√
fm to

̅̅̅
5

√
fm. In this frequency range, the spectra approximately

decay as f− 4, consistent with the observations of Schwendeman and Thomson (2015a). Here, fm represents the
spectrally‐weighted mean frequency, calculated as

fm =
∫ f E( f )df
∫ E( f )df

. (1)

Figure 2d shows the observed range of two commonly used alternatives for a characteristic wave period T, the
peak wave period Tp = f − 1p and the mean wave period Tm = f − 1m (Equation 1), as a function ofU10N. Figure 2d also

shows the wind sea mean wave period Tws
m = ( f ws

m )
− 1, where f ws

m calculated as given by Equation 1 but over the
wind sea portion of the observed wave spectra Ews( f ). Here Ews( f ) is estimated using a 1D wave spectral par-
titioning technique following Portilla et al. (2009). The solid lines in Figure 2d represent the Tm and Tp values
predicted by the Pierson‐Moskowitz spectrum, a representative spectrum of fully developed wind‐driven seas.

Figure 2e shows the observed range of several characteristic wave heights as a function of U10N, with
Hs = 4(∫E( f )df )1/2 the total significant wave height,Hp = 4(∫

1.3 fp
0.7 fp E( f )df )1/2 a peak wave height (after Banner

et al. (2000)), and Hws
s = 4(∫Ews( f )df )1/2 the wind sea significant wave height. Two estimates of the significant

wave height of fully developed seas Hs,fd (solid lines) given by Carter (1982) and Chen et al. (2002) are also
plotted in Figure 2e. Results shown in Figures 2d and 2e indicate that significant swell is present at moderate and
calm winds in the PAPA data.

Several estimates of the corresponding wave age are presented in Figure 2f, where cp and cm are the wave phase
speeds corresponding to fp and fm, respectively. These results show that a significant portion of the PAPA data at
high winds (U10N ≥ 15 ms− 1) are characterized as developing seas (cp /u∗ < 30 or cp /U10N < 1.2), and that
equilibrium seas (cp /u∗ ≈ 30 or cp /U10N ≈ 1.2) are mostly observed at moderate winds.

It is generally accepted that the wave steepness (or slope), defined as S= Hk/2 withH and k being a characteristic
wave height and wavenumber, is the most relevant local geometric wave parameter to characterize surface gravity
wave breaking and related processes in deep water (Perlin et al., 2013). Several formulations have been proposed
to quantify a representative wave steepness in a wave‐averaged sense which are either defined based on wave
spectral information (Banner et al., 2002) or bulk wave parameters (Banner et al., 2000).

A measure of mean square slope (mss) over a frequency range f1 ≤ f ≤ f2, as proposed by Banner et al. (2002), is
calculated as

mss =∫
f2

f1
k2E( f )df =∫

f2

f1

(2πf )4

g2
E( f )df , (2)

and is shown to be a skillful spectral steepness parameter for predicting wave breaking statistics in the open ocean
(Brumer et al., 2017; Schwendeman& Thomson, 2015a). Many field observations of the speed of visible breaking
wave crests (Gemmrich et al., 2008; Kleiss & Melville, 2010; Melville & Matusov, 2002; Phillips et al., 2001;

Journal of Geophysical Research: Oceans 10.1029/2023JC019753

DERAKHTI ET AL. 6 of 29

 21699291, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

019753 by U
niversity O

f W
ashington, W

iley O
nline L

ibrary on [18/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Thomson & Jessup, 2009; Schwendeman et al., 2014; Sutherland & Melville, 2013) have shown that most of
surface gravity wave breaking occurs at frequencies noticeably greater than the frequency at the peak of E( f ), fp,
with most frequent breaking occurring at ≈2fp. We note that fm /fp varies between 0.9 and 1.6 in the PAPA data
(Figure 2d) where most of the fm /fp values are within a range (1.1–1.4), and that the Pierson‐Moskowitz spectrum
gives fm /fp ≈ 1.30. Following Schwendeman and Thomson (2015a), here we take an equilibrium range mss
calculated over a frequency range

̅̅̅
2

√
fm ≤ f ≤

̅̅̅
5

√
fm (2km ≤ k ≤ 5 km, cm/

̅̅̅
5

√
≤ c ≤ cm/

̅̅̅
2

√
), which is related to an

average spectral steepness of a significant portion of visible breaking waves, especially in developed and equi-
librium sea states.

Figures 2g and 2h show the variation of the equilibrium range mss and mss/Δf (Δf = (
̅̅̅
5

√
−

̅̅̅
2

√
)fm) against

U10N, all color‐coded based on the corresponding wind accelerations dU10N/dt defined as the rate of change of
U10N over 1.5 hr, in the PAPA data together with the corresponding data from Schwendeman and Thom-
son (2015a). Figures 2g and 2h also show the corresponding values that are obtained from the Pierson‐Moskowitz
spectrum, which is a representative spectrum of a fully developed sea under constant wind (dU10N/dt = 0), given
by [mss]PM ≈ 0.436α (α = 8.1 × 10− 3) and [mss/Δf]PM ≈ παg− 1U10N. Figure 2g also shows that the observed
equilibrium range mss in equilibrium, developing, and old seas are, on average, consistent with, greater, and
smaller than those predicted by the Pierson‐Moskowitz spectrum, respectively. Further, our observations
corroborate the analytical relations obtained from the Pierson‐Moskowitz spectrum, that is, equilibrium rangemss
is independent of wind speeds and mss/Δf ∝ U10N in fully developed seas with constant winds. Further, Figure 2i
shows the corresponding wind sea mssws/Δf values where mssws is calculated as given by Equation 2 but using
Ews( f ) over a frequency range

̅̅̅
2

√
fm ≤ f ≤

̅̅̅
5

√
fm.

Schwendeman and Thomson (2015a) and Brumer et al. (2017) used a normalized mss parameter, mss/(ΔfΔθ),
where Δθ is the average of Δθ( f ) over

̅̅̅
2

√
fm ≤ f ≤

̅̅̅
5

√
fm and reported a decrease of data scatter in their plots of

whitecap coverage against mss/(ΔfΔθ) compared to mss. At any given wind speed, the mss/(ΔfΔθ) values in the
present data are, on average, greater than those in Schwendeman and Thomson (2015a) despite consistentmss and
mss/Δf values in both data sets. We note thatmss/(ΔfΔθ) can not be defined in a long‐crested wavefield or from a
1D wave spectrum. We further note that Δθ is sensitive to the type of buoy and method of processing (Donelan
et al., 2015), such that values may not be directly comparable between data sets. Here we avoid the directional
normalization and choose the equilibrium range mss/Δf as a representative measure of spectral steepness of
dominant breaking waves.

The observed range of several bulk steepness parameters, including the significant spectral peak steepnessHpkp /2
(after by Banner et al. (2000)) and the significant wave steepness Hskp /2, against mss/Δf are shown in Figures 2j
and 2k. Here the peak kp and mean kmwave numbers are obtained from the linear gravity wave dispersion relation
given by k = (2π)2 g− 1 T− 2. Consistent with the literature, we consider these bulk steepness parameters here.

Finally, several dimensionless bulk parameters with general forms of

RH = u∗H/νw, (3)

and

RB = u 2
∗ / (2πT − 1νw), (4)

where νw ≈ 1.4 × 10− 6 m2s− 1 is the kinematic viscosity of seawater for Tw ≈ 9°C, are considered. These pa-
rameters represent combined effects of wind forcing and wave field and are shown to have skills in predicting
oceanic whitecap coverage (Brumer et al., 2017; Scanlon &Ward, 2016; Zhao & Toba, 2001). Figure 2l shows the
variation of RHeq

= u∗Heq/νw and Rm
B = u 2

∗ / (2πT − 1m νw) parameters as a function of the equilibrium range mss/Δf

in the PAPA data. Here Heq = 4[∫
̅̅
5

√
fm̅̅

2
√

fm
E( f )df ]

1/2
and Tm = f − 1m are taken as a characteristic wave height H and

period T, respectively.
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2.4. Whitecap Processing

The whitecap coverage data set in this study is the same as the North Pacific whitecap coverage data set described
in the recent study by Malila et al. (2022). This section provides a summary of the acquisition and processing of
the data set, much of which is equal or similar in terms of hardware and software to the study by Schwendeman
and Thomson (2015a).

Visual images of the sea surface were obtained using shipboard video camera systems located on both the port and
starboard sides of the vessel. The cameras, of model PointGrey Flea2 equipped with 2.8 mm focal‐length lenses,
recorded at a rate of 5–7.5 frames per second during daylight hours. A total of 60 hr of image data were collected
while the ship was stationary, with most of the data coinciding with SWIFT buoy deployments and recoveries.
The duration of the video acquisitions varied between 5 and 60 min. However, the final mean whitecap coverage
W values were obtained over 10–20‐min bursts. EachW value represents a 10‐min average of consecutive frames.

The image processing of the grayscale video frames to estimate whitecap coverage closely followed the approach
outlined in Schwendeman and Thomson (2015a). First, corrections were applied to account for ship motion
induced by waves (i.e., pitch and roll). This correction was achieved using a slightly modified version of the
horizon tracking algorithm described in Schwendeman and Thomson (2015b). Subsequently, the stabilized im-
ages were geo‐rectified and transformed onto regular grids with a resolution of 0.8 m. The whitecap‐related foam
was isolated from the stabilized, geo‐rectified, and gridded frames using the pixel intensity thresholding algorithm
described by Kleiss and Melville (2011). The frame‐wise fractional whitecap coverage was then computed as the
ratio of pixels detected as belonging to whitecaps (given a value of one) to the total number of pixels in the frame.
A subset of the original and thresholded frames in each burst was visually quality‐controlled for satisfactory
image exposure and lens contamination (e.g., raindrops or sea spray). Only image sequences with consistent
lighting conditions and minimal lens contamination were included in the final data set.

2.5. Echogram Processing

Acoustic backscattering data were obtained using the echosounding capabilities of the downward‐looking beam
of the Nortek Signature1000 Acoustic Doppler Current Profiler (ADCP) mounted on the fourth generation
SWIFT buoys. During the PAPA cruise manufacturer firmware version 2205 was used. Sampling frequencies and
pulse repetition rates for the echosounder were 1 MHz and one second, respectively. A transmit pulse duration of
500 μs was used. The instrument provided a vertical sampling resolution of 1 cm, covering a depth range of
0.3 m≤ zw ≤ 30.3 m, with zw being positive downward and zw= 0 representing the instantaneous free surface level
after accounting for the depth of the unit on the SWIFTs. The echosounder mode operated in 512‐s bursts,
collected in the surface‐following reference frame, from which echograms are presented. Considering the size of
the transducer and the operational frequency, we estimate that the acoustic near‐field of the echosounders, defined
as in Medwin and Clay (1998), extends to less than 1 m. To minimize potential impacts from the acoustic near‐
field, only data obtained from ranges greater than 1 m from the transducer face are presented (i.e., within the depth
range of 1.3 m ≤ zw ≤ 30.3 m).

As detailed below, the penetration depths of bubble plumes are estimated based on the volume backscattering
strength. Volume backscattering strength Sv (dB re m

− 1) represents the logarithmic form of the backscattering
cross‐section per unit volumeMv as given by Vagle et al. (2010). When the signal is dominated by the presence of
bubbles, as is the focus in this paper, this is described by

Sv = 10log10Mv = 10log10∫
∞

0
σs (ab)N(ab) dab

= 10log10(10
Pr
10 − 10

Nt
10) + 20log10r + 2αr + Gcal − 10log10 (

cτ
2
) − ϕ,

(5)

where σs (ab) = 4πa2b/ ([( fR/ f )2 − 1]
2
+ δ2) (m2) is the scattering cross‐section for a bubble with radius ab (m)

and N(ab) is the bubble size distribution. The use of the upper limit of integration (infinity) is consistent with prior
formulations (e.g., Vagle & Farmer, 1992) and is retained here. However, in practice, there is typically a practical
limit to the maximum bubble size, and this theoretical limit can be replaced with a term representing the maximum
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bubble size. The terms in this integral represent an important aspect of acoustic scattering from bubbles, which is
strongly dependent on bubble size and frequency due to the presence of a strong resonance peak. At sea level, this
strong resonance peak occurs at kab ∼ 0.0136, where k is the acoustic wavenumbers (Medwin, 1977a). While
acoustic scattering is strongest at resonance, scattering at higher frequencies is driven by the geometric cross‐
section. In cases involving relatively large bubbles, this off‐resonance scattering can even exceed the back-
scattering contributions from higher densities of smaller bubbles. Thus, the observed acoustic backscattering at a
given frequency is generally determined by the combined contributions from the entire size distribution of
bubbles.

In practical applications, acoustic scattering is typically measured using instruments like echosounders, which
operate at a single frequency or across a specific frequency spectrum. The third representation in Equation 5
corresponds to the implementation of the sonar equation, where Pr represents the received signal including noise,
Nt denotes the noise threshold, r is the range from the transducer to the scattering source, α represents the
attenuation coefficient, c is the speed of sound in the water, τ is the transmit pulse duration, ϕ corresponds to the
equivalent beam angle of the transducer, and Gcal is a gain factor that accounts for a configured transmit power
level of the transducer (see Appendix A for additional details). Gcal was determined by using standard calibration
techniques commonly used for echosounders (Demer et al., 2015). In practice, Pr represents the received intensity
of the signal scattering by the distribution of bubbles in keeping with the integral representation, while the
remaining terms represent bookkeeping consistent with system operations and sound propagation. We note that
we identified issues with the saturation of the signals associated with system gains during calibration. This results
in saturated signals at short ranges when measured backscattering intensity is high, thereby truncating the dy-
namic range of the system at the upper end. A more comprehensive discussion of this issue can be found in
Appendix A. Future versions of the instrument firmware may avoid this saturation and enable valid measurements
at shorter ranges.

To estimate the average noise level of the transducer, we calculate burst‐averaged Pr values at large ranges at low
sea states at which the measured signal, not compensated for range and attenuation, does not vary with depth. At
these ranges, we assume that, due to transmission losses and the weak scattering in the water column, the system is
simply measuring its own electrical noise and that increases in Sv are driven primarily by the addition of the time‐
varying gain components in Equation 5. This approach is consistent with those often applied in fisheries acoustics
applications (e.g., De Robertis & Higginbottom, 2007). In our analysis, we found an average noise level of
approximately 22 dB and set Nt = 26 dB, that is, only echogram data values with Pr > Nt are considered for the
bubble statistics analysis. We note that future firmware revisions and variations in internal processing parameters
may result in different noise thresholds and calibration gains.

To estimate the local penetration depth of entrained bubbles, we first need to identify a threshold Sth
v below which

the backscatter signal indicates the absence of signals associated with entrained bubbles exceeding the back-
ground conditions. These background conditions may be driven by populations of residual bubbles or biological
backscattering in the upper water column. Note that the mixed layer depth was always greater than 40 m in areas
sampled during the PAPA cruise; thus, acoustic scattering from stratification or turbulent microstructure can be
neglected.

The local penetration depth of entrained bubbles is then defined relative to the instantaneous free surface level
(zw = 0) at the vertical level Zb, in the surface‐following reference frame, at which Sv > Sth

v for zw ≤ Zb; otherwise
Zb = NaN (Not‐a‐Number). We note that this thresholding technique to estimate bubble penetration depth is
analogous to the pixel intensity thresholding commonly used for whitecap coverage estimations (see Section 2.4).
Similar thresholding techniques have been used by previous studies (Dahl & Jessup, 1995; Thorpe, 1986; Tre-
vorrow, 2003; Vagle et al., 2010; Wang et al., 2016) with empirical Sth

v values ranging from − 70 to − 50 dB re m
− 1

using sonars with operating frequencies ranging between ≈20 and ≈200 kHz. Hereafter, we refer to this bubble
detection method as BDM1.

We identified the time between 18:00 and 19:00 UTC on December 16 as a period with relatively calm sea surface
conditions and minimal white capping during which no visible bubbles and surface foam were observed in the
above‐surface and subsurface images collected by the cameras integrated on SWIFT buoys, as well as in the
images from the shipboard cameras. Furthermore, Figure 1b shows that the wind speeds just before the
deployment of the SWIFTs on December 16 were less than 3 m s− 1 for several hours. Figure 1b also shows that
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although the wind speed was increasing during the rest of the day in the presence of steady rain, it remained below
5 m s− 1 between 18:00 and 19:00 UTC. These observations suggest that this is a suitable period for establishing
baseline levels for near‐surface backscattering, with negligible contributions of bubbles injected by active
breaking at the surface.

The baseline can be established by using statistical averages of the Sv from this relatively calm period with low
levels of observed volume backscattering. Figure 3a shows an example echogram, above‐surface image, and
vertical profiles of burst‐averaged and top 10%‐averaged of Sv values just after the low backscattering conditions
on December 16, as described above. The echogram data during low‐backscattering conditions reveals that
significant portions of the corresponding Sv values vary between − 90 and − 75 dB re m

− 1, with the burst‐averaged
values, Sv, less than − 80 dB re m− 1. We also found that Sv < − 80 dB re m− 1 holds for the rest of calm sea state
conditions (U10N < 3 m s− 1, dU10N/dt < 1 m s− 1/hr) within the PAPA data. We take Sth

v = − 70 dB re m
− 1 (as in

Figure 3. Examples of a depth‐time map (echogram) of the volume backscattering strength Sv (dB) in (a) and (b) a rapidly evolving sea with different sea state conditions
(but steady rain) on UTC December 16 and in (c) and (d) a storm with sustained wind speeds of U10N > 18.0 m s− 1 on UTC December 11. In (a), the signal represents
observations just after a steady calm sea state with minimumwhitecapping and is expected to be mainly from scattering particles or bubbles not associated with breaking
waves. The subsurface optical images in (e)–(j) correspond to the time instants t1–t6 marked by the vertical dashed lines in (d) and are collected by a GoPro camera
mounted on the SWIFT buoy. Above‐surface optical images in (a)–(d), taken from a camera on the ship's bridge, show a snapshot of the surface wave field within the
time range of the corresponding echogram. Dotted‐dashed and solid contours indicate Zb and zb, the two estimates of the local penetration depth of entrained bubbles
defined in Section 2.5. Echograms are collected by a downward‐looking echosounder integrated on SWIFT buoys in a surface‐following reference frame zw, where zw is
positive downward, and zw = 0 represents the instantaneous free surface level.
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Vagle et al. (2010)) to distinguish between regions with and without the presence of recently entrained bubbles in
the water column.

Even very low bubble void fractions, O(10− 7) or less, can result in Sv values greater than Sth
v due to the relatively

strong acoustic backscattering response of bubbles (Czerski et al., 2022a; Dahl & Jessup, 1995), even when they
are sampled well above resonance. For reference, at 1 MHz, bubble radii from approximately 3–7 μm would be
resonant in the upper water column (Medwin & Clay, 1998; Vagle & Farmer, 1998). Thus, the measured
backscattering reflects backscattering from an unknown and evolving population of bubbles that are slowly
transported by their own buoyancy and/or local currents and turbulence.

We define another estimate of the local penetration depth of entrained bubbles as the depth zb (≤Zb) at which
Sv > Sth

v for zw ≤ zb and Sv > Sth
v + 20 dB for zb /2 ≤ zw ≤ zb; otherwise zb=NaN. In this definition, the penetration

depth is defined by the depth at which the volume backscattering signal continuously exceeds the specified
threshold at the surface, and Sv values deeper in the water column exceed background thresholds by at least 20 dB.
Hereafter, we refer to this bubble detection method as BDM2.

Figure 3 shows examples of echogram data and the corresponding Zb (obtained from BDM1, dotted‐dashed lines)
and zb (obtained from BDM2, solid lines) values during a developing sea on December 16 just after the relatively
bubble‐free condition described above (panels a and b) and during a storm with sustained wind speeds of greater
than 18 m s− 1 on December 11 (panels c and d). Additionally, Figure 3 shows examples of subsurface optical
images, collected at times when Sv < Sth

v for 1.3 m ≤ zw (panel e), portions of Sv values are greater than Sth
v but

remain below Sth
v + 20 dB (panels f and g), and a portion of Sv values is greater than Sv > Sth

v + 20 (panels h, i, and
j). These images qualitatively demonstrate that the entrained surface bubbles at times at which both BDM1 and
BDM2 are satisfied, that is, Zb ≠ NaN and zb ≠ NaN, have significantly more subsurface visible optical signature
than those at times at which Zb ≠ NaN but zb = NaN. Comparing all available concurrent subsurface images and
echogram data, we conclude that a similar trend exists across all the PAPA data.

Although we cannot ultimately constrain the differences in void fractions or bubble populations using our
sampling method, we can confidently state that our second bubble detection criterion (BDM2) laid out above
identifies periods during which void fractions increase by a minimum of two orders of magnitude compared to the
first bubble detection criterion (BDM1). Under the simplest conditions where the bubble size distribution remains
constant, a 20 dB increase in backscattering would correspond to a void fraction increase of over two orders of
magnitude. This is driven by a linear relationship between backscattering and the number of scatterers as long as
the distribution remains unchanged or is not attenuated by high bubble volumes (Equation 5). Furthermore, the
high bubble void fractions following breaking waves may result in significant excess attenuation of the signals,
which is not accounted for in our analysis here (Bassett & Lavery, 2021; Deane et al., 2016; Vagle &
Farmer, 1998). Such observations have been reported at lower frequencies, where extinction cross‐sections for
resonant bubbles are much larger. However, we expect that the high void fractions following a breaking event will
also have a temporary impact on measured acoustic backscatter. As a result, increases in volume backscattering
following localized breaking events likely understate the increase in scattering that would otherwise be observed
from the bubble populations, given the transducer's location near the surface.

In general, zb values represent the local penetration depths of entrained bubbles with notably higher void fraction
and visible optical signature than those reaching Zb. This aligns with a broad range of prior observations
measuring bubbles in the upper ocean, which consistently show significant decreases in bubble densities with
increasing depth (Medwin, 1977b; Vagle & Farmer, 1998).

2.6. Defining Plume Penetration Depth and Residence Time

We define the mean, Dbp and Dbp,v, and significant bubble plume depths, D1/3
bp and D1/3

bp,v, as

Dbp =
∑

NZb
i=1 Z i

b
NZb

, Dbp,v =
∑

Nzb
i=1 z i

b
Nzb

, (6)

and
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D1/3
bp =

∑NZb
i=2NZb/3

Z i
b

NZb/3
, D1/3

bp,v =
∑Nzb

i=2Nzb/3
z i

b

Nzb/3
, (7)

where 1.3 m≤ Zi
b ≤ Zi+1

b ≤ 30.3 m, 1.3 m≤ zi
b ≤ zi+1

b ≤ 30.3 m (see Figure 3), and NZb
andNzb

are the total numbers
of the estimated Zb (obtained from BDM1) and zb (obtained from BDM2) values over available concurrent (1–4)
bursts (each burst includes more than 8 min of data) of echogram data, respectively.

Next, we define the residence time of bubble plumes, Tbp and Tbp,v, as an average of the highest one‐third of the
apparent residence time of bubble clouds, Tb and tb, detected in all concurrent bursts of the echogram data,
given by

Tbp =
∑NTb

i=2NTb/3
T i

b

NTb/3
, Tbp,v =

∑Ntb
i=2Ntb/3

t i
b

Ntb/3
, (8)

where Tb and tb represent the residence time of bubble clouds detected by BDM1 and BDM2, respectively, with
2 s≤ Ti

b ≤ Ti+1
b ≤ 512 s, 2 s≤ tib ≤ ti+1b ≤ 512 s, and NTb

and Ntb being the total numbers of bubble clouds detected
over the available concurrent (1–4) bursts.

These representative bubble plume residence times, as well as mean and significant bubble plume depths, are
obtained at 12‐min intervals coinciding with the availability of the wind and wave statistics. Hereafter the sta-
tistics of bubble plumes obtained from the bubble detection methods BDM1 and BDM2 (described in Section 2.5)
are denoted by ()bp and ()bp,v, respectively.

3. Results
In this section, we present observations of the residence time (Section 3.1) and the penetration depth (Section 3.2)
of bubble plumes as well as whitecap coverage (Section 3.3) as a function of various wind and sea state pa-
rameters defined in Section 2. Estimations of the volume of bubble plumes based on the measured whitecap
coverage and plume penetration depths are discussed in Section 3.1.

3.1. Bubble Plume Residence Time

Figure 4a shows a schematic of a SWIFT track drifting through an intermittent field of saturated (with visible
optical surface signature) and diffused (without visible optical surface signature) bubble clouds during a 512‐s
burst of data along which echogram data are collected in a surface‐following reference frame. The buoy has a
“wind slip” velocity relative to the surface waterUslip ≈ 0.01U10N that is caused by wind drag on the portion of the
buoy above the surface (Iyer et al., 2022). Note that the example SWIFT track shown here is calculated with
respect to the earth frame, so the example includes both the true surface current and the wind slip of the buoy
(which combine together to make the observed drift velocity of the buoy, typically Udrift ≈ 0.04U10N). Thus, the
apparent residence time of detectable bubble clouds (defined in Section 2.6) in echogram data could be shorter
than their true residence time due to the relative drift of the buoys. We also note that the apparent residence time of
each bubble cloud in echogram data is directly related to the way the buoy crosses the bubble cloud with respect to
its main axis, as visually illustrated in Figure 4a.

Figure 4b shows the variation of the bubble plume residence times Tbp and Tbp,v scaled by the wind sea mean wave
period Tws

m (defined in Section 2.3) for wind speeds greater than 6 m s− 1. Results indicate that the bubble plumes,
especially those detected by BDM1, persist in the water column much longer than the corresponding dominant
active breaking period, which is expected to be a fraction of Tws

m .

Figure 5 shows the subsurface visible signature of an example evolving bubble plume at several instances during
(panels (a1) to (a3)) and after (panels (a4) to (a8)) active breaking, collected by a GoPro camera on a SWIFT buoy
looking from behind (upwave) the breaking event in an old sea with moderate wind speeds ofU10N ≈ 11m s− 1 and
Tws

m ≈ 6s. Figure 6 also shows example subsurface images of two evolving bubble plumes during (panels (a–c)
and (e–f )) and after (panels d and g–h) active breaking during a storm with sustained wind speeds of
U10N > 18 m s− 1 and Tws

m ≈ 10s. These images qualitatively show that void fractions in the bubble plumes rapidly
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decrease after the active breaking period and that residual void fractions persist for many wave periods. These
observations are consistent with previous experimental (Anguelova & Huq, 2012; Blenkinsopp & Chaplin, 2007;
Lamarre &Melville, 1991) and numerical (Derakhti & Kirby, 2014, 2016; Derakhti, Kirby, et al., 2020; Derakhti,
Thomson, & Kirby, 2020; Derakhti et al., 2018) studies of laboratory‐scale breaking waves showing that average

Figure 4. (a) Schematic of a SWIFT track (with respect to the earth frame) drifting through an intermittent field of bubble
clouds during a 512‐s burst, along which echogram data are collected in a surface‐following reference frame, and
(b) apparent residence time of bubble plumes in echogram data against wind speeds. In (a) (x0, y0) is the initial horizontal
location of the buoy, and the black and red arrows show the dominant wave and wind directions, respectively. Subscripts bp
and bp, v denote the statistics corresponding to the bubble plumes obtained from the thresholding methods BDM1 and BDM2
(described in Section 2.5), respectively.

Figure 5. Example subsurface images collected by a GoPro camera on a SWIFT buoy showing the subsurface visible
signature of an evolving bubble plume in an old sea with moderate wind speeds of U10N ≈ 11 m s− 1.
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void fractions within bubble clouds vary from O(10%) to O(1%) during active breaking, and then drop rapidly by
several orders of magnitude within a few wave periods.

As discussed in detail in Section 2.5, plume regions with tiny bubble void fractions, for example, the diffused
bubble clouds shown in panels (a7) and (a8) of Figure 5, are still detectable in our sampling method. Assuming
that the scattering is dominated by bubbles with radii less than 100 μm, the low bubble rise velocities (i.e., a few
cm s− 1 or less) would yield bubble residence times ofO (minutes) which is consistent with the apparent residence
time of the bubble plumes detected by BDM1 (Figure 4b), here Tbp ≈ 100 s and ≈200 s for sea states similar to
Figures 5 and 6, respectively. Thus, the statistics of the bubble plumes detected by BDM1, referred to by subscript
bp, correspond to bubble plumes ranging from saturated plumes during active breaking to highly diffused plumes
that may remain in the water column long after active breaking (e.g., panel (a8) of Figure 5). These observations
also confirm that the bubble plumes detected by BDM2 in a given sea state represent plumes that have much
shorter residence times and much more visible optical signature than those detected by BDM1 but noticeably
exceed the persistence of visible surface foam formed during breaking, where Tbp,v ≈ 12 s and ≈40 s for sea states
similar to Figures 5 and 6, respectively.

3.2. Bubble Plume Penetration Depth

Example subsurface images of the bubble plume shown in Figure 5 illustrate that the average plume penetration
depth (and volume) rapidly increases during the initial phase of the bubble plume evolution (e.g., panels (a1)–
(a5), over several seconds). As shown in panels (a6)–(a8), the overall size of the plume keeps increasing for
several wave periods but at rates much lower than during active breaking. This is consistent with the evolution of

Figure 6. Example subsurface images collected by a GoPro camera on a SWIFT buoy showing the subsurface visible
signature of two different evolving bubble plumes in a storm with sustained wind speeds of U10N > 18 m s− 1.
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bubble plumes, turbulent kinetic energy (TKE), and dye patches in previous numerical and experimental studies
of laboratory‐scale isolated breaking focused waves (Derakhti & Kirby, 2014; Derakhti, Thomson, &
Kirby, 2020; Derakhti et al., 2018; Melville et al., 2002; Rapp &Melville, 1990). Large‐scale coherent structures
generated by wave breaking crests are among potential drivers of such slow but persistent transport of bubbles
long after active breaking (Derakhti & Kirby, 2014; Derakhti et al., 2016; Melville et al., 2002).

Figure 7 presents the variations in the mean (Equation 6) and significant (Equation 7) bubble plume depths as
functions ofwind speedU10N and equilibrium rangemss/Δf (Equation 2), alongwith the corresponding best fits. All
the plume depth measures show strong correlations with wind speed and mss/Δf, exhibiting data scatter smaller
than existing whitecap coverage data sets, including the PAPA data set shown in Figure 11 below. Because time‐
dependent bubble depths less than 1.3m are unavailable here, the resultant plume depth statistics are expected to be
biased high in lowwinds. Hereafter, the data points withU10N < 6m s− 1 are not considered in obtaining the relevant
fits and their statistics (This is also a typical minimum wind speed for visible whitecaps to occur.).

Of the bubble depths defined here (by Equations 6 and 7 above),Dbp is defined similar to previous studies (Strand
et al., 2020; Vagle et al., 2010; Wang et al., 2016). Our observations, as shown in Figure 7a, indicate that the mean
bubble plume depth Dbp could be as high as to 14 m at U10N ≈ 20 m s− 1. This is in good agreement with the
observations of Vagle et al. (2010) and Strand et al. (2020).

Figure 7. Observed range of (a) and (b) mean (Equation 6) and (c) and (d) significant (Equation 7) bubble plume depths
against wind speed U10N and the equilibrium range mss/Δf. Fits are obtained from the least squares fitting to the binned data
points (large circles). Subscripts bp and bp, v denote the statistics corresponding to the bubble plumes obtained from the
thresholding methods BDM1 and BDM2 (described in Section 2.5), respectively.
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The black solid line in Figure 7a represents the best fit to the binned Dbp values with a power law form given by

Dbp = 0.092 [U10N]
1.58 (9)

with r2 = 0.90 defined as in Equation 13 below. As shown in Figure 7a, the linear fit by Vagle et al. (2010) also
well describes the observed variability of Dbp for moderate winds. However, for high winds, the relationship
betweenDbp and wind speed becomes nonlinear, and theDbp values are, on average, greater than those reported by
Vagle et al. (2010). This underprediction of Dbp at high winds in Vagle et al. (2010) could be simply due to the
linear extrapolation of Sv at depths greater than 8 m (see their Figure 3). Additionally, Wang et al. (2016) also
found a nonlinear relationship between mean bubble depth and wind speed at high winds. However, their mean
bubble depths are significantly higher (a factor of 1.5–2) than the present (and other) observations. We note that
the averaging time used to obtain Dbp at high winds is 8 or 16 min (depending on available concurrent bursts),
which is comparable to that in Wang et al. (2016).

At any given wind speed, individual breaking events could generate bubble clouds with penetration depths much
higher than Dbp. For example, Figure 3c documents an example individual bubble cloud with a penetration depth
of ≈30 m, which is approximately three times greater than the corresponding average bubble plume depth (e.g.,
Equation 9). Figure 8 illustrates that the Rayleigh distribution could reasonably describe the observed probability
distribution function (PDF) of the Dbp values at various wind speeds, especially for Dbp > Dbp. Assuming the
Rayleigh distribution for Dbp, we obtain the significant bubble depth as D1/3

bp ≈ 1.6Dbp, which is consistent with

our observations, especially forU10N > 10 m s− 1. The best fit to the observed binnedD1/3
bp values with a power law

form (black solid line in Figure 7c) is obtained as

D1/3
bp = 0.13[U10N]

1.63, (10)

with r2 = 0.92. Additionally, assuming the Rayleigh distribution for Dbp, the maximum bubble depth can be
further approximated as

Dmax
bp ≈ 2D1/3

bp ≈ 3.2Dbp. (11)

As explained in detail in Section 2.5 and consistent with observations shown in Section 3.1, at a given sea state
condition,Dbp,v represents the penetration depth of bubbles that have, on average, at least two orders of magnitude
more void fraction and significantly more visible optical signature than those reaching Dbp. Figure 8 shows that
the population of the bubble plume depthDbp,v values around their mean is considerably elevated compared to that
in Dbp, and that the observed PDF of Dbp,v is better described by the Gamma distribution. Furthermore, our
observations show that D1/3

bp,v/Dbp,v varies, on average, from 1.2 at low winds to 1.5 at high winds and that, in

contrast to D1/3
bp , D1/3

bp,v has an approximately linear relationship with wind speed, as shown in Figure 7. Addi-

tionally, they indicate that the ratio D1/3
bp,v/D1/3

bp decreases with increasing wind speeds, varying from ≈1 at low
winds to ≈0.6 at high winds.

We assess the predictive skill of several wind and wave parameters, commonly used in whitecap coverage pa-
rameterizations, for bubble plume depths D1/3

bp and D1/3
bp,v. We evaluate the predictive performance of each pre-

dictorX (e.g.,U10N, u∗, mss/Δf, S, R, … , all defined in Section 2) by calculating the best fit with a power law form
aXn to the binned D1/3

bp and D1/3
bp,v values using the least squares method. We then compare the resulting fit sta-

tistics obtained over all individual data points with U10N ≥ 6 m s− 1. Bins containing fewer than four bursts of data
are excluded for the data fitting process. We evaluate the overall quality of the fits using two metrics: the root‐
mean‐square error (RMSE) and the coefficient of determination r2, given by

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σi=N
i=1 D2

res,i

N

√

, (12)
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and

r2 = 1 −
Σi=N

i=1 D2
res,i

Σi=N
i=1 (Di − Di)

2 , (13)

where Dres,i = Di − [a (Xi)
n
] , Di represents either D1/3

bp or D1/3
bp,v, N is the number of observations, and the overbar

indicates an average over all the considered data points. In this context, RMSE, defined in linear space, quantifies
the average deviation from the fit, while r2 measures the proportion of the observed variability in bubble plume
depths that can be predicted from the X parameter. A perfect fit corresponds to RMSE ∼ 0 and r2 ∼ 1.

Table 1 summarizes the coefficients (a and n) and statistics (RMSE, r2) of the best fits, aXn, to the PAPA data for
several predictive parameters X. Of all the parameters considered here, U10N exhibits the highest skill in pre-
dicting the observed variability of both D1/3

bp and D1/3
bp,v. Results summarized in Table 1 also demonstrate that the

equilibrium range mss/Δf and HsKm /2 show the highest skill among the spectral and bulk wave steepness pre-
dictors, respectively. For each type of the predictors considered here, those that contain either the peak wave
height, peak wave number, or peak wave period show the least skill. These results also hold for the mean bubble
plume depths statistics Dbp and Dbp,v.

We now investigate the variations of scaled bubble plume penetration depths across different sea states. Our
observations indicate that D1/3

bp (with the note that Dbp ≈ 0.6D1/3
bp ) ranges from approximately 0.4Hs to 4.8Hs and

from about 0.01Lm to 0.20Lm for wind speeds exceeding 6 m s− 1 (as shown in Figure 9), where Hs represents the
significant wave height, and Lm = 2π/km denotes the mean wavelength. These findings align well with the pre-
viously reported ranges of scaled mean bubble depths observed in the field (Strand et al., 2020; Thorpe,1986;
Wang et al., 2016).

Bulk wave statistics Hs and Lm (or Hp and Lp) may be completely uncorrelated with the scales of the corre-
sponding wind sea (and dominant breaking waves) in the presence of proportionally significant swell, such as in
low and moderate winds (U10N < 15 ms− 1) in the PAPA data set, as illustrated in Figures 2d and 2e. Thus, we also
consider the wind sea significant wave height Hws

s and mean wavelength Lws
m as scaling parameters here. Our data

show that D1/3
bp varies from ≈1.4Hws

s to ≈9.2Hws
s and from ≈0.06Lws

m to ≈0.33Lws
m for wind speeds greater than

6 m s− 1 (Figure 9).

Furthermore, the corresponding binned data indicate that D1/3
bp varies from approximately 2.4 to 4.4 times Hws

s ,
and approximately from 0.11 to 0.2 times Lws

m (with Dbp varying roughly from 1.6 to 2.8 times Hws
s , and

approximately from 0.07 to 0.13 times Lws
m ). Interestingly, the observed range of these scaled bubble plume depths

is comparable with the scaled penetration depth of TKE and dye patches reported in previous numerical and
experimental studies of isolated breaking focused waves (Derakhti & Kirby, 2014; Derakhti, Thomson, &
Kirby, 2020; Derakhti et al., 2018; Melville et al., 2002; Rapp & Melville, 1990), although the length scales of
these laboratory‐scale breaking waves are one to two orders of magnitude smaller than those of the dominant
breaking waves in the PAPA data sets.

Figure 8. Probability distribution function, PDF, of the estimated bubble depths at different wind speed ranges. Dotted and
dashed lines show the fitted Rayleigh and Gamma distributions to the observed PDFs.
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Figures 9 and 10, illustrating the dependency of scaled plume depths on wind
speed and wave age, reveal intriguing trends. Similar trends are observed for
the other scaled plume depths considered in our data set. Our data reveals that
all the scaled bubble plume penetration depths considered here exhibit non‐
monotonic variations with increasing wind speeds. However, on average,
they all display decreasing trends with respect to wave age in developing seas
(i.e., cp /U10N < 1.2). In other words, during the early stages of a young sea
(i.e., cp /U10N ≪ 1.2), the scaled bubble plume penetration depth, scaled by
either significant wave height or mean wavelength, tends to be substantially
greater (often two times or more) than in equilibrium sea states (i.e., cp /
U10N ≈ 1.2). Previous field observations revealed that the former is dominated
by plunging breaking waves Thorpe (1992), while the dominant breaker type
in the latter is expected to be spilling breaking. Notably, prior numerical and
experimental studies of laboratory‐scale breaking waves have consistently
demonstrated that bubbles (and the associated breaking‐generated turbulence)
penetrate, on average, deeper beneath plunging breakers compared to spilling
breakers of equivalent length scales, especially during active breaking periods
(Derakhti & Kirby, 2014; Derakhti, Kirby, et al., 2020; Derakhti, Thomson, &
Kirby, 2020; Derakhti et al., 2018; Melville et al., 2002; Rapp & Mel-
ville, 1990). Hence, the observed dependence of scaled bubble plume pene-
tration depths on wave age in developing seas, as illustrated in Figure 10, can
be attributed to the change in dominant breaker types. We note that our
observed dependence of scaled bubble depth on wave age is consistent with
the dependence of bubble‐mediated gas flux on wave age reported by Liang
et al. (2017).

Furthermore, our results reveal a monotonic decrease in scaled bubble plume
penetration depths, scaled by eitherHs or Lm, with increasing wave age across
the observed range of sea states in the PAPA data set, spanning from
developing to old seas. Specifically, our data indicates that D1/3

bp /Hs has a
linear relationship with the inverse of wave age, given by

D1/3
bp

Hs
= 2.42[

cp

U10N
]

− 0.96

. (14)

This relationship, shown by the solid line in Figure 10a, exhibits relatively
small data scatter with r2 = 0.77. Assuming an approximately linear rela-
tionship between U10N and air friction velocity (Figure 2b), our findings in
Figures 10a and 10b and Equation 14 align with the corresponding results
reported in Wang et al. (2016).

3.3. Whitecap Coverage and Its Relation With Bubble Plume Depths

Existing parameterizations of oceanic whitecap coverage W generally take a
threshold power law form W = a (X − b)n, where X is a selected predictive
parameter (e.g., U10N, u∗, mss/Δf, S, R, … , all defined in Section 2). The
coefficients a, b, and n are empirically determined through best‐fit curve
fitting, minimizing the sum of the squares of the log residuals
Wres = log10W − log10 [a (X − b)n] . This approach ensures that equal weight
is given to W data across several orders of magnitude.

It is widely recognized that various environmental factors contribute to the scatter in whitecap variability for a
given predictive parameter X. These factors may include surfactants, salinity, wind fetch and duration, wind
history, surface shear, and rain. However, these secondary effects are generally thought to have a relatively minor
impact on the mean values of W. Consequently, we obtain the corresponding best fits over the binned data as in

Table 1
Parameterizations of Significant Bubble Plume Depths D1/3

bp and D1/3
bp,v

Represented by the Best Fits With a Power Law Form aXn as a Function of
Several Wind and Wave Parameters X to the Binned PAPA Data for
U10N ≥ 6 m s− 1

Plume depth Predictor X

Results of the best
fit aXn

Statistics of the
best fit

U10N ≥ 6 m s− 1

a n RMSE r2

D1/3
bp U10N 1.27 × 10− 1 1.63 1.326 0.921

D1/3
bp u∗ 1.49 × 101 1.14 1.417 0.910

D1/3
bp RB,m =

u 2∗
νwωm

1.07 × 10− 2 0.52 1.502 0.899

D1/3
bp RB,p =

u 2∗
νwωp

1.12 × 10− 2 0.51 1.653 0.877

D1/3
bp RHeq

=
u∗Heq

νw
2.56 × 10− 3 0.61 1.894 0.839

D1/3
bp RHs

=
u∗Hs
νw

1.36 × 10− 3 0.60 1.986 0.823

D1/3
bp RHp

=
u∗Hp
νw

2.05 × 10− 3 0.59 2.139 0.794

D1/3
bp mss 1.86 × 104 1.34 2.893 0.619

D1/3
bp mss/Δf 7.60 × 102 1.32 2.419 0.734

D1/3
bp mss/(ΔfΔθ) 3.35 × 102 1.37 2.911 0.614

D1/3
bp Hpkp/2 9.06 × 101 0.88 4.055 0.251

D1/3
bp Hskp/2 6.33 × 101 0.83 4.027 0.262

D1/3
bp Heqkm/2 1.34 × 104 2.23 3.017 0.586

D1/3
bp Hpkm/2 2.20 × 103 2.31 3.211 0.531

D1/3
bp Hskm/2 1.29 × 103 2.34 2.888 0.620

D1/3
bp,v U10N 3.78 × 10− 1 1.10 1.112 0.822

D1/3
bp,v u∗ 9.55 × 100 0.83 1.110 0.822

D1/3
bp,v RB,m =

u 2∗
νwωm

5.09 × 10− 2 0.38 1.139 0.813

D1/3
bp,v RB,p =

u 2∗
νwωp

4.88 × 10− 2 0.37 1.197 0.794

D1/3
bp,v RHeq

=
u∗Heq

νw
1.58 × 10− 2 0.45 1.290 0.760

D1/3
bp,v RHs

=
u∗Hs
νw

9.56 × 10− 3 0.45 1.318 0.750

D1/3
bp,v RHp

=
u∗Hp
νw

1.43 × 10− 2 0.43 1.383 0.725

D1/3
bp,v mss 1.43 × 103 0.94 1.917 0.466

D1/3
bp,v mss/Δf 1.55 × 102 0.94 1.589 0.634

D1/3
bp,v mss/(ΔfΔθ) 8.62 × 101 0.96 1.839 0.509

D1/3
bp,v Hpkp/2 2.63 × 101 0.50 2.334 0.209

D1/3
bp,v Hskp/2 2.11 × 101 0.46 2.341 0.205

D1/3
bp,v Heqkm/2 1.25 × 103 1.59 1.974 0.434

D1/3
bp,v Hpkm/2 2.09 × 102 1.44 2.000 0.419

D1/3
bp,v Hskm/2 2.15 × 102 1.63 1.858 0.499

Note. The statistics of each fit are also calculated. The fits and their statistics
are computed in linear space. The units for the bubble penetration depths
(Dbp), wave heights (H), and wavelengths (L = 2π/k) are in meters (m). The
unit for Δf is in inverse seconds (1/s). Moreover, the units forU10N and u∗ are
in meters per second (m/s). The predictors of the R‐, mss‐, andHk‐type are all
dimensionless.
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Section 3.2 and similar to Scanlon and Ward (2016) and Brumer et al. (2017). Bins with fewer than four bursts of
data are excluded from the fitting process.

Figures 11a and 11b show the variation of whitecap coverage (W) in the PAPA data set and the data set of
Schwendeman and Thomson (2015a) against wind speed (U10N) and air friction velocity (u∗). The panels also
include best‐fit curves obtained from the binned PAPA data, as well as several relevant threshold power law fits
from recent literature (Brumer et al., 2017; Callaghan et al., 2008; Scanlon & Ward, 2016; Schwendeman &
Thomson, 2015a; Sugihara et al., 2007). Consistent with recent studies, the observed values of W as functions of
U10N are considerably smaller than those reported in early whitecap coverage studies (e.g., Monahan &
Muircheartaigh, 1980), which relied on manual whitecap extraction methods (Monahan, 1969). Furthermore, the
observed range of W(U10N) and W(u∗) values and their associated data scatter are consistent with recent studies
that employed experimental methods comparable to those used in this study (see Section 2.4).

Figure 11a shows that the observed W(U10N) values and their corresponding best fits at high winds are consid-
erably comparable with those in the other data sets, especially those that include W observations at
U10N > 16 m s− 1. The solid line section of each fit shown in Figure 11 represents the range of data used to obtain
the best fit. However, it is worth noting that the fits tend to diverge for U10N < 10 m s− 1. This divergence can be
attributed to the sensitivity of the shape of a threshold power law fit, particularly the coefficient b (which in-
corporates the threshold behavior of the fit), to the data at the lower range of X values. Thus, any systematic bias
in the selected wind parameter at low wind speeds will impact the resulting best fit. Several previous studies did

Figure 9. Scaled bubble plume penetration depths against wind speeds. Here Hs is the total significant wave height,
Lm = g/2π ∗ T2m is the total mean wavelength, Hws

s is the wind sea significant wave height, Lws
m = g/2π ∗ (Tws

m )
2 is the wind

sea mean wavelength, all defined in Section 2.3. Large circles represent the binned data points. Subscripts bp and bp, v denote
statistics correspond to the bubble plumes obtained from the thresholding methods BDM1 and BDM2 (described in
Section 2.5), respectively.
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not correct wind speeds for atmospheric stability, for example, Sugihara et al. (2007) and Schwendeman and
Thomson (2015a), or they used UPL

10 as a proxy for U10N, for example, Callaghan et al. (2008). As discussed in
Section 2.2, while these simplifications have a relatively minor effect on estimated wind speeds at high winds,
they can introduce significant errors in estimated wind parameters at low winds.

Our observations shown in Figures 11a and 11b illustrate that the observed W(U10N) and W (u∗) values exhibit
significant variation when wind speeds are rapidly decreasing (dU10N/dt ≪ 0) and are at low levels (U10N < 4 or
u∗ < 0.2 m s− 1), ranging from 10− 4 and 2 × 10− 3. In contrast, the best wind‐speed‐only or u∗‐only fits obtained
from the remaining data points predict no whitecapping (W= 0) at these low wind conditions. This suggests that a
strong wind history may result in a systematic bias in W(U10N) and W(u∗) data at low winds, potentially
contributing to the apparent divergence observed in existing wind‐speed‐only and u∗‐only fits at low and mod-
erate wind speeds.

Figures 11a and 11b also present compelling evidence that, under similar wind forcing represented by eitherU10N

or u∗, a significant portion of W values in the PAPA data set exhibit tendencies to be smaller and larger than the
corresponding mean W values predicted by the best fits during increasing (dU10N/dt > 0) and decreasing (dU10N/
dt < 0) wind speeds, respectively. This trend is consistent with the observations of Callaghan et al. (2008) for wind
speeds exceeding approximately 9 m s− 1. However, in contrast to Callaghan et al. (2008), our observations extend
this trend to encompass moderate and low winds, provided that the magnitude of dU10N/dt is sufficiently large.

Next, we assess the predictive skill of several wind and wave parameters for the observed range ofW values in the
PAPA data set, employing a methodology similar to that described in Section 3.2. However, in this analysis, we
work in log10 space. To evaluate the overall quality of the fits, we employ Equations 12 and 13, with
Wres,i = log10Wi − log10 [a (Xi − b)n] . In this context, RMSE quantifies the average order of magnitude deviation
from the fit, while r2 measures the proportion of the observed log10W variability that can be predicted from the X
parameter. Note that a negative r2 value indicates that the fit performs worse than a horizontal line at the mean of
the data. Similar to the approach in Section 3.2, all the fits are obtained from the binned data for U10N ≥ 6 m s− 1.
The fit statistics are computed using individual 10‐min average data points, Wi (i = 1, …, N), with three

Figure 10. Scaled bubble plume depths against wave age color‐coded based on the corresponding wind speeds. In (a) and (b), the fits are obtained from the least squares
fitting to the binned data points (large circles). Definitions are as in Figure 9.
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conditions: including all data (N = 165), limiting to U10N ≥ 6 m s− 1 (N = 144), and restricting to |dU10N/
dt| < 2 m s− 1hr− 1 (N = 126).

Table 2 summarizes the coefficients (a, b, and n) and statistics associated with the best fits, represented as
W = a (X − b)n, for several predictive parameters X to the PAPA data set. Among all the predictors considered
for W at moderate and high wind conditions, u∗ demonstrates the strongest fit (r

2 = 0.72, RMSE = 0.394), with
only a slight advantage over the U10N fit (r

2 = 0.70, RMSE = 0.412). Our results highlight that the fits obtained
from different variations of the predictors RH (Equation 3) and RB (Equation 4), which incorporate both u∗ and a
characteristic scale of the wave field, exhibit comparable or slightly weaker performance than the u∗‐only fit.
Importantly, these parameterizations are not able to reasonably predict W under conditions of rapidly varying
wind speeds, characterized by large wind accelerations.

Our observations in Figure 2 illustrate that either the normalized or unnormalized equilibrium range mss values
tend to be smaller at increasing winds compared to those in decreasing winds at a given wind speed. This
observation suggests that these spectral parameters may reflect a combination of wind forcing and wind history
effects. In alignment with these observations, the results presented in Table 2 emphasize that the parameteri-
zations based on the equilibrium range mss exhibit consistent skill across various sea state conditions, even in
conditions with substantial wind accelerations. Specifically, the equilibrium rangemss/Δf (Figure 11c) appears to
be a more reliable predictor of the observed variability in W compared to other spectral predictors considered.
Among the bulk steepness predictors, Hskm /2 demonstrates the highest skill. Overall, among the predictor types
explored in this analysis, those incorporating either peak wave height, peak wave number, or peak wave period
appear to have the least skill (Figure 11d). Additionally, a recent study by Malila et al. (2022) suggests that wave
field groupiness may exhibit superior predictive skill in predicting the variability ofW compared to conventional
bulk wave spectrum predictors.

Figure 11 shows that the observedW(U10N),W(u∗), andW(mss/Δf ) values in the PAPA data set at moderate winds
(e.g., 8 m s− 1 ≤ U10N ≤ 16 m s− 1) are generally smaller than the Schwendeman and Thomson (2015a) data set.
Notably, a significant portion of the data at these wind speeds was collected in the presence of rain (Figure 1b).
This observation highlights the potential influence of rain on whitecap activity, a phenomenon that has been
observed by mariners for decades but has yet to be quantified. Detailed quantification of the effects of rain on W
would require measurements of rain rates, which were not available in this study.

Finally, Figure 12 illustrates that the mean and significant bubble plume penetration depths are, on average,
correlated and exhibit a nonlinear relationship with whitecap coverage, given by

Dbp = 29.5 W 0.33, D1/3
bp = 52.8 W 0.36, (15)

with r2 = 0.60 (for the fit in Figure 12a) and r2 = 0.62 (for the fit in Figure 12c), and

Dbp,v = 12.6 W 0.19, D1/3
bp,v = 21.9 W 0.24, (16)

with r2 = 0.33 (for the fit in Figure 12b) and r2 = 0.43 (for the fit in Figure 12d). These fits are obtained using the
binned data as a function of U10N, with data points corresponding to U10N < 6 ms− 1 excluded from the fitting
process. As detailed in Section 2.5 and consistent with the observations presented in Sections 3.1 and 3.2, Dbp,v

represents the penetration depth of bubbles characterized by, on average, at least two orders of magnitude higher
void fraction and significantly more visible optical signature compared to those reaching Dbp for a given sea state
condition.

Intuitively, increasing the rate of breaking events with the same scale leads to a linear increase in W without
affecting mean bubble plume depth. However, in reality, wave breaking occurs across a range of scales.
Therefore, the increase in W results from both a higher rate and larger‐scale breaking waves. This may partially
explain the observed relationship between bubble plume depths and W shown in Figure 12. In other words, on
average, plume depths tend to increase with increasingW, but at a considerably lower rate. This is reflected in the
exponents in Equations 15 and 16, which are positive but significantly less than 1.
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4. Discussion: Bubble Plumes Volumes
In this section, we define the volume of bubble plumes as a measure of their overall size rather than the total
volume of bubbles they contain. As detailed in Section 2.5, these bubble plumes are identified as regions where
volume backscattering strength, which is somewhat related to bubble void fractions, exceeds a specific threshold
value. With this definition, the volume of bubble plumes per unit sea surface area can be expressed as

Vbp = AbpDbp, and Vbp,v = Abp,vDbp,v, (17)

where A represents the fractional surface area of bubble plumes, D is the mean penetration depth of bubbles
within these plumes, and the subscripts bp and bp, v denote the statistics corresponding to the bubble plumes
obtained using our bubble detection methods BDM1 and BDM2 (as described in Section 2.5), respectively. As
elaborated in Section 2.5,Dbp,v represents the mean penetration depth of bubbles where the volume backscattering
is at least 20 dB higher compared toDbp for a given sea state condition. Note that this difference in backscattering
strength is expected to reflect a significant increase in bubble void fraction. Our observations and several simple
parameterizations of the mean plume depths Dbp and Dbp,v are presented in Section 3.

We note thatA represents the fractional surface area, with or without a visible surface signature, of bubble plumes
that persist significantly longer than the visible surface foam generated during active breaking, as discussed in
Section 3.1. Therefore, both Abp and Abp,v are expected to be noticeably greater than the measured whitecap
coverage W. However, our sampling method does not allow for a direct quantification of Abp and Abp,v. In the
following, we introduce a proxy for A and comment on its relation to W.

Table 2
Parameterizations of Whitecap Coverage Represented by the Best Fits With a Threshold Power Law Form W = a (X − b)n

as a Function of Several Wind and Wave Parameters X

Predictor X

Results of the best
fit W = a (X − b)n

n

Statistics of the best fit with conditions:

U10N ≥ 6 m s− 1 |
dU10N

dt |< 2
m s− 1
hr all data

a b RMSE r2 RMSE r2 RMSE r2

U10N 2.06 × 10− 5 3.89 2.65 0.412 0.70 0.471 0.60 0.752 0.05

u* 3.63 × 10− 2 0.18 2.00 0.394 0.72 0.476 0.59 0.698 0.18

RB,m =
u 2

∗
νwωm

3.87 × 10− 9 5.81 × 104 1.14 0.400 0.72 0.646 0.25 0.935 − 0.47

RB,p =
u 2

∗
νwωp

3.86 × 10− 9 7.01 × 104 1.12 0.424 0.68 0.657 0.22 0.916 − 0.41

RHeq
=

u∗Heq
νw

3.02 × 10− 10 1.50 × 105 1.31 0.428 0.68 0.415 0.69 0.645 0.30

RHs
=

u∗Hs
νw

2.45 × 10− 10 5.07 × 105 1.23 0.456 0.63 0.434 0.66 0.692 0.20

RHp
=

u∗Hp
νw

1.64 × 10− 9 4.05 × 105 1.12 0.590 0.38 0.589 0.37 0.801 − 0.08

mss 6.50 × 106 − 3.60 0.565 0.43 0.557 0.44 0.572 0.44

mss/Δf 1.61 × 102 6.23 × 10− 3 2.79 0.487 0.58 0.482 0.58 0.512 0.55

mss/(ΔfΔθ) 4.79 1.72 × 10− 2 2.16 0.537 0.49 0.534 0.49 0.557 0.47

Hpkp /2 4.85 − 2.33 0.737 0.03 0.520 0.06 0.778 − 0.04

Hskp /2 2.06 × 10− 1 3.86 × 10− 2 0.99 0.766 − 0.05 0.795 − 0.14 0.837 − 0.20

Heqkm /2 1.89 × 107 − 6.58 0.564 0.43 0.550 0.46 0.576 0.43

Hpkm /2 3.80 × 102 3.12 × 10− 2 3.87 0.547 0.46 0.550 0.46 0.552 0.48

Hskm /2 5.53 × 102 4.56 × 10− 2 4.27 0.507 0.54 0.502 0.54 0.503 0.56

Note. These fits are obtained from the binned PAPA data for U10N ≥ 6 m s− 1 under three specific conditions. These fits and
their associated statistics are computed in log space. Throughout the paper, whitecap coverage W is presented as a dimen-
sionless fraction. The units for wave heights (H) and wavelengths (L = 2π/k) are meters (m). The unit for Δf is in inverse
seconds (1/s). Moreover, the units for U10N and u∗ are in meters per second (m/s). The predictors of the R‐, mss‐,Hk‐type are
all dimensionless.
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We define P as a time fraction of echogram data over concurrent bursts during which bubble plumes are detected.
Assuming the buoys had an approximately constant “wind slip” velocity Uslip during each burst, A = P2 then
provides a proxy forA if the drifting distance of the buoy relative to the surface water ≈UslipTburst is much greater
than the average horizontal length of the bubble clouds ≈UslipTab or UslipTab,v (see Section 3.1). Further, at least a
few bubble clouds should be available in a burst to consider that A ≈ A.

Figure 13a shows the Abp and Abp,v values as a function of U10N where the size of the symbols is a function of the
number of the bubble clouds detected in a burst, averaged over concurrent bursts, N, with 0.67 ≤ Nbp ≤ 26 and
0.5≤ Nbp,v ≤ 24. Note that P, and thus A= P2, values that approach one indicate that either the main portion of the
surface layer is covered by bubble plumes or the net drifting distance of the buoy (relative to the surface water) is
smaller than the horizontal length of the sampled bubble cloud. As shown in Figures 4b and 13a, the latter may
explain Abp ∼ 1 at moderate winds where N < 2 and Tab values are on the order of several hundreds of seconds
(comparable to Tburst = 512 s). Despite the uncertainties in the interpretation of A, the observations shown in
Figure 13a suggest that Abp is several times greater than Abp,v, which is qualitatively consistent with the
continuous increase of the overall size of the bubble plume shown in Figure 5 and the corresponding residence
time results shown in Figure 4b.

Figure 11. Observed range of whitecap coverage against various environmental factors: (a) wind speed U10N, (b) air friction velocity u∗, (c) the equilibrium range mss/
Δf, and (d) the significant spectral peak steepnessHpkp /2 (all defined in Section 2). Each data point is color‐coded based on the corresponding wind accelerations dU10N/
dt. Circles with black edges indicate observations in the presence of rain (rain rates have not been measured). The best fits to the present data are obtained from the least
squares fitting to the bin‐averaged data points (large black circles).
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Figure 13b shows that both Abp and Abp,v are, on average, increase as a function of W as

Abp = 2.5W 0.33 ≤ 1, and Abp,v = 8.4W 0.97 ≤ 1. (18)

Note that the data points with N < 3 are neglected in Figure 13b. Our observations show that Abp, which is
comparable to a fractional surface area defined in Thorpe (1986), is at least an order of magnitude larger than W.
This is consistent with the semi‐empirical plume area analysis of Thorpe (1986).

Finally by substituting Equations 15, 16, and 18 into Equation 17, we obtain

Vbp = AbpDbp ≈ 74W 0.66 ≤ 29.5W 0.33 [m3
/m2], (19)

and

Vbp,v = Abp,vDbp,v ≈ 106W 1.16 ≤ 12.6W 0.19 [m3
/m2], (20)

assuming that the best fits to the binned data shown in Figure 13b (Equation 18) provide a proxy for Abp

and Abp,v.

Figure 12. Mean and significant bubble plume depths against whitecap coverage. The best fits to the present data are obtained
through least squares fitting to the bin‐averaged data points as a function ofU10N (large black circles). Open circles denote the
data with U10N < 6 m s− 1.
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We emphasize that uncertainty in our estimates of the fractional surface area of bubble plumes (and thus plume
volumes) increases with decreasingW, especially at lowW values (e.g.,W < 10− 3) because of increasing effect of
sparse sampling of intermittent breaking crests on the resulting statistics (Derakhti, Thomson, & Kirby, 2020).

5. Summary
The observational results presented in this study quantify the statistics of penetration depth and fractional surface
area of bubble plumes generated by breaking surface waves as a function of various wind and sea state parameters
across a wide range of sea state conditions. Bubble plume data include concurrent HR (with a 12 min temporal
resolution) plume depth statistics and whitecap coverage. The former is obtained from the echogram data with
1 cm vertical resolution, collected by downward‐looking echosounders mounted on arrays of freely drifting
SWIFT buoys. The latter is obtained from visual images, collected by shipboard cameras operated near the buoys.
The findings offer valuable insights into the size characteristics of bubble plumes under varying environmental
conditions.

Our observations highlight strong correlations between the statistics of bubble plume penetration depths and
environmental factors such as wind speed, spectral wave steepness, and whitecap coverage. Notably, we find that
at high wind speeds, the mean plume depths extend beyond 10 m beneath the surface, with individual bubble
clouds reaching depths exceeding 30 m.

Furthermore, our results reveal that the mean plume depths exhibit variations, on average, ranging from 1.6 to 2.8
times the wind sea significant wave height Hws

s . Scaled plume depths, by either Hws
s or the total significant wave

height Hs, demonstrate a non‐monotonic relationship with increasing wind speeds. Interestingly, plume depths
scaled by Hs exhibit a robust linear correlation with the inverse of wave age, spanning from developing to old
seas. All scaled plume depths considered here are decreasing functions of wave age in developing seas.

Moreover, our study offers multiple parameterizations that effectively predict the observed variability in the
penetration depth and surface area of bubble plumes. These parameterizations are based on readily available wind
and wave statistics, making them valuable for applications in existing forecast models.

This study is the first to establish a direct relation between bubble plume penetration depth and whitecap
coverage, revealing that the depth of bubble plumes is linked to their visible surface area. This finding is
significant as it advocates the possibility of estimating the volume of bubble plumes by remote sensing.
Moreover, it significantly expands the applicability of the recent theoretical framework introduced by Call-
aghan (2018) on predicting total wave breaking dissipation as a function of bubble plume penetration depth and
whitecap coverage. In a companion paper, we examine dynamic relationships between the bubble plume

Figure 13. Proxy for the fractional area of the bubble plumes against (a) wind speed and (b) whitecap coverage. Symbol sizes
are a function of the number of bubble clouds detected in a burst averaged over concurrent (1–4) bursts ranging from 0.5 to
26. In (b), large symbols represent the corresponding binned data with more than three detected bubble clouds in a burst.
Subscripts bp and bp, v denote the statistics corresponding to the bubble plumes obtained from the thresholding methods
BDM1 and BDM2 (described in Section 2.5), respectively.
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statistics presented here and total wave breaking dissipation using our synchronized observations of bubble
plumes and dissipation rates.

Finally, the parameterizations of bubble plume penetration depth presented in this study hold the potential for
estimating the effective vertical transport of various particles, with a rising velocity on the order of few cm s− 1 or
less, induced by breaking surface waves. It is possible that the drifting SWIFT buoys used in this study aggregate
in convergence zones with enhanced downwelling velocities, such that there would be a sampling bias in the
interpretation of vertical transport (Zippel et al., 2020). However, no obvious convergence zones, windrows, or
other organized surface fronts were observed during the PAPA data collection. Furthermore, the wind slip (1% of
wind speed) of the buoys tends to cause a quasi‐uniform sampling along a drift track even in the presence of
surface features.

Appendix A: Echosounder Calibration
The echosounder was calibrated using standard sphere calibration techniques Demer et al. (2015). In this
approach, a sphere of a known material is suspended below the beam of an echosounder. Since the sphere's
properties are known, an analytical solution for the acoustic target strength can be calculated. The difference
between the measured intensity of the scattering and the known scattering from the sphere at the transmit fre-
quency is the total gain for the system. In post‐cruise testing, a 38.1 mm diameter tungsten‐carbide sphere with 6%
cobalt binder was suspended 8 m below the transducers by a bridle connected to the hull of the SWIFTs. The units
were then deployed for 30–60 min on Lake Washington (Washington, USA), during which the attitude of the
SWIFTS caused the suspended sphere to pass through the beam of the echosounder. The top 1% of targets at the
sphere range, which are assumed to be those associated with the sphere being on‐axis within the beam where the
combined transmit‐receive beampattern is highest, were then selected. The gain is then determined by solving for
Gcal in the target strength equation using the known analytical solution for the target strength of the sphere.

In practice, a sphere is sized such that its scattering response contains no significant nulls within the bandwidth
(Demer et al., 2015; Lavery et al., 2017; Stanton & Chu, 2008). However, this is not feasible at 1 MHz since a
small (<1 cm) sphere would be required. Furthermore, for such a small sphere, the monofilament securing the
sphere would contribute significantly to scattering, biasing the results (Renfree et al., 2020). Thus, we chose to use
a larger sphere whose response is quite complex over the relevant frequency range. The pulse‐compressed signal
has sufficient bandwidth to clearly resolve the echo from the front interface and subsequent contributions from
circumference waves. We, therefore, assumed that the peak of the pulse compressed signal represents the partial
wave scattering cross‐section of the sphere (Stanton & Chu, 2008). This assumption is necessary given that a
frequency‐dependent calibration cannot be performed given the only output data product is a scattering intensity
measurement representing the average within the range bin output by the ADCP.

At the time of this experiment, the firmware resulted in scattering that saturated the receiver in the high gain
setting and saturated the receiver when using the calibration sphere at a range of ∼8 m. There is, therefore, some
uncertainty in the calibration gains and the field observations. We cannot conclusively state the magnitude of this
uncertainty, but it is believed to be on the order of a few dB or less from the calibration gain. The justification for
this statement is that the elastic response of the sphere is well resolved with the intensity (impulse response
squared) of the signal from the first Rayleigh wave, approximately 9 dB smaller than the echo from the front
interface of the sphere when the calibrations were performed at the lower gain setting. This is consistent with
expectations based on the impulse response of a 38.1 mm tungsten carbine sphere (Demer et al., 2015) and the
arrival of the signal associated with the first Rayleigh wave. In the saturated data, the difference in intensity
between the first Rayleigh wave and the saturated echo from the front interface was approximately 3 dB. Given
the impulse response of the 38.1 mm sphere, this suggests that about 6 dB of scattering from the sphere had been
clipped. When used in the high power setting, gains were applied assuming the clipped value was 6 dB. The
practical effect of this uncertainty is to put consistent error bars on the volume scattering coefficients measured in
the data. That is, all data are shifted similarly, making the absolute intensity of the backscattering more uncertain
without impacting the relevant ranges between the thresholds.

The fact that scattering from the tungsten carbide sphere saturated at 8 m indicates the high gain setting almost
certainly caused widespread saturation of signals in the upper portion (∼10 m) of the water column when high
densities of bubbles were present. A consequence of this is that the full dynamic range of volume backscattering is
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not resolved. Despite these challenges and uncertainties, we consider it preferable to present backscattering in-
tensities in this approach to backscattering intensities expressed in decibels with reference value ground in
physical measurements.

Data Availability Statement
The processed data presented in this study is available from the Dryad repository https://doi.org/10.5061/dryad.
d7wm37q6z (Derakhti, 2023).
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