
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic
Engineering
OMAE2014

June 8-13, 2014, San Francisco, USA

OMAE2014-23475

DRAFT: MODELING AND ANALYSIS OF A MULTI DEGREE OF FREEDOM POINT
ABSORBER WAVE ENERGY CONVERTER

Andrew F. Davis
Department of Mechanical Engineering

University of Washington
Seattle, Washington 98195

Email: afdavis@uw.edu

Jim Thomson
Applied Physics Laboratory

University of Washington
Seattle, Washington, 98195

Email: jthomson@apl.washington.edu

Tim R. Mundon
Oscilla Power Inc.

Seattle, Washington, 98103
Email: mundon@oscillapower.com

Brian C. Fabien
Department of Mechanical Engineering

University of Washington
Seattle, Washington, 98195

Email: fabien@uw.edu

ABSTRACT

This paper illustrates an approach to the modeling of a point
absorbing Wave Energy Converter (WEC) with the intent of an-
alyzing the sensitivity of system components. Using first princi-
ples, the nonlinear equations of motion were formed to describe
the heave motion of a 3 body system. A linearized model was then
developed and used to simulate the system in both the time and
frequency domains. The input to the model is a time series dis-
placement and a time series velocity that describes the incident
waves. A sensitivity analysis is then performed on the system pa-
rameters to show how the characteristics of the heave plate, the
component masses, and the mass of the entrained fluid affect the
performance of the system. The model validation was performed
by numerically modeling the Oscilla Power’s, Inc. generation 1
device against experimental data from a field test on Lake Wash-
ington. The WEC is designed to provide tension along a series
of tethers with connected PTO units. The wave input is speci-
fied using frequency spectra measured with a nearby Datawell
Waverider MK III buoy during the field testing, from which time
domain waves are reconstructed.

INTRODUCTION

Wave energy has strong potential for being a component of
the solution to the problems presented by an increasing energy
demand. While the idea of harvesting energy from waves is not
new, there has been increasing research in this area. Wave en-
ergy converters (WECs) have significant potential in the marine
renewable energy field, and pre-commercial prototypes of ma-
rine energy devices are being developed and implemented in test
situations [1]. However, significant research is still required to
develop wave energy into a feasible renewable energy source for
coastal regions.

The mooring and installation of a wave energy converter is
a significant factor in the cost of produced energy. In shallow
waters (i.e., depth less than 30 meters) it may be cost effective
to use a rigid foundation, such as a monopile or jacketed pile.
However at greater depths or when the wave energy converter
must respond dynamically to the water surface (as in the case
of point absorber wave energy converters), compliant moorings
are necessary. Work has been done model the dynamics of com-
pliant and even slack mooring lines [2]. However, this must be
combined with an effective model of WEC dynamics and power
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generation is needed in order to optimize the configuration of the
mooring lines to minimize the cost of power.

There are several existing commercial software packages
such as OrcaFlex, ProteusDS, ANSYS Aqwa, and WAMIT to
model the dynamics of marine systems. However, by extending
a first principles model to arrays of WECs it will be possible to
create generic design tools to maximize the performance of ma-
rine energy converters. To better understand the performance of
the system and thereby work towards the eventual goal of perfor-
mance maximization, the final outcome of the system modeling
and identification is the parameter sensitivity analysis.

Section 1 presents a general description and the simplifying
assumptions that were used to formulate the equations of mo-
tion. Section 2 will give a brief description of the deployment of
the prototype WEC along with the experimental resources used
for validation. In section 3 the numerical methods used to solve
for the dynamics of the WEC are shown, then the simulated out-
put and the experimental data is compared. Section 4 develops
conclusions on which parameters have the most effect on the ef-
ficiency of the system. The study is concluded with a discussion
of results in section 5. Finally, the directions of future study are
presented in section 6.

1 SYSTEM MODEL
The Oscilla WEC is a point absorbing wave energy con-

verter that produces power from the rate of change of tension
in the power take off (PTO) units. The simplified model pre-
sented assumes that the deflection in the PTOs and the load cell
is negligible compared to the deflection in the rope. Because the
mooring lines are placed symmetrically, and are not exerting sig-
nificant tension, this initial model does not include the mooring
lines. Considering the vertical motion of the buoy while neglect-
ing the force component of the mooring lines can still produce a
reasonably accurate simulation [3].

Figure 1 shows a simplified model of the prototype point
absorber. The buoy and components will follow the motion of
the wave and the heave plate will create a significant amount of
tension in the PTO units. The mass of the heave plate, as it is sub-
merged some distance below the surface, is subject to a greatly
reduced wave forcing and its drag and inertia are large enough so
that there will always be tension in the central cable. By continu-
ously maintaining tension in the cable, destructive shock loading
is avoided during deployment.

1.1 EQUATIONS OF MOTION
A simplified model of a mass-spring-damper system is cre-

ated to represent the system shown in Fig. 1. Figure 2 shows
how the WEC is modeled as 3 separate masses with the connec-
tions between each mass acting as springs. The primary source
of damping in the system is the fluid drag of the masses passing

FIGURE 1. Simplified model of the Oscilla Power prototype wave
energy converter, component displacements are shown from the natural
length of each connection and L2 >> L1. Figure shows three lumped
mass components: the displacements yb, yp, and yh show the positive
direction of motion for the buoy, PTO units, and heave plate respectively.

through the water. The dynamics of the WEC are decomposed
and analyzed in a similar manner to Refs. [4, 5]. By lumping
the load cell and both PTO units together as a single mass the
number of equations of motion is reduced from 5 to 3 with little
loss of detail. The PTO lumped mass is a reasonable approxima-
tion because the load cell and PTO units are connected with rigid
links with no appreciable strain. Therefore, the displacements of
the 3 smaller components will all be the same as the lumped dis-
placement yp.

Using Newton’s law to describe the equation of motion for
each mass results in 3 second order ordinary differential equa-
tions. The equation of motion for each of the three masses will
take the form:

mÿ = FWeight +FBuoyancy +FDrag +FSpring

where the dot notation shows the number of time derivatives of a
variable and the product of the mass and acceleration is equal to
the sum of the forces acting on the mass.

The buoyancy, B, and weight of each mass are included in
the summation of forces according to the direction conventions
established in Fig. 1. It is important to note that the buoy will
have a variable buoyant force, whereas the other components will
have a constant buoyant force. As more of the buoy becomes

2 Copyright c© 2014 by ASME



FIGURE 2. Mass-Spring-Damper model of the Oscilla Power proto-
type.

submerged the weight of the displaced fluid will increase which
causes the buoyant force to increase. To compute the force ex-
erted by the buoy the difference between the displacement of the
buoy and the surface of the water is multiplied by a term Bb,
which is in terms of force per unit length.

The drag force is comprised of two main components, the
profile drag and the friction drag. The drag force acting on a
mass passing through a fluid is computed using the equation:

FDrag =
1
2

CdragAρV |V | (1)

where Cdrag is the coefficient of drag, the computed area, A, is
the area relevant to the type of drag, V is the net velocity of the
object with respect to the fluid particles surrounding it, and ρ is
the density of the fluid. The friction drag, C f , is computed by:

Re = A2 ω

ν
(2)

C f =
0.032
Re1/7 (3)

where Re is the Reynolds number computed in wave conditions,
A is the peak to peak amplitude of the wave, ω is the frequency,
and ν is the kinematic viscosity of the water [6]. Equation 3
computes the average shear stress coefficient which is used as
the coefficient of skin friction. Small amounts of friction will
be generated by the boundary layer effects as the water travels
along the sides of the masses. The profile drag is the most signif-
icant damping component. Dimensionless drag coefficients, Cd ,
are given using the shape and the dimension ratios of the compo-
nents. The area used to compute the profile drag is the projected

area in the direction of motion.
For this model the spring force FSpring is given as a linear

spring constant, Kr1 and Kr2, multiplied by the strain from the
ropes natural length to compute the spring force acting on each
mass. The spring constant Kr2 is given by the vendor estimation
of the rope used and Kr1 is large enough to ensure that the buoy
and the PTO mass move together. Since the displacements are
measured from an equilibrium position rather than from a single
reference point, the strain is computed by finding the difference
of the displacements.

Three separate equations of motion are formed to describe
the independent motion of all three lumped masses. The Os-
cilla system has a significantly more rigid connection between
the buoy and the PTO units than the connection between the PTO
units and the heave plate. This is reflected in the model by the
use of the two different spring constants Kr1 and Kr2. Neverthe-
less, three equations of motion are modeled because it is the goal
of this research to evaluate how variations in the structural prop-
erties effect the power production of the system. The resulting 3
differential equations are:

mbÿb =mbg−Bb(yb− yw)

− CDb

2
Abρ(ẏb− ẏwe−

1
2 k)|ẏb− ẏwe−

1
2 k| (4)

−
C f

2
Abwetρ(ẏb− ẏwe−

1
2 k)|ẏb− ẏwe−

1
2 k|

−Kr1(yb− yp)

mvpÿp =mpg−Bp

−
CDp

2
Apρ(ẏp− ẏwe−7k)|ẏp− ẏwe−7k| (5)

−
C f

2
Apwetρ(ẏp− ẏwe−7k)|ẏp− ẏwe−7k|

−Kr1(yp− yb)−Kr2(yp− yh)

mvhÿh =mhg−Bh

− CDh

2
Ahρ(ẏh− ẏwe−14k)|ẏh− ẏwe−14k| (6)

−
C f

2
Ahwetρ(ẏh− ẏwe−14k)|ẏh− ẏwe−14k|

−Kr2(yh− yb)

It is important to note two features of the equations of mo-
tion, the virtual mass denoted with the mv and the exponential
attenuation terms. The virtual mass for each component is the
sum, mv = m+ma, where ma is the added mass correction factor
and m is the mass. The added mass term is used to compensate
for the fluid that is carried along with each mass as the compo-
nents pass through the water. This entrained fluid may be a sub-
stantial modification to the inertia of each component, however it
is important to note that this added mass does not contribute the
weight of the components.
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When computing the added mass in the heave direction the
geometry of the masses is required, and with this information an
expression for the hydrodynamic mass per unit length is given.
The numerical model is simulated assuming that there is no
added mass for the buoy. In the sensitivity study the effect of
a nonzero added mass for the buoy is shown. Typically a tool
such as WAMIT is used to determine added mass coefficients,
however for the purpose of this study a simplified approximation
for objects under the effect of surface waves is used to calculate
the added mass. Computing the added mass for the PTO units
and the heave plate shows that the added mass can greatly vary
based on the geometry, as a result no single expression can com-
pute the added mass for all objects. The added mass of the PTO
units was roughly 4% of the actual mass and the added mass of
the heave plate was 40% of the mass. The hydrodynamic mass of
the vertical motion of a circular disk which represents the heave
plate is given by the expression mh = 8/3ρa2, where ρ is the
density and a is the radius of the disk. The added mass of the
PTO units is computed in a similar manner to the added mass of
the heave plate [7].

The second important feature of the equation is the expo-
nential terms that modify the wave velocity ẏw. The attenuation
terms result from the linear deep water wave theory that describes
a fluid velocity that is maximum at the surface of the water and
decreases rapidly with depth. An attenuation term is used to de-
scribe the water particle velocity surrounding each mass. This
is given by e−depth∗k, where k = ω2

g is the wave number. The
wave number is an expression of the wave frequency, ω , and the
gravitational acceleration, g. The wave period that was used to
compute the wave frequency is 3 seconds. While 3 seconds is
a very small wave period for ocean it is reasonable for a wave
period in Lake Washington. The exponential attenuation term
computes a very small velocity at the depth of the PTO units and
by extension the wave velocity at the depth of the heave plate is
negligible during operational conditions.

1.2 SPECTRAL METHOD
The nonlinear damping coefficient is composed of the profile

drag and the skin friction.

C =
1
2

CDAbodyρ +
1
2

C f Awetρ (7)

Awet is assumed to be half the surface area of the buoy to obtain
a linear damping. The wetted areas of the other bodies are cal-
culated based on geometry. By [8] the nonlinear damping can be
approximated by:

Fdamping =Cẋ|ẋ| (8)
=CAoωo|ẋ| (9)

where, Ao and ωo are the peak to peak amplitude and the wave
frequency respectively. This allows the linear damping term to
be written Eqn. (10). Damping coefficients are often a very un-
certain component of a model, as such a small period of 1.7 sec-
onds is used to guarantee that the damping is not underestimated
throughout the full range of the velocity. An over estimation of
the simplified damping term at this point in the model is accept-
able considering that there are additional forms of damping, such
as radiation damping, that would cause additional losses in a real
system.

D =
1
2
[
CDAbody +C f Awet

]
(10)

The damping force is modeled by Fdamping =Dẋ. The input func-
tion as yw = Asin(ωt) and ẏw = Aωcos(ωt). The terms are sep-
arated and organized for state space formulation.

mbÿb =−Dbẏb−Bbyb−Kr1yb +Kr1yp +mbg+Bpyw

+Dbẏwe−
1
2 k (11)

mvbÿp =−Dpẏp−Kr1yp−Kr2yp +Kr1yb +Kr2yh

+mpg−Bp +Dpẏwe−7k (12)

mvhÿh =−Dhẏh−Kr2yh +Kr2yp +mhg−Bh +Dhẏwe−14k

(13)

With a 3 degree of freedom system we will now create the stan-
dard state space formulation with the wave input.

Mÿ = Ky+Cẏ+ eo + e1yw + e2ẏw

M =

mb 0 0
0 mp +Ap 0
0 0 mh +Ah


K =

−(Bb +Kr1) Kr1 0
Kr1 −Kr1−Kr2 Kr2
0 Kr2 −Kr2


C =

−Db 0 0
0 −Dp 0
0 0 −Dh


eo =

 mbg
mpg−Bp
mhg−Bh

e1 =

Bb
0
0

e2 =

 Dbe−
1
2 k

Dpe−7k

Dhe−14k


Let q1 = y and q2 = ẏ to perform the reduction of order. The new
first order system is written in matrix form as follows.

q̇1 =q2 (14)

q̇2 =M−1 [Kq1 +Cq2 + eo + e1yw + e2ẏw] (15)
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With q =

[
q1
q2

]
while yw and ẏw are unchanged. The new matrix

form is indicated by the hat notation.

q̇ = Âq+ B̂o + B̂1yw + B̂2ẏw (16)

Â =

[
0 I

M−1K M−1C

]
B̂o =

[
zeros(3,1)

M−1eo

]

B̂1 =

[
zeros(3,1)

M−1e1

]
B̂2 =

[
zeros(3,1)

M−1e2

]
q =


yb
yp
yh
ẏb
ẏp
ẏh


Next apply the Laplace transform with zero initial conditions.
When considering the system from a steady state position the
buoy is at the equilibrium position and then the wave forcing
function is applied, this allows the buoyancy and weight terms,
comprising B̂o, to be ignored. The transfer function Q

Yw
is formed

by algebraic manipulation of Eqn. (17), and is useful to deter-
mine the input-output relationship of the motion of the WEC
components.

(sI− Â)Q = (B̂1 + B̂2s)Yw (17)
Q
Yw

= (sI− Â)−1(B̂1 + B̂2s) (18)

The symbolic computation is done using the MATLAB sym-
bolic toolbox. This transfer function is defined in the frequency
domain by multiplying the displacement transfer function by the
derivative operator squared and is essentially defined as a transfer
function with displacement input and acceleration output. Here,
A is the acceleration of the system and Yw is the previously de-
fined wave input.

A
Yw

= s2 Q
Yw

(19)

The frequency response of the linear system provides added cer-
tainty in the solution, by verifying that the acceleration transfer
function behaves in the expected manner. Reference [9] provides
detailed description of the linear interactions of oscillating sys-
tems.

2 DEPLOYMENT
The Oscilla WEC first generation prototype was deployed

in Lake Washington, by the University of Washington Applied

Physics Laboratory. During this 3 month deployment, data was
collected for the 3 axis accelerations of the buoy enabling the
fundamental means of validating the numerical model of the
WEC. Additionally, a load cell in series with the PTO units mea-
sures the tension between the PTOs and the buoy. Figure 2 shows
a short time span of the raw data collected during the Lake Wash-
ington deployment.

Lake Washington was a safe testing environment with its

FIGURE 3. Sample raw data from the oscilla power wave energy
converter generation 1 deployment in Lake Washington, this data takes
place in a winter storm to show well defined wave characteristics.

relatively calm waters for the vast majority of the time, how-
ever during occasional storms the 5 kilometer fetch and increased
wind speed allow for more fully developed wave conditions. In-
cident wave data was taken using a Waverider MK III directional
buoy for the duration of the Oscilla Power deployment. Internal
to the Waverider buoy, data is processed and stored as a Power
Spectral Density (PSD). It was therefore necessary to convert the
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Waverider PSD data to an amplitude spectrum by multiplying by
the bandwidth, then dividing the square root by half to provide
valid one-sided amplitude inputs to the simulation used to vali-
date the response of the linear model.

The Pierson-Moskowitz (PM) spectrum was used to model
the wave data as a continuous function of frequency. The
Pierson-Moskowitz spectrum is a 1 parameter spectrum based
on the wind speed in meters per second at 19.5 meters above the
steady water line [10]. The PM spectrum is characterized by the
assumption that the waves are generated by a steady wind with a
very long fetch,

E( f ) =
0.0081∗g2

(2∗π)4 f 5 e(−0.74( 2∗π∗Uw∗ f
g )−4) (20)

where E is the expected spectral amplitude at a given fre-
quency, g is the acceleration due to gravity, 0.0081 is the Phillips
constant, f is frequency given in Hz and Uw is the wind velocity
in meters per second at an elevation of 19.5 meters.

In order to determine the wind speed, an optimization func-
tion was used to find the wind speed that minimized the error
between the PM and the Waverider Spectra. Fig 4. shows two
examples of the best fit PM spectra. While the high peaks in
the Waverider data are not captured by the continuous function,
the realistic higher frequencies are included. It is important to
note that using a JONSWAP spectrum would add an extra pa-
rameter providing a more accurate model for fetch limited con-
ditions [10]. However, the experimental conditions are well rep-
resented with the more simple PM spectrum.

3 NUMERICAL SIMULATION
After the model of the WEC was formulated, a time domain

simulation program was implemented in MATLAB to simulate
the heave motion of the WEC when subjected to a spectral wave
input. The time domain simulation requires time series data for
both the displacement and the velocity of the input wave. Since
this system involves stiff differential equations a small time step
and a stiff ODE solver is used to simulate the motion of the 3 bod-
ies of the WEC. The acceleration was then computed from the
simulated displacements and velocities, and the acceleration am-
plitude spectrum was computed using a Discrete Fourier Trans-
form.

By using a transfer function, it is possible to compute the
acceleration amplitude spectrum given a wave input defined by
the PM spectrum by Eqn. (20). This can be compared to the am-
plitude spectrum of acceleration provided by applying a Discrete
Fourier Transform to the vertical acceleration data in Fig. 2. The
spectral methods provided excellent validation of the numerical
integration of the time series solution. However, Fig. 5 shows
the power spectral density (PSD), which was generated using the

FIGURE 4. Pierson-Moskowitz approximations of incident wave
data, wind velocity is determined by minimizing the error between wave
data and function approximation.

time domain simulation, of the acceleration of the buoy for both
deployment data and the numerical model for accuracy and clar-
ity of comparison.

The dynamics of the WEC are verified using the ampli-
tude spectrum of the acceleration measured in the buoy of the
Oscilla WEC. The model prediction of the acceleration response
captures the experimental acceleration response in the frequency
range from 0.3 Hz to 1 Hz. Figure 5 shows that the dynamics
of the converter is well represented by the model. Once the re-
sponse of the model was verified against the experimental results,
the time domain simulation used to estimate the power output of
the model.

3.1 TIME DOMAIN SIMULATION
The time domain simulation of the WEC in response to a

wave input was computed by using a numerical integrator in
MATLAB. The PM spectrum of wave amplitudes was used to
generate the wave input to the time domain model. Although
real waves do not have a true random phase, the time domain in-
put was created by randomizing the phase for each frequency and
amplitude pair. The velocity input to the model was generated by
the time derivative of the displacement input.

Figure 6 shows the relative position from static equilib-
rium, illustrating the relative displacement of all three bodies of
the WEC compared to the wave input. This enables good visual-
ization of how the converter is moving when being forced by the
incident input. As expected relative positions of the components
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FIGURE 5. Power spectral density of the experimental data and the
linear model. The measured acceleration, ÿb is the acceleration experi-
enced by the buoy.

show that there is never a situation where the rope, holding the
components together, is slack which would cause shock loading
on the PTO units.

3.2 PREDICTED POWER PRODUCTION
By using the validated model of the motion of the buoy and

comparing the predicted PTO output based on the rate of change
of tension it is possible to identify the linear proportionality con-
stant α relating the tension derivative to the power production
P = αṪ . Here, P is the power production of the PTO units and
Ṫ is the time rate of change of the tension in the PTO units. Os-
cilla Power has developed models describing the power produc-
tion of the magnetostriction based power take off units which are
able to production energy from the entire spectrum of the wave
input [11].

After identifying the proportionality constant the model is
compared against other data sets during the same storm. For rea-
sons of propriety Tab. 2 only shows the error associated with the
predicted power.

Table 1 shows the error between the power production from
the WEC and the predicted power production from the time do-
main model. TD is the dominant period and Hs is the significant
wave height of the input. From this table it is shown that the
time domain model has reasonable certainty given the simplified
nature of the wave model. The assumption of a purely random
phase also adds a small amount of uncertainty when determining

FIGURE 6. Time domain simulation of the relative deflections of the
3 bodies with reference to the wave input, displacement direction is op-
posite of the convention established in Figs. 1 & 2 for ease of visualiza-
tion

TABLE 1. Error in the modeled power, Feb. 22, 2013 to Feb. 23,
2013

Time TD [s] Hs [m] % Error

22:30-23:00 2.56 0.14 −3.6

23:00-23:30 2.53 0.14 8.0

23:30-24:00 2.58 0.21 7.9

00:00-00:30 2.67 0.21 −9.1

00:30-01:00 2.67 0.28 −11.0

01:00-01:30 2.63 0.28 3.1

01:30-02:00 2.54 0.25 13.5

the coefficient to predict the power generation of the system.

4 SENSITIVITY ANALYSIS
By using a reference data set it is possible to perform a sen-

sitivity analysis by changing parameters and computing the new
power production. The analysis is performed in two stages, first
varying each adjustable parameter by positive 5% and then posi-
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TABLE 2. Proportional power change: %∆P1 is the change in power
production when the parameter is changed by +5%, %∆P2 is the change
in power production when the parameter is changed by +20%

Parameter Initial Value %∆P1 %∆P2

Buoy mass 570kg 0.0% -0.2%

PTO mass 260kg 1.2% 4.3%

Heave Plate mass 705kg 2.5% 9.3%

Buoy added mass 0kg 0.8% -0.8%

PTO added mass 4% mass 0.2% 0.2%

HP added mass 40% mass 1.0% 3.4%

Spring: Kr1 1,250,000 N
m -0.1% 0.3%

Spring: Kr2 270,000 N
m 0.7% 0.3%

Buoy buoyancy 22,260 N
m 2.5% 10.0%

PTO buoyancy 700N 1.1% 0.0%

HP buoyancy 1000N 0.1% 0.2%

Buoy drag, Db coefficient=1.7 -1.5% -6.5%

PTO drag, Dp coefficient=0.87 0.1% 0.3%

HP drag, Dh coefficient=1.7 0.2% -0.3%

tive 20%.
Table 2 shows the parameters that are varied in the sensitiv-

ity analysis along with the correspond values used in the simu-
lation. It can be seen that the greatest effect on the power pro-
duction is the mass of the heave plate and the buoyancy of the
buoy. This implies that the system is dominated by the inertia of
the components and entrained fluid rather than the drag, as may
be expected. Despite the great effect the buoyancy of the buoy
has on the power production it may be that a disproportionately
large buoy is not plausible. The heave plate parameters also have
significant impact on the performance of the WEC. Tab. 2 shows
that by increasing the mass of the heave plate or by increasing
the mass of the fluid entrained by the heave plate the total power
production will be increased.

Since the simulation was performed with zero added mass
initially, the sensitivity analysis used a reasonable range of added
mass coefficients based on the added mass of a similarly shaped
object. The first power production change was estimated by as-
suming an added mass that was 20% of the original buoy mass,
and the second power production change was computed using an
added mass equal to 40% of the original buoy mass. As shown in
the table, a significant change in the estimation of the added mass

does not produce a significant change in the estimated power pro-
duction. Likewise, a dramatic increase in both spring constants
produced less than a 1% change in the power production.

In the sensitivity analysis it is important to recognize that the
power production is not based on the tension that the PTO units
are subjected to, but rather the time rate of change of the tension.
Careful consideration should be taken when considering the ef-
fect that parameters will have on a point absorber WEC with a
different power take out.

5 CONCLUSION
This paper presented an approach to the modeling and val-

idation of a multiple multiple body point absorber wave energy
converter. By forming the equations of motions from first prin-
ciples rather than using a commercial hydrodynamics package a
model is established for the development of control aimed at re-
ducing the cost of producing energy with arrays of wave energy
converters. The equations of motion are developed and then lin-
earized with the goal of validating the amplitude spectrum with
experimental data.

Simulations are performed using both spectral and time do-
main methods using MATLAB to validate the amplitude spec-
trum of the acceleration of the wave energy converter. After de-
termining a model for the wave input based on incident wave
data taken during the deployment, a time domain simulation is
used to estimate the power production of the system. A linear
proportionality constant is used to relate the time rate of change
of tension, applied to the power take off units, to the power gen-
erated. The model is then used to compare the predictions with
the experimental power production for several different time in-
tervals.

Finally, a sensitivity analysis was used to show that this sys-
tem is dominated by inertia more than drag. As a result, the
design of the system should pay careful attention to the mass of
each component and the added mass of the entrained fluid. The
heave plate is also shown to be an important component for the
performance of the system. The fluid drag and the weight of the
heave plate must ensure that the PTO units are never in slack
conditions, while not producing an adverse effect on the power
production as demonstrated in the sensitivity analysis.

6 FUTURE WORK
Modeling the dynamics of a multiple degree of freedom sys-

tem will be the first step to model the moorings of marine energy
converter arrays. As the foundation to larger simulations, there
will be continued research aimed at decreasing the error between
the model and deployed wave energy converter. By expanding
the model to include the mooring lines additional sensitivity anal-
ysis can be performed to identify the performance characteristics
of various methods of station keeping [12].
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Point absorber WECs show their greatest potential to de-
ployed in large energy converter farms [13]. With large numbers
of WECs in mind it is necessary to model a network of converters
to optimize the performance of a marine energy farm while main-
taining the survivability of the converters in extreme conditions.
As shown in [3], an accurate simulation of the dynamics of mul-
tiple degree of freedom wave energy converters is possible using
a state space formulation. A mathematical basis for optimizing
the configuration of the system will be formed by extending the
work done in [14, 15] to validate networked wave energy con-
verters. The validated dynamics of a general WEC can now be
used to test controls methods on a wide variety of wave energy
converters.
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