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Abstract—The processes important to hurricane wave gen-
eration cover scales from kilometers to centimeters. Within a
storm, waves have complex spatial variations that are sensitive
to hurricane size, strength and speed. This makes it challenging to
measure the spatial variability of hurricane waves with any single
instrument. To obtain both broad spatial coverage and resolve
the full range of wave scales, we combine arrays of drifting
wave buoys with airborne radar altimetry. The microSWIFT
(UW-APL) and Spotter (Sofar) buoys are air-deployed along a
given storm track. These buoys resolve the scalar wave frequency
spectrum from 0.05 Hz to 0.5 Hz, which is approximately 600
m to 6 m wavelength (in deep water). The Wide Swath Radar
Altimeter (WSRA) flies into hurricanes aboard the NOAA Hurri-
cane Hunter P-3 aircraft. The radar altimetry data is processed
to produce a 2D directional spectrum from 2.5 km to 80 m
wavelength, and the radar backscatter provides an estimate of the
mean square slope down to centimeter wavelengths. We introduce
a method to use colocated mean square slope observations from
each instrument to infer the shape of the spectral tail from 0.5
Hz to almost 3 Hz. The method is able to recover the frequency
£ tail characteristic of the saturation range expected at these
frequencies (based on theory and measurements in lower wind
speeds). We also explore the differences between WSRA and buoy
mean square slopes, which represent the mean square slope of the
intermediate wavelength waves (6 m down to 20 cm). Together,
the fusion of these wave measurements provides a multiscale view
of the hurricane-generated waves. These ocean surface waves
are critical as drivers of the air-sea coupling that controls storm
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evolution and as drivers of coastal impacts by hurricanes.
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I. INTRODUCTION

The ocean surface wave energy spectrum spans wavelengths
from kilometers to millimeters. The tail of the spectrum
is important for understanding wave-induced stress [1]-[3].
The canonical tail of the scalar wave frequency spectrum is
typically described in terms of two distinct regions which
have different dynamic balances: the equilibrium range and the
saturation range. The equilibrium range arises due to a balance
of wind input, dissipation from breaking, and nonlinear energy
fluxes, and is characterized by an f ~4 tail in frequency [4], [5].
The higher frequency saturation range follows the equilibrium
range, as marked by a “transition frequency”. Within the
saturation range, wind input is balanced by dissipation from
breaking, and the spectrum has an f~5 tail which extends to
the high frequency, short gravity waves [6]—[8].

A. 1-D wave spectra in hurricanes

Observations show hurricane wave spectra are mostly uni-
modal (e.g., [9], [10]), though there are notable exceptions,
particularly on the left side of the storm where the wind-sea
and swell are propagating in different directions, resulting in
two distinct peaks [11]. In [10], the authors fit a JONSWAP
spectral model to buoy data and find the spectral tails steepen
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from f~% to f~5 with decreasing wave age (defined as the
ratio of 10-m wind speed to the phase speed at the spectral
peak). The mean tail exponent of all their observations is
—4.68. Hwang et al. find substantial scatter in their observed
spectral slopes (between —4 and —5), and instead suggest the
treatment of the spectral slope exponent as a random variable
[12]. The Gaussian fit to their data has a mean of —4.48
and standard deviation of 0.53. Drifting buoy observations
from hurricanes suggest that the spectral tail is dominated by
the f~° saturation range beyond 30 m s [13]. Aside from
variation across reported measurements, these observations do
not extend beyond 0.5 Hz (waves shorter than 6 m).

B. Mean square slope

The mean square slope (mss) of the ocean surface is a high-
order moment of the spectrum which is closely related to the
tail. When resolved down to sufficiently small wavelengths,
mss is widely interpreted as a measure of roughness [1], [14]-
[17]. It has also been suggested that mean square slope is
related to form drag, which can contribute substantially to the
total stress [18]—[20].

Mean square slope can be calculated from the wavenumber
spectrum as

k2
mss = / E*E(k)dk (D)
k1
where F(k) is the ocean wave energy spectrum as a function of
wavenumber, k, and k; and ko define the wavenumber extent
over which the spectrum, and thus mss, is resolved. Using the
deep water dispersion relationship, w? = gk, where w = 27 f
is angular frequency and g is the acceleration of gravity, mss
(1) can be expressed as a function of the frequency spectrum

4 f2
L @
9" I
where E(f) is the wave energy spectrum as a function of
frequency, f. Mean square slope is highly sensitive to the
scale of the waves and therefore the magnitude varies across
instruments which resolve different wavenumber ranges. It is
less sensitive to the lower limit, since long waves contribute
little to the mss magnitude [8].

Pioneering work by Cox and Munk [14] used photographs
of sun glitter on the ocean surface collected from an airplane
to calculate the slope distribution at 12.5 m wind speeds from
2 m s'to 14 m s!. Their results show the distribution of
wave slopes is nearly Gaussian, and that the variance of the
distribution, the mss, increases linearly with wind speed. The
optical-nature of their measurements suggest this approaches
an estimate of the foral mean square slope (the mss of the
wave spectrum down to the smallest waves in the gravity-
capillary and capillary wave regimes). They repeated their
experiment in the presence of an oil-slicked surface, which
was found to reduce mss by a factor of 2-3. The slick
suppresses wavelengths shorter than ~0.3 m [1]. The Cox
and Munk mean square slopes have since been corroborated
by modern measurement techniques (e.g., lidar, polarimetry,

mss =

radar, satellite-based radiance) [21]-[24]. These works agree
that mean square slope has a linear dependence on wind speed
in winds less than 20 m s™'.

C. Radar-derived mean square slope

Radar-based remote sensing has been used to make esti-
mates of the sea surface slope distribution for several decades
(e.g., [25]). Radar are useful for characterizing the surface
slope of smaller waves (centimeter-scale), particularly since
they can be applied in challenging conditions such as hurri-
canes [26], [27].

Radar backscatter is proportional to the probability density
of surface wave slopes from which the mean square slope can
be determined using an optical model [28], [29]. The radar-
estimated mean square slope depends on the scattering regime
(e.g., Bragg scattering or quasi-specular) and the wavelength
resolution is limited by the radar wavelength.

Jackson et al. [30] estimated mss using Ku-band radar and
reported a linear fit. Their mean square slope estimates are
equivalent to (1) integrated from small wavenumbers (large
wavelengths) to an upper wavenumber of 63 rad m~! (0.1
m wavelength). Observations from [31] using Ka-band radar
(upper wavenumber of 250 rad m~! or 0.02 m wavelength)
and [15] using the NASA Scanning Radar Altimeter at Ku-
band have instead reported a logarithmic dependence on wind
speed below 15 m s'. The logarithmic relationship is in better
agreement with the laboratory observations of [32] than with
those of Cox and Munk. Similarly, a power-law dependence
was reported by [33] using C-band radar (upper wavenumber
of 51 rad m™—!, 0.12 m wavelength) later supported by [34].

D. Observations at higher wind speeds

There are few reported estimates of the high frequency
spectral tail (frequencies > 0.5 Hz) or of the mean square
slope beyond 15 to 20 m s™!. The lack of such estimates in
extreme wind speeds has made it challenging to validate the
use of spectral wave models, which require an empirical tail
at these frequencies, in hurricanes [2], [35].

Global positioning system reflectometry (GPS-R), L-band
observations of mean square slope have been made in hur-
ricanes in wind speeds up to 59 m s*' [36]-[38]. The GPS-
R mss estimates follow a logarithmic form and represent an
upper wavenumber of approximately 11 rad m~! (0.57 m).
Buoy-based estimates of mss (upper limit 1 rad m—!, 6.2 m)
measured in hurricanes effectively saturate beyond 25 m s"'and
can be described using a tanh relationship up to 54 m s’!
[13]. Additional, radar-based high wind characterizations of
mean square slope appear to be on the horizon (e.g., KalA
and CYGNSS) [39], [40].

Here we combine hurricane wave observations from buoys
and airborne radar to characterize the mean square slope at
intermediate wavelengths (6 m to 0.2 m) in high wind speeds.
We then introduce a method to use colocated mss observations
to infer the slope of the high-frequency spectral tail at these
wavelengths (approximately 0.5 Hz to 2.8 Hz).
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II. METHODS
A. Buoys

Hurricane wave buoy observations are from two types of
small, free-drifting wave buoys: the microSWIFT (UW-APL)
and Spotter (Sofar). Each uses GPS-derived elevations and
velocities to estimate wave elevation. Every hour, the wave
elevations are processed into spectra which are telemetered
through the Iridium satellite network.

The microSWIFT buoy is an expendable wave buoy sized
for deployment through the dropsonde chute of scientific
aircraft [41]. The buoy is cylindrical with an 8.9 cm diameter,
51.0 cm length, and a mass of 2.9 kg. Wave elevation time
series collected at a rate of 4 Hz are transformed to spectra
using 256 s windows each with 75% overlap. The spectra
are then frequency-merged and output in 42 bins spanning
frequencies of 0.05 Hz to 0.5 Hz.

The Sofar Spotter is a sphere-like buoy which is 42 c¢m in
diameter has a mass of 7.5 kg, including ballast [42]. When
air-deployed, the Spotters are specially rigged for deployment
through an open door [43]. Raw data collected at 2.5 Hz
sampling rate and processed into 256-sample FFTs. The final
spectra span 0.0293 Hz to 0.5 Hz in 38 bins. A constant
frequency resolution of df = 2.5/256 Hz is used up to 0.33 Hz,
beyond which the resolution is coarsened to 3 df for bandwidth
efficiency when transmitting over the Iridium network.

Data from the full-sized v3 SWIFT buoys collected during
ATOMIC were used to evaluate the proposed spectral tail
extrapolation method in moderate conditions [44]. The v3
SWIFTs have a 0.35 m diameter hull and a 1.25 m draft
[45]. Wave spectra are reported at 42 frequency bins (0.01
Hz to 0.05 Hz) from 8-minute time series of wave elevation.
Multiple spectra within a comparison period are averaged,
where applicable.

B. Wide Swath Radar Altimeter

The Wide Swath Radar Altimeter (WSRA) is a 16.15 GHz
(Ku-band) radar which flies into hurricanes aboard one of
the Hurricane Hunter P-3s [26], [46], [47]. It uses altimetry
to estimate the 2-D directional wavenumber spectrum from
2.5 km wavelength down to 80 m. The spectra represent
an approximately 14 km? area collected over 50s and are
corrected for Doppler shift as well as a skewing effect which
occurs as the radar scans perpendicular to wave crests.

The WSRA also uses backscatter to estimate mean square
slope based on the geometric optics model which relates the
normalized radar cross section per unit area (op) to mean
square slope [28]:

0\|2 _ 2
M sect @ exp (‘m@) (3)

msSs mss

oo =

where |R(0°)|? is the Fresnel reflection coefficient at normal
incidence, 6 is the off-nadir angle, and mss is the mean
square slope. Under this assumption, when the logarithm of
0o is plotted against tan?#, mean square slope is inversely
proportional to the slope. In practice, this is done using a fit
through the data [47].

— WSRA
x — Jackson (1997)

Cox & Munk (1954) clean
Cox & Munk (1954) slick
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Fig. 1. WSRA mean square slopes compared to those from Cox and Munk
(1954) and Jackson et al. (1992) [14], [30]. The black line represents a linear
fit to the WSRA data (grey points) from 10 to 20 m s”!. The WSRA mss falls
between that of the Jackson et al. (1992) Ku-radar measurements, rigorously
determined to have an upper wavelength of 10 cm, and the “slick” sea surface
measurements of Cox and Munk (1954) which extend to 30 cm. Linear fits to
the mss data are given by: mss = 0.003+0.00512U12.5 for U125 € [2,14]
m s'(Cox and Munk, clean), 0.008 +0.00156U12.5 (Cox and Munk, slick),
0.01340.0023U1¢ for Ug € [7,15] m s'!(Jackson), and 0.01340.0016U1
for U1g € [10,20] m s (WSRA).

For the WSRA, this calculation is restricted to off-nadir
angles from 0 deg to 14 deg (where O deg is pointing directly
down at nadir) such that the scattering remains within the
quasi-specular regime. When determined using this model, the
mean square slope estimate is not sensitive to the calibration of
the radar and is likely less sensitive to rain attenuation since
all the returns are attenuated by a similar amount. A minor
correction is applied to account for the slightly increased path
length further off nadir.

In this scattering regime, the estimated mean square slope
represents (1) integrated from approximately the width of
the swath (100’s of meters) down to several times the radar
wavelength, A, (diffraction limit) [30]. For WSRA, the radar
wavelength is A, = 1.85 cm. The exact upper wavelength is
often not well known and estimates in the literature range
from 2 to 10 times A, [30], [31], [33]. By comparing to
prior estimates of mean square slope with known extents, we
determine that the upper wavelength resolved by the WSRA
is on the order of 0.2 m (20 cm) (Figure 1). This corresponds
to 10.8 A,.. The upper limit is sensitive to range of off-nadir
angle (which is constant) and possibly wind [33], [48].

C. Colocated observations

Colocated buoy and WSRA observations are from three
datasets. Buoy observations in hurricanes are from targeted air
deployments into Hurricane Ian (2022) and Hurricane Idalia
(2023) as part of the NOPP Hurricane Coastal Impacts project
(NHCI). The microSWIFT and Spotter buoys intersected with
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Fig. 2. WSRA mean square slopes versus SFMR 10-m wind speed, colored
by hurricane. Black diamonds indicate bin-averages from the combined data,
and the error bars represent one standard deviation in each bin.

the flight path of the NOAA Hurricane Hunter P-3 carrying
the WSRA (H1 and and Il planes in Ian and Idalia, respec-
tively). The colocated observations are within a 100 km radius
and 90 minutes of one another. Additional data from the
Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction
Campaign (ATOMIC) (2020) are included for evaluation of the
tail extrapolation method at lower wind speeds. The ATOMIC
field campaign took place in the tropical North Atlantic east of
Barbados January through February 2021 [44], [49]. Several
flight tracks from the P-3/WSRA are directly overhead of the
SWIFT drifters.

III. MEAN SQUARE SLOPE VERSUS WIND SPEED
A. WSRA mean square slope

WSRA data from hurricanes Earl (2022), Fiona (2022),
Tan (2022), Julia (2022), Idalia (2023), and Lee (2023) are
combined with 10-m wind speed estimates from the stepped
frequency microwave radiometer (SFMR) which flies con-
currently aboard the NOAA P-3s [50]. The WSRA data are
filtered to remain within limits for aircraft roll (+2.5°), altitude
(1000-4000 m), groundspeed (80-250 m s1), and rainfall rate
(< 50 mm hr'!). Rainfall rate estimates from both the SFMR
and WSRA are used for filtering purposes. SFMR wind speed
observations flagged as invalid were excluded.

WSRA mean square slopes measured in all six hurricanes
saturate at high wind speeds and, in many cases, reduce at the
highest wind speeds (Figure 2). Bin-averages, which include
data from all hurricanes, reach a maximum around 25 m s,
beyond which they reduce slightly and then level-off around
35m . The WSRA mss wind speed dependence is similar to
that of the L-band GPS-R mss summarized in [38], though the
WSRA mss is higher due to its higher upper wavenumber (31.4
rad m~! compared to 11 rad m~!). Deviation from the linear

dependence on wind speed (above 20 m s') in the WSRA
mss hurricane datasets presented here and from GPS-R are
qualitatively similar to those measured by drifting buoys [13].

B. Mean square slope at intermediate wavelengths

WSRA mss represents waves with lengths from several
hundred meters down to 0.2 m (20 cm). While the exact
lower limit is not well-defined, the extent overlaps with the
wavelengths measured by buoys, 600 m to 6 m. Assuming
the WSRA longer wavelength limit is comparable to that of
the buoy, and that these waves have little contribution to the
overall mss, the difference of the WSRA mss and buoy mss
should approximate the mss of waves between 6 m and 0.2 m.
The difference between the mss measurements also saturates
with 10-m wind speed (Figure 3). The results agree with a
set of similar, yet lower wind speed, observations from [31]
which represent the difference of a Ka-band radar mss (0.02 m
lower wavelength) and a laser altimeter mss (2 m lower wave
length) and thus waves from 2 m to 0.02 m. The authors report
a logarithmic fit to their data.

IV. SPECTRAL TAIL EXTRAPOLATION

Buoys measure the energy spectrum in frequency from 0.05
Hz to 0.5 Hz. Since mean square slope in (2) is proportional to
the area beneath an E f* spectrum, colocated observations of
WSRA mss and buoy mss, which overlap in frequency extent,
can be used to infer information about the spectral tail beyond
0.5 Hz. In particular, colocated observations of the difference
between WSRA mss and buoy mss (Figure 3) can be used to
constrain the spectral slope from 0.5 Hz to 2.8 Hz (from 6 m
to 0.2 m in deep water).

The difference of the WSRA and buoy mean square slopes
is defined as

msss = MSSWSRA — MSShuoy 4)

where mssy,,o, is the mean square slope from the integrated
buoy spectrum, which cover frequencies from ~ 0.05 Hz to 0.5
Hz, and msswsga is the quasi-specular WSRA mean square
slope estimate which is assumed to cover ~ 0.05 Hz to 2.8
Hz.

We seek to extend the buoy spectrum, Epyoy(f), with a
spectral tail of the form Fs(f) = c¢f™ which starts at the
end of the buoy spectrum, f; = 0.5 Hz, and extends to the
frequency of the smallest wavelength resolved by the WSRA
mss, fo = 2.8 Hz. Here c is a constant and n is the unknown
slope exponent. When f4-compensated, Es(f)f* has the form
cf® where a = n + 4 (Figure 4). The integral of c¢f® should
be equal to the area determined by the mean square slope in

@,

f2 c a+1 a+1 9°
/1 cftdf = = (o — fi ):(27T)4msS5 5)

Since the spectrum must be continuous at f;, then

E(fu)ff = cf} (6)
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Fig. 3. WSRA mss and buoy mss (left) and their difference (right), which represents waves from 6 m to 20 cm. The difference is calculated from the bin
averaged WSRA mss and buoy mss (diamonds and circles on the left plot). Data from Vandemark (2004) are shown for comparison (their Figure 10, “coastal”
observations), including the logarithmic fit 0.004 4+ 0.0093 In(U1¢) for U1o € [1.5,16.5] m s'! [31]. Lower wind speed WSRA mss observations are required
to fit a comparable logarithmic function to the difference of WSRA mss and buoy mss, however the SFMR does not produce reliable U1g estimates at low
wind speeds [50]. A second-order polynomial fit is shown: —2.3 - 107°UZ; 4 0.00128U1¢ + 0.012. for U1g € [10,40] m s™'.

such that

c=E(fi)f* )

Inserting (7) into (5) results in an equation with one unknown,
the exponent a, which can be determined by root-finding:

E(f1) ;@a-a) ( mss; =0 (8)

| a+l a+1) o 92
a+1

2 1 (271_)4
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Fig. 4. Extrapolation of the f*-compensated buoy spectrum, Ebuoy (f) A,
with a compensated tail Es(f)f* of the form cf®. When compensated, the
area beneath the spectrum is proportional to mean square slope (2). The
colored bars and shading represent the frequency and mss extent of the
buoy (yellow, hatched), WSRA (orange, hatched), and their difference (blue,
stippled).

Once a is found, the form of the regular energy spectrum over
this frequency extent is then

Es(f) =cf" )

where n = a — 4.

This method was applied to 21 sets of colocated WSRA and
buoy observations. Since the WSRA reports mss every minute,
all mss observations within a buoy reporting window are used
to obtain msswgsgra. The inferred tail slopes range from n =
—4.1 to n = —5.8, with a mean of n = —4.8 and a standard
deviation of 0.41. Wind speeds vary from 10.5 m s'to 25.6
m s'and buoy-measured significant wave heights span 1.9 m
to 6.9 m.

Three examples of the tail extrapolation method, using
cases from the ATOMIC campaign (2020), Hurricane Idalia
(2023), and Hurricane Ian (2022), are shown in Figure 5. The
ATOMIC case (Figure 5A) is in moderate conditions with a
mean wind speed of 10.9 m s™'and a buoy-measured significant
wave height of 1.93 m. The largest separation distance is 22.14
km, and half of the WSRA flight track is directly over the
SWIFT. The 1-D WSRA frequency spectrum, derived from
the 2D wavenumber spectrum using the Jacobian to convert
wavenumber space to frequency-direction space (e.g., [S1]), is
shown for comparison. The WSRA spectrum is only resolved
from 0.025 Hz to 0.14 Hz (2500 m to 80 m), but has similar
energy levels and captures the main peak. The significant wave
height reported by the WSRA is 1.79 m, slightly less than that
of the buoy.

The Ian and Idalia cases (Figure 5B-C) are characterized by
higher wind speeds (22.7 m s”'and 21.9 m s™!, respectively)
and more energetic sea states (buoy significant wave heights of
5.0 m and 6.3 m). There is good agreement in the shape and
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Fig. 5. Slope extrapolation example cases from ATOMIC (A), Hurricane Idalia (B), and Hurricane Ian (C). For each case, the top panels show the WSRA
and buoy locations and the bottom panels show the spectra and extrapolated tails. The dashed line represents the Fs(f) tail and n corresponds to the inferred

spectral slope exponent in cf™.

energy levels of the 1D spectra and significant wave height
between WSRA (5.1 m) and the microSWIFT buoy (5.0 m)
in the Ian case. The mean distance between the observations
is 68.64 km. In the Idalia case, however, the WSRA spectrum
has lower overall energy levels and a higher peak frequency
than the Spotter buoy. The WSRA-reported significant wave
height (3.3 m) is nearly half that of the buoy (6.3 m). The
mean separation distance, 51.49 km, is lower than in Ian.

V. DISCUSSION AND CONCLUSIONS

The saturation of WSRA mean square slope (wavelengths
> 0.2 m) with wind speed in hurricanes is consistent with
the behavior of buoys (> 6 m) (Figures 2 and 3) [13]. The
wind speed at which the WSRA mean square slopes saturate
is higher than that of the buoys (approximately 25-30 m
s"'compared to 20 m s™') which may be due to the evolution
of the intermediate wavelengths (6 m to 0.2 m) resolved by
the WSRA but not the buoy.

The mss of these intermediate wavelengths is represented
by the difference of the WSRA mss and buoy mss which
also ceases to increase beyond 25 m s™!(Figure 3). The data
are in general agreement with a set of similar measurements
from [31] which are described by a logarithmic wind speed
dependence below 18 m s™!. This suggests it is not just the

mss of the larger waves which saturate at the extreme wind
speeds found in hurricanes. The difference between WSRA
mss and buoy mss is likely more representative of roughness
(typically associated with shorter waves) [18]. Following the
interpretation of mean square slope as a measure of surface
roughness, the saturation and roll-off captured in both the
WSRA mss and difference between the WSRA mss and buoy
mss is consistent with the qualitatively similar behavior of
the sea surface roughness length first observed by [52]. The
WSRA mss, however, contains slope information that may be
relevant to both form and viscous components of the drag.

The mean square slope of the intermediate waves can be
used to extrapolate the tail of the buoy spectrum by inferring
a constant spectral slope over the frequencies 0.5 Hz to 2.8
Hz. When the equilibrium-to-saturation transition frequency
is higher than 0.5 Hz, the constant spectral shape assumption
does not hold. However the transition frequency decreases with
increasing wind speed [23], [53] and is consistently lower than
0.5 Hz beyond 12 m slin the data of [53].

The mean spectral slope (n = —4.8) from 21 colocated
WSRA-buoy pairs (within 100 km and 90 minutes), as well
as the examples from ATOMIC (n —4.8), Idalia (n
—5.1), and Ian (n —4.7) are all close to the canonical
f7? tail anticipated at these frequencies. In the ATOMIC
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case, there is generally good agreement between the energy
levels of the WSRA and buoy 1D WSRA frequency spectra as
well as between the reported significant wave heights (Figure
5A). However the ATOMIC wave conditions were sometimes
characterized by two separate wave systems (swell from the
north and wind sea from the east), and it appears the higher
frequency peak was not captured by WSRA. Good agreement
is also observed in the Idalia case, though the wind speed and
significant wave height are much higher (22.7 m s'and 5 m,
respectively) (Figure 5B).

There is substantial disagreement between WSRA and
buoys in the Ian example (Figure 5C). The WSRA misses the
peak and has far lower energy levels, reporting a significant
wave height of only 3.3 m relative to the 6.3 m reported by the
buoy. The latter is much more typical of hurricane waves, and
it is unlikely the observations are close enough to the hurricane
eye for a gradient this large to be realistic [10]. Further, the
WSRA observations are also closer to the hurricane than the
buoy. Still, the WSRA mss (0.035) is comparable to the other
two cases and is close to being within a standard deviation of
the observations shown in Figure 2. The WSRA mss estimate
from the backscatter is upstream of the spectral estimate in
the WSRA processing pipeline and does not require correction
for the skewing effect caused by the waves during altimetry
[47]. This suggests the WSRA mss, and thus the spectral tail
extrapolation method, may still yield reasonable values despite
poor wave height estimates.

Despite good agreement with the canonical result, several
sources of uncertainty remain. The exact lower and upper
wavenumber limits of the WRSA mss, and whether they may
be evolving with wind speed (e.g., [33]), are not well-known.
Uncertainty may be narrowed through more careful examina-
tion of raw backscatter data to determine the diffraction limit
(upper wavenumber), as was done in [30]. Errors are intro-
duced by separation in space and time, especially in hurricane
sea states, and since the mss response time can be well under
an hour [54]. This motivates more carefully colocated wave
buoys and airborne WSRA in future hurricanes.

Narrowing errors, this method can be used to understand the
evolution of the spectral tail in high winds, and its dependence
on factors such as storm size, speed, and strength. A better-
parameterized tail will enable more accurate parameterization
of stress in models which require a prescribed tail [2], [3].

A. Data Availibility

Wide Swath Radar Altimeter data can be accessed from
https://www.prosensing.com/wsra-level-4-data and the
accompanying met data can be downloaded from https://se
b.noaa.gov/pub/acdata/2023/MET/. Spotter and microSWIFT
data from Hurricane Ian are available at https://orcid.org/
0000-0001-8623-2141. SWIFT data from ATOMIC are at
https://doi.org/10.5194/essd-13-3281-2021 [49] and WSRA
data are at https://doi.org/10.5194/essd-13-1759-2021 [44].
A master archive of microSWIFT data, which contains data
from additional hurricanes, is at https://datadryad.org/stash/da
taset/doi:10.5061/dryad.jdfn2z3j1.
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