
 File = B:\AB\JOHN\r\rnote.docm 1

John Miyamoto (jmiyamot@uw.edu) January 5, 2014

http://faculty.washington.edu/jmiyamot

Getting Started with R under Windows 7

NOTE: R is a free open-source statistical program. See the R homepage (http://www.r-project.org/) for the terms of its use. The

homepage also has useful information about the history of the R-project, how to use R, how to write R programs, and much more.

The purpose of this document is to describe a way to configure R that makes it easy to work with R on many different projects (at

least, so it seems to me). .

NOTE TO MAC USERS: These instructions are written for Windows users because this is the only operating system with which

I am familiar, but most of the information can be adapted (I believe) to a Mac or Linux framework. The following documents

has information about installing and running R on a Mac:

• R for Mac OS X FAQ (http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html)

• R:Installing and Using R and Rcmdr on a MAC

(http://wiki.math.yorku.ca/index.php/R:Installing_R_and_Rcmdr_on_a_MAC)

Table of Contents

Section Topic

1 Downloading R

2 Installing R on a Windows System

3 Installing R Packages on Any System (Windows, MacOS, Linux)

4 Setting the Startup Directory for R

5 How does R find functions and objects

6 How to attach files to the search path; how to detach files from the search path; how

to create files of R objects

7 Setting the Startup Configuration of R

8 A search path with a convenient organization

9 A Note on the Usefulness of Programming Editors

10 Downloading R Documentation

11 Appendix I: Examples that use the functions: .First, attach.jm, doc, move, o.type,

rm.sv, setwd.jm

12 Appendix II. Transferring data to and from SPSS

1. Downloading R

These instructions assume that R version 2.15.3 is the current state-of-the-art version of R for

Windows. If there is a more recent version, you should use it. To download R:

1.1. Go to http://www.r-project.org/.

1.2. Click on CRAN (Comprehensive R Archive Network) on the left (under "Download, Packages").

CRAN will ask which of various mirrored website you want to be connected to. Choose one that is

close to where you are, e.g., the Fred Hutchinson website is in Seattle.

1.3. Under "Download and Install R" (precompiled binary versions), click on the operating system for

your computer, e.g., MacOS or Windows. DO NOT download the R source code unless you are a

computer expert who wants to work with the code. The average user does not look at this code.

1.4. For either MacOS or Windows, there are two components to the program. Base refers to the main

program. Contrib refers to special sets of functions (R calls them "packages") that have been

mailto:jmiyamot@uw.edu

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 2

written by R-users for special purposes. Everyone needs to have the Base program, but you only

need a package if you need the special purpose functions that are contained in the package. E.g.,

there is a package called bootstrap that has functions for computing bootstrap statistics; you

should install this package only if you need to compute bootstrap estimates. Section 3 describes how

find out what packages are available and how to install them.

1.5. Download the latest version of R for your operating system (Windows; Mac; or Linux). This is all

you need to install the R base program. Section 2 describes how to install R.

In addition, you may want to download some documentation. Starting from CRAN (http://cran.us.r-

project.org/), notice that the left side of the screen has links to documentation.

1.6. To download the R Manuals (see Section 10), click on the Manuals link. This will take you to a

page from which you can download manuals for different purposes.

1.7. Many R users have contributed useful documents that describe different applications of R. Click on

the Contributed link (from CRAN). Look for documents that fit your needs.

1.8. It may be useful to look at the FAQ for Windows and Mac users (again, see Section 10). Go to

http://cran.r-project.org/, and click on FAQs. Choose the R Windows FAQ or the R MacOS X FAQ.

I'm afraid that I don't use a Mac, Unix or Linux systems, so I don't have tips about what to download for

these operating systems, but I believe that the procedure is reasonably straightforward (I haven't heard

people complaining about it).

2. Installing R on a Windows System

The files README and RW-FAQ

documents contain instructions for installing R. To

install R, simply apply the Add/Remove programs

utility (available on the Windows Control Panel) to

the R installation file (named something like R-

2.15.3-win32.exe). Figure 1 shows the

directory structure that is automatically created when

R is installed. The R directory is itself a subdirectory

of C:\Program Files\. On your computer,

your version of R may be installed in a directory that

is called something like, C:\Program

Files\R\R-2.15.3. In any case, the R program

will have a directory structure that is fairly similar to

the structure shown in Figure 1.

A Brief Comment on 32-Bit R versus 64-Bit R

The current Windows computers have either a 32-bit or 64-bit processor (never both). A 64-bit

processor can usually (not invariably) run software that was written for a 32-bit processor, but the

opposite is not true. To find out whether your computer has a 32-bit processor or a 64-bit processor, go

to:

http://windows.microsoft.com/en-us/windows7/32-bit-and-64-bit-Windows-frequently-asked-questions

Figure 1

http://windows.microsoft.com/en-us/windows7/32-bit-and-64-bit-Windows-frequently-asked-questions

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 3

The standard installation of R installs both a 32-bit version of R and a 64-bit version of R. If you are

using a computer with a 32-bit processor, you can only use the 32-bit version of R, but if you are using a

computer with a 64-bit processor, you can use either version of R. The following link will take you to a

discussion of the choice between the 32-bit and 64 bit versions of R:

http://cran.r-project.org/bin/windows/rw-FAQ.html#Should-I-run-32_002dbit-or-64_002dbit-R_003f

From the standpoint of the user, the main differences between the 32-bit and 64-bit versions of R are:

• If you have a 64-bit processor, then the 64-bit R will generally be better (slightly faster) than the 32-

bit R.

• There are a few R packages that only have a fully function 32-bit version. For example, the BRugs

package which is used to interface R with OpenBUGS runs reliably on the 32-bit version of R.

There is a beta version of BRugs for the 64-bit version of R, but it may not always work (I have

experienced frozen screens with BRugs on the 64-bit version of R that went away when I switched to

using BRugs with the 32-bit version of R)
1
.

• There is a separate Rgui.exe program (runs the R interface) for the 32-bit and 64-bit versions of R.

For 32-bit R, Rgui.exe is in the i326 folder (see Figure 1) and for 64-bit R, Rgui.exe is in the

x64 folder (also, see Figure 1).

R-code runs equally well and without any changes on the 32-bit and 64-bit versions of R, except when R

is used in combination with one of the few packages that are not yet fully compatible with 64-bit R. My

basic advice is to use the 64-bit version of R if you have a 64-bit processor, but be aware that some

packages, in particular, BRugs, may require that you temporarily switch to the 32-bit R.

Mac and Linux users can disregard these comments because they are mainly relevant if you want

to use the BRugs package as an interface between R and OpenBUGS; OpenBUGS will not run under

Mac
2
 or Linux OS.

Creating a Desktop Icon for R

After the program has been installed, you will want to put an icon (short-cut) to the Rgui.exe

program file on your desktop. Rgui.exe for 32-bit R is contained in the

...\R Version#\bin\i386 directory, and the Rgui.exe for 64-bit R is contained in the

...\R Version#\bin\x64 directory. Rgui.exe runs the interactive version of R. Right mouse

click on the Rgui.exe to create a shortcut to R, and then copy or cut and paste this shortcut to the

Windows Desktop (or any other place you might want to keep the icon).

3. Installing R Packages on Any System (Windows, MacOS, Linux)

WARNING: Under Windows 7, you may need to establish that R has "administrator privileges" before R

is allowed to add new packages to the R installation. I don't know the principles behind how this works,

but here is one way to give administrator privileges to your installation of R: Right-click on the R

program icon (on the Desktop) and choose "Properties". Then go through every tab of the dialog box,

click on every button that is labeled "Advanced", and if there is any option to "run as administrator",

choose that option. I find that this generally works, but I don't really understand what is happening here.

1 According to the R documentation, the main example of packages with only 32-bit versions are BRugs and rggobi.

Actually BRugs has a beta 64-bit version.
2 Mac users can run R and OpenBUGS in a simulated Windows environment, i.e., by using Parallels, VMWare Fusion,

BootCamp, etc. If you plan to do this, then you may want to install BRugs on the Windows partition.

http://cran.r-project.org/bin/windows/rw-FAQ.html#Should-I-run-32_002dbit-or-64_002dbit-R_003f

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 4

You may also want to install some R packages. As a matter of fact, the default installation

automatically installs a number of packages, e.g., "base", "boot", "class", "cluster", To see a list of

packages, return to the CRAN page (http://cran.us.r-project.org/); click on Packages in

the Software section of the navigation panel. You should see a list of available packages. As a practical

matter, most users learn about useful R packages because they are mentioned in books, journal articles or

conversations with friends. Looking through the package list at CRAN can be useful, but it is time

consuming and not always informative.

If your computer is currently connected to the internet, you can download and install an R

package as follows. Run R, and type the R command:

install.packages(c(<package names>))

where <package names> is replaced by a quoted series of package names. For example, if you want

to install the bootstrap and survival packages, you would enter the command:

install.packages(pkgs = c("bootstrap", "survival"), repos = "http://cran.fhcrc.org/")

The expression, c("...", "...",, "...") specifies a series of packages (character

vector of package names) that will be installed on your system. The repos argument specifies a

computer repository where the R packages can be found. The specification repos =

"http://cran.fhcrc.org/" specifies the Fred Hutchinson computer in Seattle, which is a

convenient repository for people living in Seattle. To find a repository that is close to your current

location, run R; then click on the "Packages/Select Repositories" menu. The install.packages

method is the easiest way to install R packages
3,4.

Even after you have installed a given package, e.g., the bootstrap package, you still must give

the command, library("package.name"), where "package.name" is the name for the particular

package, to make the package available to your current R session. For example, to load the bootstrap

package, you must give the R command, library(bootstrap). Of course, this only works if you

previously downloaded and installed the bootstrap package. Below is a list of some of the many

useful R packages.

• The foreign package (foreign.zip) contains a function, read.spss, that allows R to read SPSS

data files.

• The MASS package (vr.zip) contains many useful functions and data sets for Venables & Ripley's

excellent textbooks about S computing (also R). This package is automatically installed when you

install the base package (the main R program), so you don't need to download it or install it

individually.

• The NLME package (nlme.zip) contains functions and data for repeated measures anova and

multilevel modeling. This package is automatically installed when you install the base package (the

main R program), so you don't need to download it or install it individually.

• The lattice package (lattice_0.14-16.zip) contains functions for high quality graphics.

• The BRugs and R2OpenBUGS packages contain functions for getting R to work in concert with the

OpenBUGS program.

3 The 'install.packages' method that is described in this document assumes that you want to install the packages in the default

locations for the R program. It is possible to install the packages in other user-specified locations - see

'help("install.packages")' for documentation about how to do this.
4 It is also possible to install packages by running R; then click on the "Packages" menu; the click on "Install packages"; then

click on the name of a package that is displayed on the resulting menu.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 5

• The rjags and R2jags packages contain function for getting R to work in concert with the JAGS

program.

• The R2WinBUGS package contains functions for getting R to work in concert with the WinBUGS

program.

• Note: It is very easy to update R packages, i.e., get the latest versions of packages that are already

installed on your computer. To update R packages, do the following: (i) connect to the internet;

(ii) run R; (iii) give the command, update.packages(), to R. The update.packages

function will automatically update every package that you have installed on your computer.

4. Setting the Startup Directory for R TOC

The startup directory is the directory that contains the data objects that you want to work on in

your current R session. For example, suppose you are working on two projects; the data files for your

dissertation project are in a directory (folder) called c:\diss\data and the data for your job are in a

directory called c:\job\data. In general, it is easier to load or save data from files in the R startup

directory than from files in other directories. Therefore, when you use R to analyze your dissertation data,

you want to start R with c:\diss\data as the startup directory; and when you use R to analyze data

from your job, you want to start R with c:\job\data as the startup directory.

 To set the startup directory for R, click the right mouse button on the R program icon. Choose

"properties". Click on the Shortcut tab. In the "Start In" field, type the path and name of the

directory that contains the files that you want to work on. Then click OK. This sets the startup

directory for this particular icon. You can choose any directory as the startup directory, and you can

create multiple icons for different projects.

 Example: Suppose as suggested above that you are working on two projects, a dissertation project with

files in c:\diss\data, and a job project with files in c:\job\data. A standard way to deal

with this is to make two R program icons. Right mouse click on any existing R program icon or

shortcut; select Create Shortcut; do this twice if you want two shortcuts to R. Now right click on an

icon, select the properties of the icon, and edit the properties of these icons, setting one so that it starts

in c:\diss\data and the other so that it starts in c:\job\data. Click on the appropriate icon

when working on the corresponding project. In this way, R objects that are created for purposes of

analyzing the dissertation data (in c:\diss\data) will not get confused with R objects that are

created for purposes of analyzing job data (in c:\job\data).

Suppose you want to work on the data in c:\diss\data. Double click on the R icon that starts in

c:\diss\data.

 As it starts up, R automatically looks for a file called .Rdata in c:\diss\data. This

file, .Rdata, contains any functions or data objects that were created and saved in previous R-

sessions that started in c:\diss\data. If there is no .Rdata file in c:\diss\data, e.g.,

because this is the first time you have started R in this directory, then R automatically creates

a .Rdata file.

 When you initially start R, the .RData file in the startup directory is loaded into the computer's

working memory and is given the name, .GlobalEnv. .GlobalEnv can be thought of as the

workspace for your current R session. If you create additional objects during your R session, these

objects will be added to .GlobalEnv, but they will not be permanently saved until you issue a

command that saves the workspace. You can also use the function, save.image, to save the

current workspace to .Rdata (see the R-Help page for the save.image and save functions).

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 6

 In addition, when you quit R, you will be queried whether you want to save your current workspace to

c:\diss\data. If you choose to save your current workspace, then all functions and objects in

your current workspace will be saved to the .Rdata file in c:\diss\data. These functions and

objects will be loaded the next time you start R in c:\diss\data.

5. How does R find functions and objects (e.g., variables or data sets) that are
referenced in the code for an analysis?

Whenever you enter an R-expression at the R-prompt, R looks for functions or objects that

correspond to the functions or objects that are referred to in the expression. For example, suppose you

type the following at the R-prompt (the initial ">" is the R-prompt):

>X = Y + Z

R will look for objects called "Y" and "Z", and try to assign to "X" the sum of the values assigned to "Y"

and "Z". To find Y and Z, R looks through a series of files for objects with these names. This series of

files is called the search path for R. You can see the current search path by giving the R command,

search(). For example on my computer, search() produces the information shown in Table 1.

Table 1

> search()

[1] ".GlobalEnv" "file:data.rda" "file:e:/r/jm.utilities.rda" "package:stats"

[5] "package:graphics" "package:grDevices" "package:utils" "package:datasets"

[9] "package:methods" "Autoloads" "package:base"

This output tells us that .GlobalEnv is in position 1 (the top position on the search path). The files in

positions 2 - 11 are occupied by other files that contain useful functions. Position 11 contains the base

package which constitutes the primary functions of the R programming language. The specific search

path will differ on different computers, or even on the same computer at different times; later I will

explain how the user can control which files will be placed on the search path.

If the expression, "X = Y + Z", is entered at the R-prompt, R looks for objects corresponding

to "Y" and "Z". R looks first in .GlobalEnv, second in the file data.rda, third in the file

jm.utilities.rda, fourth in the file package:stats, etc. R assigns to each expression the first

object with a matching name that it finds on the search. For example, suppose that there is an object

named "Y" in data.rda where "Y" has the value 4, and there is another object named "Y" in

package:datasets where it has the value 10, and there is no object named "Y" in any other file along

the search path. Y will be assigned the value 4 because this is the value of Y in the earliest file on the

search path. Suppose that there is an object named "Z" in .GlobalEnv where it has the value 2, and

there is another object named "Z" in package:stats where it has the value 15, and there is no object

named "Z" in any other file along the search path. Then Z will be assigned the value 2 because this is the

value of Z in the earliest file on the search path. The expression "X = Y + Z" results in assigning the

number 6 to "X" (because 6 = 4 + 2). Furthermore the object called X will be placed in .GlobalEnv (if

there previously existed an object called X in .GlobalEnv, that object would be replaced by the X

whose value is 2).

In general, whenever an R-expression is entered at the R-prompt, R looks for functions and

objects that correspond to functions and objects that are referenced in the expression. R will always

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 7

interpret references according to the first function or object of the same name
5
 that occurs along the

search path.

The attach, library, and require functions can be used to place sets of R objects on the

search path. The detach function is used to remove files from the search path. Suppose that

c:\diss\data is the startup directory, and you want to access the objects in a file,

c:\rfiles\previous.rda. You can place it in position 2 of the search path with the function,

attach("c:/rfiles/previous.rda", pos=2). Note that the "\" symbol must be changed to

a "/" symbol when indicating directory paths to R
6
. Once c:\rfiles\previous.rda is attached to

the search path, then functions and other objects in previous.rda can be used in the current R

program. The library and require commands are used to attach packages to the search path. See

the online documentation for further information about library, require and detach.

6. How to attach files to the search path; how to detach files from the search
path; how to create files of R objects TOC

How to create a file of R objects:

Suppose you have created three R objects, a vector X, a matrix M, and a function Func. You

want to save them to a file from which they can be accessed at a future time. Here is one way to do it.

Table 2

R Code # Explanation
X = c(2, 4, 6)

X

M = matrix(1:12, ncol = 4)

M

Func = function(k) return(2*k)

Func(3)

Create a vector X, a matrix M, and a function Func.

Then display these objects.

save(list = c("X", "M", "Func"),

 file = "C:/r/data/newstuff.rda")

The vector X, matrix M, and function Func are saved to the

C:\data\newstuff.rda
7.

There is a problem with the method shown in Table 2. If you create a new object Y and save it to the

same file, i.e., save(list = c("Y"), file = "C:/data/newstuff.rda"), the second

save command will overwrite the first save command, i.e., newstuff.rda will contain only the

object Y. What we really want to do is to add the object Y to the other objects, X, M and Func that are

already in newstuff.rda. Here is how to do this.

5 Recent versions of R allow functions and data objects to have the same name without ambiguity. Thus, when R encounters

new.name(x = 12), R knows that new.name refers to a function named "new.name" because the parentheses could only

follow a function. When R encounters, y = x + new.name, R knows that "new.name" refers to a data object and not a

function because it does not make sense to add a number to a function. R permits a function and data object to have the same

name because it is always clear from context whether the name designates a function or data object. Thus if a variable X is

in .GlobalEnv (position 1) and a function named X is in data.rda (position 2), R will know that X(y) refers to the

application of the function X to the variable y because the expression clearly shows that X must be a function.
6 An alternative is to give the command, attach("c:\\rfiles\\previous.rda", pos=2). In general, Windows directory specifications

of the form "c:\aa\bb" must be converted to an R specification of the form "c:/aa/bb" or "c:\\aa\\bb".
7 Reminder: "C:/data/newstuff.rda" is R notation for the file that Windows would call "C:\r\data\newstuff.rda".

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 8

Attaching a file to the search path

Suppose the file C:/data/newstuff.rda has already been created. We can put it on the

search path with the attach function in R.

Table 3

R Code # Explanation
attach("C:/data/newstuff.rda", pos = 2) C:/data/newstuff.rda") is placed on the search path in position 2.

search() See the output of the search() function below.

 [1] ".GlobalEnv" "file:C:/data/newstuff.rda" "file:data.rda"

 [4] "file:e:/r/jm.utilities.rda" "package:stats" "package:graphics"

 [7] "package:grDevices" "package:utils" "package:datasets"

[10] "package:methods" "Autoloads" "package:base"

Table 4.

R Code # Explanation
ls(pos = 2) Shows the objects in position 2 of the search path. See output below.

[1] "Func" "M" "X"

Using the move function to move additional objects into newstuff.rda.

The file jm.utilities.rda is a set of functions that I have created for my own computing

needs. If you have not already done so, download jm.utilities.rda from

http://faculty.washington.edu/jmiyamot/downloads.htm (there are also other places on my website where

I keep a copy of this file so you may have downloaded it from, e.g., my course website). Once you have

jm.utilities.rda on your computer, attach it to the search path with:

attach("C:/data/jm.utilities.rda")

You may have to modify the directory name where you keep jm.utilities.rda.

One of the functions in jm.utilities.rda, the move function, lets me move objects from

one file on the search path to another file on the search path. For example, the following code creates a

vector Y, and moves it to newstuff.rda.

Table 5

R Code # Explanation
Y = c(10, 20, 30) Create Y.

move(Y, to = "newstuff.rda") Copies Y from .GlobalEnv to newstuff.rda and then deletes it

from .GlobalEnv8.

ls(pos = 2) The ls command shows that Y is now in newstuff.rda.

[1] "Func" "M" "X" "Y"

Now newstuff.rda contains Y as well as the objects that were previously in this file, namely, Func,

M and X. The move function is explained more fully in a separate document.

8 In addition to moving Y to newstuff.rda on the R search path, the move command has to save the copy of

newstuff.rda on the search path back to the file on the computer hard drive.

http://faculty.washington.edu/jmiyamot/downloads.htm

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 9

You can also delete (remove) objects from a file on the search path with the rm.sv function

(also in jm.utilities.rda). E.g.,

Table 6

R Code # Explanation
rm.sv("X", pos = 2) Removes X from newstuff.rda9.

ls(pos = 2)

[1] "Func" "M" "Y"

Detaching a file from the search path

Table 7

R Code # Explanation
search() Displays the current search path (see below).

 [1] ".GlobalEnv" "file:C:/data/newstuff.rda" "package:graphics"

 [4] "package:grDevices" "package:utils" "package:datasets"

 [7] "package:foreign" "package:stats" "file:data.rda"

[10] "file:e:/r/jm.utilities.rda" "package:methods" "Autoloads"

[13] "package:base"

Table 8.

R Code # Explanation
detach(pos = 2) Detaches newstuff.rda.

search() Displays the current search path (see below).

 [1] ".GlobalEnv" "package:graphics" "package:grDevices"

"package:utils"

 [5] "package:datasets" "package:foreign" "package:stats"

"file:data.rda"

 [9] "file:e:/r/jm.utilities.rda" "package:methods" "Autoloads"

"package:base"

There are many other uses for the move and rm.sv functions and other functions in

jm.utilities.rda, but these will be discussed elsewhere.

 --

 The information below this line is not needed when you

 start to learn R. It is useful if you use R often.

 --

7. Setting the Startup Configuration of R

The startup configuration is the way that R is set to work when you first start the R program. R

has a default startup configuration, but experienced R users often prefer settings that are different from

the default startup configuration. If you use R often, you will probably want to change the startup

9 In addition to removing Y from newstuff.rda on the R search path, the rm.sv command has to save the copy of

newstuff.rda on the search path back to the file on the computer hard drive.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 10

configuration to your preferred settings so that you won't have to change R to your preferred settings

every time that you start R. This section describes how to set these defaults. See Section 10.8

("Customizing the environment") of An Introduction to R
10

 for a fuller, and no doubt more accurate

description of the initialization process for R.

When R starts up, it looks for instructions as to how to configure itself. It expects to find these

instructions in a particular sequence of locations that are summarized in the following table.

Table 9. Files and functions that are run automatically during R startup.

Order File or Function What and Where

1 Rprofile.site
Rprofile.site is a text file in the ...\etc\ directory of your hard drive. The

symbol "..." refers to the directory that contains the R program; you can find this

directory either by inspecting the hard drive of your computer with a file utility, or by

giving the R command11:

 normalizePath(Sys.getenv("R_HOME"), win = "/")

The Rprofile.site file contains R commands that are automatically executed every

time that a user starts R on this computer.

2 .Rprofile
.Rprofile is a text file in the user's home directory. The user's home directory can

be found by giving the R command12:

 Sys.getenv()["HOME"]

There may not exist a file called .Rprofile in the user's home directory, but if it does

not exist you can create it (it must be a text file). Any R commands in .Rprofile will

be executed during the R startup process.

3 .First
After executing the commands in Rprofile.site and Rprofile, R looks for a

function called .First that may be stored in one of the positions along the search

path13. If it finds such a function, it executes the .First function. If there is

no .First function along the search path, then no .First function will be executed.

If there are several .First functions at different positions on the search path, then

the .First that is in the highest priority location, e.g., in .GlobalEnv.

Thus, the user can create a personal preferred configuration of R either by putting commands that

configure R in the Rprofile.site file, or in the .Rprofile file, or by putting these commands

inside of a .First function that resides on the initial search path
14

.

There are a number of different ways to set the initial configuration of R. I will recommend one

method because it is simple and flexible. First, you must decide where you want to keep all of your

general purpose R functions. Let us suppose that you have decided to keep your R functions in a

directory called C:\r\data. Step 1 involves creating a .First function, and putting it in a file in

C:\r\data. (It is easy to change the location of your R functions, so make a temporary decision now;

you can change it later.)

10 An introduction to R is a pdf manual that can be downloaded from http://cran.r-project.org/doc/manuals/R-intro.pdf.
11 On my computer, Sys.getenv("R_HOME") produces the output "C:/PROGRA~1/R/R-30~1.0". This is a computerese

abbreviation for the path "C:/Program Files/R/R-3.0.0". On a Windows 7 computer, either string specifies the path to the

same directory.
12 On my computer, Sys.getenv()["HOME"] produces the output "C:\\Users\\John M.

Miyamoto\\Documents".
13 See Section 5 for an explanation of what is the "search path."
14 How to do this will be explained below.

http://cran.r-project.org/doc/manuals/R-intro.pdf

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 11

Step 1: Run R. The following code creates a .First function that is a simplification of the one I

use (the function is shown on the left; an explanation of the function is shown on the

right):

Table 10. Create a .First function.

R Code # Explanation
.First = function() {

Begins the definition of the .First function.

set the default help type

options(help_type="text")

 options(help_type="html")

Do you prefer help documentation formatted as text or as a web

document (html) in a browser? I have set the option of html.

 options(continue = "& ", digits = 8)

Sets the continuation character to & and the default number of

digits after the decimal place to 8. Choose whatever looks good

to you.

 attach("C:/data/myfuns.rda", pos = 2)

Puts C:\r\data\myfuns.rda on the search path in

position 2. Note that a "\" in Windows corresponds to a "/" in

R.

 attach("data.rda", pos=2)

Looks in the startup directory for a file called data.rda. If it

finds it, it attaches it in position 2 (myfuns.rda gets bumped

to position 3).

load packages that you often use, e.g.,

library("survival")

This command places the survival package on the search path.

The survival package contains many functions that are used in

survival analysis. Obviously, one only does this is one plans to

use these functions a lot.

 } Ends the function definition.

The .First function will configure your version of R whenever you start R, provided that .First is

in a file on the search path during the startup process. To make this happen, we first need to

put .First into a file, and then make sure that this file is always on the search path during startup.

Step 2. Save .First to a file names "myfuns.rda".

Table 11. Save the .First function to a file.

R Code # Explanation
NameofFunctionFile = "myfuns.rda" Choose a name for your function file. I have

chosen the name "myfuns.rda", but any other

name will do.

check that NameofFunctionFile does not already exist.

(f.exists = file.exists(NameofFunctionFile))

if (f.exists) {

 warning("A file named ",

 NameofFunctionFile,

 " already exists. Either change the name \n",

 "of the function file or allow it to be ",

 "replaced with a new file.")

 go.ahead = FALSE

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 12

R Code # Explanation

} else { #end 'if (f.exists)'

 go.ahead = TRUE

} #end 'else' of 'if (f.exists)'

go.ahead.anyway = (go.ahead | FALSE)

If you want to replace an existing file named

"myfuns.rda", then set go.ahead.anyway

to TRUE. At present, it is set to be FALSE if

"myfuns.rda' already exists.

save(.First, file = NameofFunctionFile)

Saves .First to the file named by

NameofFunctionFile.

Step 3. Alter .Rprofile or Rprofile.site so that "myfuns.rda" is always on the search

path during startup.

I assume that the .First function is in a file C:\r\data\myfuns.rda. If it is in a different

file, you will have to make appropriate changes to the following instructions. At this point you have a

choice:

Option 1: Create a text file called .Rprofile and put it in your user's home directory. See Table 9

for the explanation of how to find the user's home directory. Place the single R command:

attach("C:/r/data/myfuns.rda") in .Rprofile and save .Rprofile to

the user's home directory.

* Note that there is a period at the beginning of the name ".Rprofile".

* Also, note that .Rprofile must be a text file with no file extension - it cannot be a Word document file

like .Rprofile.doc.

* If there already exists a file named .Rprofile on your computer, you can edit it and add the command,

attach("C:/r/data/myfuns.rda") to this file.

Option 2: Edit the file Rprofile.site in in the ...\etc\ directory of your hard drive. Again,

see Table 9 for an explanation of how to find this directory. Place the single R command:

attach("C:/r/data/myfuns.rda") in Rprofile.site and save this file.

* Note that there is no period at the beginning of the name "Rprofile.site".

You should use either Option 1 or Option 2, but not both. If you use Option 1, then the .First function

in myfuns.rda will control the startup when you are logged onto your computer, but if someone else is

logged onto your computer under a different user name, this .First function will be ignored. If you use

Option 2, then the .First function in myfuns.rda will control the startup when any user runs R on

your computer, regardless of the user's logon id.

Now you are done with your R configuration. Quit R, and then restart R. Give the command:

search(). You should see that file:C:/r/data/myfuns.rda is on the search path. To check

that the .First function has run, give the command: options("continue"). If .First has

run, you will see:

 $continue

 [1] "& "

whereas if .First has not run, you will see:

 $continue

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 13

 [1] "+ "

The latter is the default continuation character in R. Assuming that the check shows that "myfuns.rda"

was indeed placed on the R search path during startup, you are done.

Suppose you later decide that you want to change the startup configuration in R. An easy way to

do this is to create a new .First function, and save it to the file "myfuns.rda" (edit the commands in

Tables 10 and 11 to create a new .First function in a new "myfuns.rda" file.) The save function in R

will let you replace the old "myfuns.rda" file with a new file with the same name. The only problem with

this method is that it cause you to destroy the old version of "myfuns.rda" when you create a new one. If

"myfuns.rda" were to contain other useful functions, then this would not be a good way to modify

the .First function. The next section suggests a better way to manipulate files on the search path,

including a way to revise a .First function without destroying a pre-existing version of the file that

contains it.

All the work below this line is still under revision

At this point, we have a file myfuns.rda that will always be placed on the search path when R starts up.

Next, we create a .First function, which we will place in myfuns.rda, that always runs and

configures R whenever R starts up.

Step 4. Create the following .First function. The code for this .First function is almost

identical to the code in Table 10 but it has been modified slightly. The modifications

will be explained in Table 12.

Table 12

R Code # Explanation
.First = function() { Begins the definition of the .First function.

options(continue = "& ", digits = 8) Sets the continuation character to & and the default

number of digits after the decimal place to 8.

curr.rdefault.packages =

 options("defaultPackages")[[1]]

Assign the names of the packages that R currently adopts

as the default packages to a variable called

'curr.rdefault.packages'.

for (i in 1:length(curr.rdefault.packages))

 library(curr.rdefault.packages[i],

 pos=2, character.only=T)

This 'for' loop loads these packages onto the search path.

Note that we are forcing this to happen here so that we can

put the 'data.rda' and 'jm.utilities.rda' files ahead of this

position on the search path.

 # library(bootstrap) Issue commands like library(bootstrap) here.

These commands place the associated libraries on the

search path.

attach("C:/r/data/myfuns.rda", pos = 2) Puts C:\data\myfuns.rda on the search path in

position 2. Note that a "\" in Windows corresponds to a "/"

in R.

if (!any(tolower(list.files()) == "data.rda"))

 { data.doc = paste(getwd(),

 "data.rda contains data objects", sep="")

 save(data.doc, file="data.rda")

If there exists a file called 'data.rda' in the startup directory,

this code has no effect. If no such file exists, this code

creates a string variable called 'data.doc' and saves it to

'data.rda' (thereby creating this file). Later you can change

the contents of 'data.doc' to give it a more informative

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 14

R Code # Explanation

 } description of 'data.rda'.

attach("data.rda", pos=2, warn.conflicts=F) This command attaches 'data.rda' to the search path.

Function.Loc = grep("myfuns.rda", search(),

 ignore.case=TRUE)

if (length(Function.Loc) == 2)

 detach(pos=max(Function.Loc))

Because of the procedure that is implemented at Step 2

below, there will be two occurrences of 'jm.utilities.rda' on

the search path. This code simply detaches that last

occurrence of 'jm.utilities.rda'. The remainder of the code

produces an error message if 0 or more than 2 occurrences

of 'jm.utilities.rda' are found on the search path.

 } Ends the function definition.

Step 5. The only remaining step is the put the .First function in myfuns.rda. Once you do

this, the .First function will control the startup procedure for every startup, not just

the startups that are initiated in the current directory. Although are different ways to

move the .First function, the easiest is to use the move function in

jm.utilities.rda. If you have not already done so, download

jm.utilities.rdafrom http://faculty.washington.edu/jmiyamot/downloads.htm

(there are also other places on my website where I keep a copy of this file so you may

have downloaded it from, e.g., my course website). Once you have downloaded

jm.utilities.rda, you can proceed as follows:

Table 13

R Code # Explanation
attach("C:/r/data/jm.utilities.rda") Attach jm.utilities.rda to the search path.

move(.First, to = "myfuns.rda", replace = TRUE) Move the .First function from .GlobalEnv to

myfuns.rda on the search path, and save

myfuns.rda to the hard drive. The replace =

TRUE clause replaces any existing .First function

in myfuns.rda with the new version.

You are done! This completes the configuration for Method III.

With this configuration, the .First function in c:\data\myfuns.rda will always run at startup no

matter what is the startup directory
15

. Additional modifications can be made to the .First function in

c:\data\myfuns.rda if you decide later to modify the configuration of R. Simply create a

new .First function in .GlobalEnv, and move it to c:\data\myfuns.rda, thereby overwriting

the old version of .First16.

Because some of the functions in jm.utilities.rda will be generally useful, I suggest that

you place copies of these functions in your myfuns.rda file. Here is how to do it.

Table 14

R Code # Explanation

15 The only exception to this is that if there exists a .First in the .Rdata file of the startup directory, then this function will

run at startup and not any other .First function.
16 To move a new version of .First to a file that already contains an old version of .First, you need to set replace.object to TRUE,

i.e., give the command move(.First, "jmfuns.rda", replace.object = T).

http://faculty.washington.edu/jmiyamot/downloads.htm

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 15

R Code # Explanation
attach("C:/r/data/jm.utilities.rda", pos = 2) You can omit this step if jm.utilities.rda is

already attached to the search path.

move(c("move", "rm.sv", "doc", "attach.jm",

 "det.jm", "o.type", "rm.all", "save.jm"),

 from = "jm.utilities.rda", to = "myfuns.rda",

 copy.only = TRUE, replace = FALSE)

Copies move, rm.sv, doc, attach.jm, det.jm,

o.type, rm.all and save.jm from

jm.utilities.rda to myfuns.rda. Notice that

jm.utilities.rda and myfuns.rda are

designated simply by their names, as opposed to their

their names on the path,

file:C:/r/data/jm.utilities.rda and

file:C:/r/data/myfuns.rda, because move

makes use of partial matching of names. The

replace = FALSE clause makes sure that you will

not replace any existing objects that have these same

names.

The purpose of move and rm.sv have been briefly discussed above. To get more information about

these functions, run the R commands: doc(move), doc(rm.sv), doc(doc), etc.

8. A search path with a convenient organization TOC

This section can be skipped if you are a novice user of R. It is primarily intended for people who have

decided to use R frequently for data analysis and modeling.

If the .First function shown in Table 12 configures the R startup, then the initial search path

will look like:

[1] ".GlobalEnv" "file:data.rda" "file:C:/r/data/myfuns.rda" "package:stats"

[5] "package:graphics" "package:grDevices" "package:utils" "package:datasets"

[9] "package:methods" "Autoloads" "package:base"

Organizing the search path in this way, makes it easier to keep track of the R functions and objects that

one is using in an analysis. In any analysis, one creates many functions that are temporarily useful but

have no lasting value. In the long run, it is confusing to have these functions mixed in with other

functions that have permanent value. Furthermore, one often creates data objects that are temporarily

useful, but also have no lasting value. Again, it is confusing to have these data objects mixed in with

objects that have permanent value. To maintain a clear distinction between functions and objects that

have temporary value from functions and objects that have permanent value (to me), I keep data objects

that have permanent value in a file called data.rda, and I keep functions that are useful when working

on any project in C:/r/data/myfuns.rda.

Of course, to work with the search path shown in avove, I need a function that moves new objects

or functions from .GlobalEnv to data.rda or to C:/r/data/myfuns.rda, and a function that

deletes objects in data.rda and C:/r/data/myfuns.rda if and when I decide they are no longer

useful. These functions (move and rm.sv) can be placed in your myfuns.rda by using the code in

Table 14. When I create new functions or data objects, they are initially stored in .GlobalEnv. If I

want to save data objects permanently, I move them from .GlobalEnv to data.rda. If I want to

save functions permanently, I move them from .GlobalEnv to C:/r/data/myfuns.rda. By

keeping objects and functions that have permanent value in files that are separate from .GlobalEnv, I

avoid the mistake of accidentally deleting them or overwriting them. Furthermore, because my default

configuration always has C:/r/data/myfuns.rda on the search path, the functions that I have

created for my own needs can be accessed when working on any project that is located in any startup

directory. Finally, let me point out that if you don't follow this suggested procedure and instead keep all

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 16

functions and objects in a single .GlobalEnv, you will soon find that you have so many functions and

objects in .GlobalEnv that you cannot easily find them or keep track of what they are for.

9. A Note on the Usefulness of Programming Editors

It is easier to use R if you use a programming editor while writing the code. The following are a

few of the many good programming editors that are written for the Windows operating system.

 R Script Editor Run R. On the File menu, you can start a new script or open an existing script.

Ctrl-R runs the current selection in the script editor.

 Rstudio Free download from http://rstudio.org/. Runs on Windows, Mac and Linux.

It is specially designed for R programming and is probably the best choice at

the moment.

 Tinn-R Tinn-R is a free programming editor that is designed for working with R. It is

available at http://sourceforge.net/projects/tinn-r/.

 Notepad++ Notepad++ is a free text editor. It has many features that are designed to help

write computer code. Get it at http://notepad-plus.sourceforge.net/uk/site.htm.

 Crimson Crimson is a nice, free text editor. Get it at http://www.crimsoneditor.com/.

 Emacs & Ess Emacs is a well known programming editor. ESS is a version of Emacs that is

tailor made for use with R. You can download the software for free from

http://www.usc.edu/isd/doc/statistics/help/multiuse/ESS.shtml or

http://www.stat.math.ethz.ch/ESS/.

 Ultraedit Go to http://www.idmcomp.com/ for information about this programming

editor. Click on Downloads to download a free trial version of this software.

You have to pay $30 if you continue to use it for more than 45 days.

10. Downloading R Documentation

Instructions for Downloading R Manuals.

The manuals will be saved to your hard drive as Acrobat pdf files. Put them in whatever directory will be

convenient for you.

1. Go to http://www.r-project.org/. Click on Manuals.

2. Click on An Introduction to R. This will automatically download an R reference manual.

3. Click on Contributed.

4. Download: ``Using R for Data Analysis and Graphics'' by John Maindonald (PDF [695kB], and the

data sets and scripts that are available at JM's homepage.

5. Download: ``Notes on the use of R for psychology experiments and questionnaires'' by Jonathan

Baron and Yuelin Li, and the ``R reference card'' by Jonathan Baron.

R-FAQs:

Go to http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html.

http://rstudio.org/

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 17

Documentation for Using R

The R-program comes with documentation through its help system. You can also get free

documentation from several users of R. Go to http://cran.r-project.org/. Under the Documentation

headings, click on Contributed. You will see the following list of contributed documentation.

``Using R for Data Analysis and Graphics'' by John Maindonald (PDF [702kB], data sets and scripts

are available at John Maindonald's homepage (http://room.anu.edu.au/~johnm/).

“Simple R” by John Verzani. Good elementary introduction. Free.

``R for Beginners / R pour les débutants'' by Emmanuel Paradis, an introduction in English (PDF

[152kB]) and French (PDF [280kB]).

“Practical Regression and Anova using R” by Julian Faraway (PDF [1MB], data sets and scripts are

available at the book homepage). This is a concise yet reasonably comprehensive description of

regression and anova computations in R.

``Kickstarting R (version 1.2)'' compiled by Jim Lemon, a short introduction in English as HTML files:

donload as gzipped TAR [64kB] or ZIP [81kB]; or browse directly.

``Notes on the use of R for psychology experiments and questionnaires'' by Jonathan Baron and

Yuelin Li (HTML [116kB], PDF [235kB]).

``R reference card'' by Jonathan Baron (PDF [58kB], LaTeX source [5kB]).

“Notes on the use of R for psychology experiments and questionnaires” by Jonathan Baron and

Yuelin Li. Nice summary.

``Einführung in S'' by Günther Sawitzki (PDF [884kB]), lecture notes (in German) for a 4-5 day

introductory course in programming in the S language for students with basic knowledge in

probability theory. See also the StatLab Heidelberg S page for more information.

A Spanish translation of ``An Introduction to R'' by Andrés González and Silvia González (PDF file

[660kB], Texinfo sources)

I find R for Beginners, Baron's Notes on the Use of R for Psychology Experiments, and the R Reference

Card to be especially helpful. Maindonald's, Faraway's and Lemon's notes are also useful.

11. Appendix I: Examples that use the functions17:
attach.jm, doc, move, o.type, rm.sv, setwd.jm

Table 15. Examples: attach.jm

R Code # Explanation
getwd() Displays the current working directory for

this R session.

list.files() Displays all files in the current working

directory. Check to make sure that there is a

file called 'data.rda' in the current working

directory. The following example assumes

that it exists.

search() Displays the current search path.

17 These functions are all in jmfuns.rda. Instructions for downloading jmfuns.rda are given in Section 6 in the

discussion of the move function.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 18

Table 16. This code contrasts the standard attach function with attach.jm.

R Code # Explanation
attach("data.rda")

search()

The search command should show 2 copies of

data.rda on the search path. The standard attach

function attaches 2 copies of data.rda to the search

path.

attach.jm("data.rda") This command had no effect because data.rda was

already on the search path.

attach.jm("data.rda", refresh.path = TRUE) If 'refresh.path = TRUE', & 'filename' is already attached

to the search path, then all older versions of 'filename' are

detached from the search path, and a new 'fresh' version is

attached to the search path.

The main advantages of attach.jm over attach are:

• If you use attach inside of a for loop, you can accidentally attach a large number of copies of a

file to the search path. With attach.jm, this won't happen.

• attach.jm gives explicit feedback regarding what the attach command has done to the search

path.

Examples: doc

The doc function assumes that there are objects X and X.doc on the search path. The command

doc(X) prints X.doc to the screen with a (more or less) attractive formatting.

Table 17. doc function

R Code # Explanation
xx = 11:15

xx

Create a vector xx that contains the numbers

11 through 15.

xx.doc = "

This is sample documentation for the object 'xx'. The

rest of this text is just verbiage to show how 'doc'

handles long character vectors. Blah, blah, blah, blah,

blah, blah, blah, blah, blah, blah,

This is paragraph 2 of the documentation. blah, blah,

blah, blah, blah, blah, blah, blah, blah,

"

Create a character vector that contains

documentation.

xx.doc Note that the display of xx.doc is not very

pretty.

doc(xx) The doc function looks for an object called

xx.doc that corresponds to xx. When it

finds it, doc displays xx.doc in a more or

less attractive way. Note that doc also tells

you what type of object xx is.

doc(move) Displays the documentation for move that

JM created when he wrote move.

doc(attach.jm) Displays the documentation for attach.jm

that was entered with the R code for

attach.jm.

doc(rm.sv) (mutatis mutandis)

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 19

R Code # Explanation
doc(o.type) (mutatis mutandis)

doc(setwd.jm) (mutatis mutandis)

Examples: move

The move function moves objects from one file on the search path to another file on the search

path. The file on the search path to which the objects are to be moved can be specified either by pos=k

where k = the position number of the destination on the search path, or as an environment name, as in

env.on.path = "jm.utilities.rda". In the latter case, the move function finds the unique

file on the search path that contains "jm.utilities.rda" in its name. You do not have to specify

the full name of an environment - all that matters is that you specify a character string that uniquely

identifies an environment, e.g., env = 'jmf' and even 'jmf' by itself will specify the

jm.utilities.rda file on the search path provided that it is the only file on the search path that

contains "jmf". An error message is generated if both pos and env.on.path are specified and if they

specify conflicting environments.

Table 18. Examples: move. These examples assume that data.rda is on the search path.

R Code # Explanation
xx = 11:15

xx.doc = "

This is sample documentation for 'xx'. Blah, blah,

blah, blah, blah, blah, blah,

"

Create a vector xx that contains the numbers

11 through 15. Create a character vector that

contains documentation. If xx and xx.doc

already exist, you don't have to run this

command.

doc(xx) Display the documentation for xx.

yy = matrix(1:12, ncol=3, byrow=T)

dimnames(yy) = list(

 c('A','B','C','D'), c('P','Q','R'))

yy.doc = "This is sample documentation for 'yy'."

Create a 4 x 3 matrix yy and documentation

for yy.

ls() ls displays the objects that are

in .GlobalEnv, the top-most file on the

search path. Note that xx, xx.doc, yy, and

yy.doc are in .GlobalEnv.

search() Check that data.rda is on the search path.

If it isn't, use attach or attach.jm to

attach it to the search path.

move(xx, 'data.rda') This command moves xx to data.rda and

deletes it from .GlobalEnv.

ls()

ls(pos=2)

The first ls shows that xx and xx.doc

have both been removed

from .GlobalEnv. The second ls shows

that xx and xx.doc are now in data.rda

(assuming that data.rda is in position 2 on

the search path).

move(yy, pos=2) Assuming that data.rda is in position 2 on

the search path, this command will move yy

and yy.doc to position 2.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 20

Table 19. The next code illustrates what happens if you try to move an object to a file that

already contains an object with the same name.

R Code # Explanation
search()

ls(2)

Check that data.rda is on the search path in

position 2, and that xx, xx.doc, yy, and

yy.doc are all in data.rda.

xx = 3.14159

xx.doc = "The new 'xx' has the same value as pi."

Create a new xx and xx.doc. These objects are

in .GlobalEnv.

move(xx, 'data.rda') Assuming that data.rda already contains

objects named xx and xx.doc, this command

should have no effect other than to produce a

warning.

move(xx, 'data.rda', rep = T) rep = T is an abbreviation for

replace.objects = TRUE. By setting rep

= T, we cause move to overwrite the existing

versions of xx and xx.doc in data.rda, with

the new versions that were created

in .GlobalEnv.

ls()

find('xx')

find('xx.doc')

These commands show that xx and xx.doc are

now in data.rda.

Table 20. The following example shows how to move multiple objects.

R Code # Explanation
xx = 12345

yy = 54321

New objects named xx and yy.

move(c("xx", "yy"), "data.rda") Tries to move both xx and yy except that data.rda

already contains objects by those names.

move(c("xx", "yy"), "data.rda", rep = T) This succeeds in moving both xx and yy to data.rda.

Note that the move function always tries to move .doc

objects, but it executes the move even if it can't find

corresponding doc objects.

Table 21. The following example shows that care must be taken when moving a character

vector.

R Code # Explanation
nn = c("Bob", "Mary", "Jim", "Harry") Create a character vector.

ls()

ls('file:data.rda')

Note that nn exists in .GlobalEnv but not

in data.rda.

move(nn, 'data.rda') This command does not move nn to

data.rda. This command thinks that you

want to move objects named Bob, Mary,

Jim, and Harry to data.rda, and it can't

find these objects.

move("nn", 'data.rda') This command works because it is clear that

you want to move nn and not the objects

named by the character components of nn.

ls()

These commands show that the desired move

was successful.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 21

R Code # Explanation
ls('file:data.rda')

Example: o.type

The o.type function displays information about the type of object that a given object is. For

example, o.type(X) displays information about the type of object that X is.

Table 22.

R Code # Explanation
aa = 5

o.type(aa)

Shows that aa is a scalar (single number). In R terminology,

a scalar is also a vector of length 1. The o.type function

deviates from this terminology and calls a vector that is of

length 1 a scalar but not a vector.

vv = c(3,5,2,5,3,7,2)

vv

o.type(vv)

Shows that vv is a numeric vector.

LL = list(aa = aa, vv = vv)

LL

o.type(LL)

LL is a list. R counts lists as a type of vector. o.type

labels lists as non-vectors, i.e., o.type deviates from R

terminology.

hh = c("A", "AB", "AC", "AD")

hh

o.type(hh)

Character vector.

v1 = c(3,5,2,8)

v2 = c(6,3,1,6)

subj = c("Bob", "Jim", "Bill","Mary")

cond = c("A","A","B","B")

dframe = data.frame(subject = I(subj),

 condition = cond, v1 = v1, v2 = v2)

dframe

o.type(dframe)

A dataframe is a kind of list. It is analogous to an SPSS data

set. So o.type classifies dframe as being both a list and a

dataframe. The notation I(subj) is needed to prevent R

from turning the subject variable into a factor (don't worry

about this now if you don't understand this).

o.type(dframe, var = T) var = T abbreviates variables = TRUE. If the object

is a dataframe, var = T causes o.type to display the

object type of each variable in the dataframe.

Example: rm.sv

The rm.sv function deletes (removes) an object from a file on the search path and then saves

that file.

Table 23.

R Code # Explanation
search()

ls("file:data.rda")

ls(2)

These commands are just two different ways to check the contents of data.rda.

The second version, ls(2), assumes that data.rda is in the second position on

the search path. The following examples assume that there are objects, nn, xx,

xx.doc, yy, and yy.doc, in data.rda.

rm.sv('xx', 'data.rda')

ls(2)

You should see that xx and xx.doc have been removed from data.rda. Note

that rm.sv has also saved data.rda so that xx and xx.doc will NOT be

present in this file the next time it is loaded onto the search path of a different R

session.

rm.sv(c("nn", "yy"), pos=2) This comand shows that you can remove and save multiple objects from a file on

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 22

R Code # Explanation
the search path.

Example: setwd.jm

The setwd.jm function sets the working directory for R. This example assumes that you have

two directories, c:\AA\data and c:\BB\work on your computer. You can change the names to

anything else that works on your computer.

Table 24. setwd.jm

R Code # Explanation
setwd.jm("c:/AA/data")

getwd()

search()

setwd.jm creates and attaches a file

data.rda in c:\AA\data. The getwd

command verifies that c:\AA\data is the

current working directory.

find("ThisFile.doc")

doc(ThisFile)

Note that an object called ThisFile is

automatically placed in data.rda.

ThisFile.doc = "

This is better documentation for c:\\AA\\data. Blah,

blah, blah, blah, blah, blah, blah, ..."

move("ThisFile.doc", 'data.rda', rep=T)

doc(ThisFile)

The default documentation in

ThisFile.doc can usually be improved.

aa = 3

bb = 4

Create two object, aa and bb,

in .GlobalEnv.

setwd.jm("c:/BB/work")

getwd()

search()

doc(ThisFile)

Note that setwd.jm has changed the

working directory to c:\BB\work. You

can tell that this is true from the output of

getwd, search, and doc(ThisFile)

(remember that ThisFile and

ThisFile.doc were created and placed in

c:\BB\work\data.rda.)

The effect of setwd and also of setwd.jm is to change the directory (folder) that R thinks is the

current working directory. When you give a command like attach("Useful.data"), R expects to

find a file called Useful.data in the current working directory, so you need to be able to control what

is the current working directory. Also, in my system, the data.rda file is the set of data objects for a

particular project, so when I change the current working directory, I change the data.rda file to the file

for a different project.

12. Appendix II. Transferring data to and from SPSS TOC

To illustrate the transfer of data from SPSS to R, we will need a data set in the SPSS format. We

will use the NewDrug.sav data set:

• Go to: http://people.cst.cmich.edu/lee1c/spss/Prjs_DataSets.htm

• Search for the "New Drug.sav" (note that there is a space between "w" and "D"). Right click on

this link and download the file. It will be downloaded as a file named, "NewDrug.sav".

• If you have SPSS on your computer, you can open this file to verify that it is indeed an SPSS data

file.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 23

The following example assumes that NewDrug.sav has been saved to the folder, C:\data.

Table 25.

R Code # Explanation
library(foreign) The library function puts a package of

functions on the search path. Note: You must

have previously downloaded the package, e.g.,

by giving the command:

install.packages(<package name>)

ND = read.spss(

 file = "C:/r/data/newdrug.sav",

 use.value.labels = TRUE,

 to.data.frame = TRUE)

read.spss is a function in the foreign

package - it reads data into R from SPSS .sav

files. file is the path and name of the file. If

use.value.labels is TRUE, the SPSS

value labels are read into R as the level names of

a factor. If use.value.labels = FALSE,

then the numeric codes for the levels are read

into R. If to.data.frame = TRUE, the

output of read.spss is a dataframe. If

to.data.frame = FALSE, the output of

read.spss is a list that is not a dataframe.

To see how to send data back from R to SPSS, we will use the CO2 dataset as an example. The CO2

dataset is automatically included in the installed version of R; it is in the datasets package. In a

typical R installation, the datasets package is automatically placed on the search path when R starts up.

To check whether you have this dataset on your computer, run the commands:

Table 26. Look for the CO2 dataset.

R Code # Explanation
search() You should see package:datasets on the search path.

If you do not see "package:datasets" on

the search path, run the command:

library(datasets)

This should not be necessary because

package:datasets should already be on the search path,

but if it is not, run the command to the left. If this command

gives an error message, then go to the next command.

If the preceding call to 'library' fails

to load the datasets package, run:

install.packages("datasets")

This should not be necessary because the datasets

package should already be installed on your computer, but if

it is not, then the command to the left should install

datasets on your computer.

Assuming that the datasets package is indeed on your computer and that package:datasets is on

the search path, the following will let you look at the CO2 dataset.

Table 27.

R Code # Explanation
CO2 Although this shows you the entire CO2 dataset, it is too large to view

comfortably on the screen.

CO2[1:15,] CO2 has 5 variables.

o.type(CO2, variables = TRUE) CO2 is a dataframe that belongs to a number of classes. The Plant, Type,

and Treatment variables are factors; the conc and uptake variables are

numeric.

?CO2 See the documentation of this dataset.

 January 5, 2014 File = B:\AB\JOHN\r\rnote.docm 24

Table 28. Now we will transfer these data to SPSS. This code assumes that

jm.utilities.rda is on the search path.

R Code # Explanation
export.spss(CO2, outfile = "C:/r/data/co2") This code creates two files in C:\data.

co2.txt: This file contains the data from the CO2

dataframe (in R). These data are separated as a space

delimited ASCII file.

co2.sps: An SPSS syntax file that contains SPSS

commands that load the CO2 data and

Now:

• Run SPSS

• Open the syntax file, co2.sps.

• Run the SPSS syntax in co2.sps.

The CO2 dataset should now be in SPSS.

End of Rnote Document

	Getting Started with R under Windows 7
	Table of Contents
	1. Downloading R
	2. Installing R on a Windows System
	A Brief Comment on 32-Bit R versus 64-Bit R
	Creating a Desktop Icon for R

	3. Installing R Packages on Any System (Windows, MacOS, Linux)
	4. Setting the Startup Directory for R TOC
	5. How does R find functions and objects (e.g., variables or data sets) that are referenced in the code for an analysis?
	Table 1

	6. How to attach files to the search path; how to detach files from the search path; how to create files of R objects TOC
	How to create a file of R objects:
	Table 2
	Attaching a file to the search path
	Table 3
	Table 4.
	Using the move function to move additional objects into newstuff.rda.
	Table 5
	Table 6
	Detaching a file from the search path
	Table 7
	Table 8.

	7. Setting the Startup Configuration of R
	Table 9. Files and functions that are run automatically during R startup.
	Table 10. Create a .First function.
	Table 11. Save the .First function to a file.
	Table 12
	Table 13
	Table 14

	8. A search path with a convenient organization TOC
	9. A Note on the Usefulness of Programming Editors
	10. Downloading R Documentation
	Instructions for Downloading R Manuals.
	R-FAQs:
	Documentation for Using R

	11. Appendix I: Examples that use the functions : attach.jm, doc, move, o.type, rm.sv, setwd.jm
	Table 15. Examples: attach.jm
	Table 16. This code contrasts the standard attach function with attach.jm.
	Examples: doc
	Table 17. doc function
	Examples: move
	Table 18. Examples: move. These examples assume that data.rda is on the search path.
	Table 19. The next code illustrates what happens if you try to move an object to a file that already contains an object with the same name.
	Table 20. The following example shows how to move multiple objects.
	Table 21. The following example shows that care must be taken when moving a character vector.
	Example: o.type
	Table 22.
	Example: rm.sv
	Table 23.
	Example: setwd.jm
	Table 24. setwd.jm

	12. Appendix II. Transferring data to and from SPSS TOC
	Table 25.
	Table 26. Look for the CO2 dataset.
	Table 27.
	Table 28. Now we will transfer these data to SPSS. This code assumes that jm.utilities.rda is on the search path.

