
 File = E:\r\jm.utility.fns.docm 1

John Miyamoto, Department of Psychology, Box 351525

University of Washington, Seattle, WA 98195

Documentation for JM R Utility Functions
Last Updated: Spring 2012

Contents (Cntrl-left click on a link to jump to the corresponding section)

Section Topic

1 Preliminary Setup

2 Function Documentation

3 attach.jm

4 colors.jm

5 det.jm

6 doc

7 ls.jm

8 make.names.jm

9 move

10 o.type

11 pchlist

12 plot.jm

13 rm.sv

14 save.jm

15 setwd.jm

1. Preliminary Setup TOC

All of the examples shown below assume that the file, jm.utilities.rda, has been attached

to the R search path. The following steps will accomplish this purpose.

 Go to http://faculty.washington.edu/jmiyamot/downloads.htm and download

jm.utilities.rda.

 Save jm.utilities.rda to any convenient directory.

 Run R. Then give the R commands:

Table 1. Attach jm.utilities.rda to the search path
R Code # Explanation

"location" denotes the directory that contains jm.utilities.rda.

attach("c:/location/jm.utilities.rda")

Attach

jm.utilities.rda

to the search path.

search()

The search command

should show that

jm.utilities.rda

is on the search path.

The functions in jm.utilities.rda are a subset of John Miyamoto's personal set of functions,

which are contained in another file, jmfuns.rda.

 File = E:\r\jm.utility.fns.docm 2

2. Function Documentation

3. attach.jm function documentation TOC

Description: attach.jm attaches a dataframe or file to the search path in position = pos. attach.jm

is like attach except that it checks whether the file or dataframe to-be-attached is already attached to

the search path.

Usage:
attach.jm <- function(filename, pos = 2, allow.2same = FALSE,

 refresh.path = FALSE, case.sensitive = FALSE, name.on.path = character(0),

 abbrev.path = TRUE, feedback = TRUE, infer.DriveLetter = TRUE)

Arguments:
filename File to attach to the search path.

pos

allow.2same If allow.2same = TRUE, then filename will be attached to the search path whether or not

another version is already attached. The default is allow.2same = FALSE.

refresh.path If refresh.path = TRUE, & filename is already attached to the search path, then all

older versions of filename are detached from the search path, and a new fresh version is attached

to the search path. If refresh.path = FALSE & allow.2same = FALSE, then

filename is attached to the search path if and only if no same-name object or file already

exists on the search path. The default is refresh.path = FALSE.

case.sensitive

name.on.path The name.on.path argument has no effect if filename is the name of a file. If

filename is a dataframe or matrix and name.on.path != character(0), filename

will be attached to the search path under the name, name.on.path provided that either there

is no object named name.on.path that is already on the search path or refresh.path =

TRUE or allow.2same = TRUE.

If filename is a dataframe or matrix, and name.on.path = character(0) (default),

then the dataframe or matrix will be attached with its current name as the name of the

environment on the search path.

abbrev.path

feedback If feedback = TRUE (default), the function displays feedback re the current status of the

search path. If feedback = FALSE, this feedback is not displayed.

infer.DriveLetter If infer.DriveLetter = TRUE (default), two file specifications will be treated as

identical if one of them lacks a drive letter, e.g., /aa/bb/file.rda will be treated as the

same file as c:/aa/bb/file.rda if getwd() returns c: as the drive for the current

working directory. It has no effect if the root directory is not specified, e.g., file.rda and

c:/aa/bb/file.rda will be treated as different even if the current working directory id

c:/aa/bb. Similarly, c:/aa/file.rda and e:/aa/file.rda are treated as different

files.

Table 2. Examples of attach.jm
R Code # Explanation

If there exists a function called

"c:/mydata/myfuns.rda"

attach.jm("c:/mydata/myfuns.rda")

Attaches "c:/mydata/myfuns.rda" to

the search path.

attach.jm("c:/mydata/myfuns.rda") Refuses to attach

"c:/mydata/myfuns.rda" a second

time.

attach("c:/mydata/myfuns.rda") Note that the standard attach function of R

 File = E:\r\jm.utility.fns.docm 3

R Code # Explanation

search()

does allow a file to be attached twice to the

search path.

det.jm("myfuns.rda", all.matches = TRUE) Detaches both copies of

"file:c:/mydata/myfuns.rda" from

the search path.

4. colors.jm function documentation TOC

5. det.jm function documentation TOC

Description: det.jm detaches objects from the search path and returns nice feedback about the

resulting search path. The to-be-detached object is specified by the file.spec argument; it can be

specified as a position (1, 2, 3, ...) or as the name of an object, e.g., jmfuns.rda. Named objects can

be partially matched so that jmfuns and jmfuns.rda will identify the same object so long as no other

object on the search path matches jmfuns.

Usage:
det.jm(file.spec, first = FALSE, all.matches = FALSE,

 feedback=TRUE, ignore.case = TRUE, nchar.path.names = 35,

 max.path = 15)

Arguments:
file.spec Quoted character string that identifies the file to be detached from the search path. det.jm uses

partial matching to identify a file name; thus, "file:C:/mydata/jm.utilities.rda",

"jm.utilities.rda", and "jm.util" all identify the same file, provided that only one file

on the search file has a name that matches the file.spec string.

first If first = FALSE (default) and all.matches = TRUE, then all matching objects on the

search path are detached. If first = FALSE (default) and all.matches = FALSE

(default), then an error message is generated if there are multiple matches, and no objects on the

search path are detached. If first = TRUE, det.jm detaches the first instance of

file.spec on the search path without warning the user that multiple matches were found.

all.matches If all.matches = TRUE, all files on the search path that match file.spec are detached

from the search path. If all.matches = FALSE, then the file with the uniquely matching file

name is detached if it exists; if multiple matches are found, no file is detached and an error

message is returned.

feedback feedback = TRUE (default) requests feedback regarding the result of the detachment. If

feedback = TRUE, then nchar.path.names determines the number of characters that are

displayed from any name on the search path. Names that are longer are shortened to this length. If

feedback = FALSE, the function returns no information about the detachment operation.

ignore.case If ignore.case = FALSE, the file.spec is case-insensitive. If ignore.case =

TRUE, the file.spec is case-sensitive. The default is ignore.case = FALSE.

nchar.path.names nchar.path.names and max.path are used to control the display of feedback on the screen.

They do not affect the detachment operation.

max.path max.path specifies the maximum number of path positions displayed.

Table 3. Examples of the det.jm function
R Code # Explanation

If there exists a function called

"c:/mydata/myfuns.rda"

attach.jm("c:/mydata/myfuns.rda")

Attaches "c:/mydata/myfuns.rda" to

the search path.

 File = E:\r\jm.utility.fns.docm 4

R Code # Explanation

search()

det.jm("myfuns.rda")

search()

attach("c:/mydata/myfuns.rda")

attach("c:/mydata/myfuns.rda")

search()

Note that the attach function in R

"c:/mydata/myfuns.rda" to the search

path twice.

det.jm("myfuns.rda", all.matches = TRUE) Detaches both copies of

"file:c:/mydata/myfuns.rda" from

the search path. Note also that det.jm

makes use of partial matching, so that

"myfuns.rda" suffices to identify the file

to be detached as long as it is unique on the

search path.

6. doc function documentation TOC

Description: doc(x) prints documentation for x to the screen. Documentation is stored in the doc

attribute of x (old method) or in a separate x.doc object (current method).

Usage:
doc(x, suppress.o.type = FALSE, widthX = 1.0)

Arguments:
x x must be an object with a doc attribute or else there must exist a x.doc object. Optionally x can

be the name of a string, e.g., x = aaa.doc where aaa.doc is a character string (typically

documentation of some kind).

suppress.o.type Set suppress.o.type = TRUE to suppress the display of the object type (o.type function

output).

widthX widthX can be used to alter the proportion of the screen width that is covered by a line of text

before it begins to wrap. The default is widthX = 1.0.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 1234

Table 4. Examples of the doc function
R Code # Explanation

xx = c(1, 3, 5)

xx.doc = "

xx is just an example of an R object. This text is

sample documentation for xx.

This is paragraph 2 of the documentation. Blah, blah,

blah.

End of Documentation.

"

Create an object xx and documentation for

xx.

doc(xx) Displays the documentation for xx.

doc(xx, widthX = .8) Displays the documentation for xx with

narrower paragraphs.

doc(doc) Displays the documentation for the doc

 File = E:\r\jm.utility.fns.docm 5

R Code # Explanation

function.

7. ls.jm function documentation TOC

Description: ls.jm outputs a vector of object names for objects in an environment on the search path. It

is essentially the same as ls except that the formatting is easier to work with.

Usage:
ls.jm(x = 1, ncol = NA, display.std = 85, ...)

Arguments:
x x is the position in the search path whose objects are to be

displayed. x can be set either as a digit or as the character

name of the environment. x = 1 designates the

.GlobalEnv. Names of files are identified by partial

matching, e.g., if

"file:c:/mydata/jm.utilities.rda" is on the

search path, then ls.jm("jm.utilities") will display

the objects in this file.

ncol Number of columns to be used in the display.

display.std The assumed screen width in the display.

... Other arguments to be passed to ls.

Table 5. Examples of ls.jm
R Code # Explanation

search() Find location of jm.utilities.rda on

the search path. If it is not on the search path,

you will have to attach it in order to

reproduce the following examples.

ls.jm("jm.utilities.rda") Displays the objects in

jm.utilities.rda.

ls.jm("jm.util") Note that both the previous and current use of

ls.jm uses partial matching to identify a file

on the search path, provided that it is unique.

search()

ls.jm("a")

An error message is produced if the inputted

string matches more than one file on the

search path.

8. make.names.jm function documentation TOC

Description: make.names.jm makes syntactically valid R names out of a character vector (as does the

make.names function). It differs from make.names insofar as terminal periods (.) are deleted if

possible, and successive periods, e.g., ".." is optionally reduced to ".". These aspects can be useful

when formatting the names of variables that were outputted by OpenBUGS or JAGS.

Usage:
make.names.jm(names.jm, unique.jm = TRUE, rm.double = TRUE, allow_.jm = TRUE)

Arguments:
names.jm names.jm is a character vector to be turned into valid R object names.

unique.jm unique.jm = TRUE (default) guarantees that the names are unique.

rm.double rm.double = TRUE (default) reduces repetitions of periods to single periods, e.g., x..y is converted

to x.y.

allow_.jm allow_.jm = TRUE (default) allows underscores in the names.

 File = E:\r\jm.utility.fns.docm 6

Table 6. Examples of make.names.jm
R Code # Explanation

make.names.jm(

 c("f[1]","f[2]","x[[3]]","p[[k(n)]]"),

 rm.double = F)

make.names.jm(

 c("f[1]","f[2]","x[[3]]","p[[k(n)]]"),

 rm.double = T)

make.names.jm(c("beta[1]", "beta[15]", "beta[21]"))

make.names.jm(c("tau[1,1]", "tau[1,2]",

 "tau[2,1]", "tau[2,2]"))

9. move function documentation TOC

Description: The function move moves an object from one environment on the search path (source) to

another environment (destination) on the search path. The default operation deletes the object from the

source environment after moving it; it also saves the destination environment to its corresponding file.

The typical use of move moves an object from .GlobalEnv to a file that is attached to the search path. By

default, the move is not carried out if an object with the same name exists in the destination directory.

The default can be overridden (replace=T). The move function also applies to a character vector of object

names.

Usage:
move(x, to, from = ".GlobalEnv", replace.objects = FALSE, move.doc.objects = TRUE,

 copy.only = FALSE, map = T)

Arguments

x Object to be moved; or a character vector of object names which will be moved.

to The file to which the objects are to be move. to can be specified as either a position, e.g., to = 3

specifies the 3rd position on the search path, or as a named environment, e.g., to = "data.rda". Partial

matching is used to match the named environment if an incomplete name is given. Thus, to = "data.rda"

matches file:c:/myproject/data.rda provided that it is the only file on the search path that matches

data.rda.

from The source file or environment from which the objects are to be moved. from can be specified as either

a position, e.g., from = 3, or as a named environment, e.g., to = "data.rda". Partial matching is used to

match the named environment if an incomplete name is given.

replace.objects replace.objects = TRUE to replace a same name object in destination directory. If replace.objects =

FALSE (default), then no move is carried out when a same name object exists in the destination file.

move.doc.objects move.doc.objects = TRUE causes XXX.doc objects to be moved along with the XXX object. If

FALSE, only the XXX object is moved. (See Section 6 for an explantion of .doc objects.)

copy.only If copy.only = TRUE, then the object is copied to the destination file, but is not deleted from the source

environment. If it is FALSE, then the object is deleted after copying it to the destination file. The

default if copy.only = FALSE.

feedback If feedback = TRUE (default), then feedback is printed to the screen regarding which objects have been

successfully moved and which moves have failed. If feedback = FALSE, this feedback is suppressed.

map If map = TRUE, a table showing the existence and replacement of objects is displayed; if FALSE, no

table is displayed. The default is map = TRUE.

 File = E:\r\jm.utility.fns.docm 7

Table 7: Examples of the move function. The examples assume that jm.utilities.rda has been

attached to the search path.
R Code Explanation

aa = 1:3

bb = 11:13

save(aa, bb, file = "temp1.rda")

rm(list = c("aa", "bb"))

Create a file called, temp1.rda with two objects in it.

attach("temp1.rda", pos = 2) Attach "temp1.rda" to the search path.

search()

ls.jm("temp1.rda")

Note that temp1.rda is now attached to the search

path.

cc = list(

 x = "Label for this list",

 just.a.matrix = matrix(1:12, ncol = 3))

cc

Now we create some new objects. They will be moved

into temp1.rda after checking the contents of

.GlobalEnv and temp1.rda.

ls.jm(1)

ls.jm(2)

move(list = cc, "temp1")

ls.jm(1)

ls.jm(2)

Note the contents of .GlobalEnv (position 1) and

temp1.rda (position 2) before and after the move.

The move command moves cc to temp1.rda. Note

that the move command recognizes the search path

position of temp1.rda based on partial matching of

the file name. If there were multiple files on the search

path that all matched temp1.rda, e.g.,

aa.temp1.rda and bb.temp1.rda, then no move

would be carried out.

dd = (1:3)*2

ls(1)

ls(2)

move(dd, 2)

ls(1)

ls(2)

This code is similar to the preceding code except that the

to argument is specified by the numeric position, 2,

rather than by a partial name, temp1.

ff = function(x) { x^2 }

ff.doc = c(

"The ff function computes the square of its

input.")

doc(ff)

Next: Create a function with documentation for the

function.

ls(1)

ls(2)

move(ff, "temp1")

ls(1)

ls(2)

Note that move automatically moves the corresponding

doc object, i.e., by moving ff, it also moves ff.doc.

This default can be suppressed.

ls(2)

aa = "new version of aa"

bb = "new version of bb"

move(c("aa", "bb"), "temp1")

ls(2)

Note that move by default will not replace existing

objects.

 File = E:\r\jm.utility.fns.docm 8

ls(1)

move(c("aa", "bb"), "temp1", rep = TRUE)

ls(2)

To replace existing objects, set replace.objects =

TRUE).

xx = 1:3

save(xx, file = "temp2.rda")

attach("temp2.rda", pos = 3)

search()

Create another R file and attach it to the search path.

ls(2)

ls(3)

move(c("aa", "bb"), to = "temp2", from =

"temp1")

ls(2)

ls(3)

Move some objects from temp.1.rda to

temp2.rda. Note that the to and from arguments

identify files by partial matching of names.

ls.jm(2)

ls.jm(3)

The ls.jm function is like the ls function except that

the output is formatted differently. See Section 7 for a

description of the ls.jm function

det.jm("temp1")

det.jm("temp2")

The det.jm function is like the detach function except

that environments on the search path can be matched by

partial matching of the names and the output gives better

feedback regarding the result of the detachment. See

Section 5 for a description of the det.jm function.

10. o.type function documentation TOC

Description: o.type tests for the mode, factor status and other classifications of an object. The

information about the object is displayed in the screen.

Usage:
o.type(x, variables = FALSE, sorted = TRUE)

Arguments:
x x is the object to be tested. Its characteristics are displayed on the screen.

variables variables = TRUE only has an effect if x is a dataframe. In this case, variables = TRUE

causes o.type to list the information about every variable in x.

sorted sorted = TRUE causes the output to printed with the TRUE attributes first; otherwise the

attributes are always printed in the same order. sorted = TRUE has no effect if x is a dataframe

and variables = TRUE.

Possible Object Types:

all.NA = all elements are NA;

array = is an array;

char = character vector or matrix;

d.frame = is a dataframe;

factor = is a factor;

fn = is a function;

list = is a list;

logical = is logical;

matrix = is a matrix;

 File = E:\r\jm.utility.fns.docm 9

NULL = is null;

numeric = is numeric;

scalar = is a scalar;

zero = has length zero.

Note that a factor is false for is.numeric even though its mode is numeric (R-oddity). Moreoever

factors and string variables are false for 'is.vector' if they have any attributes other than names (which

they typically have).

Table 8. Examples that use the o.type function
R Code # Explanation

aa = c(1,3,5)

aa

o.type(aa)

Check the object type of aa.

bb = matrix(1:12, ncol = 4)

bb

o.type(bb)

Check the object type of bb.

cc = array(1:16, dim = c(2, 4, 2))

cc

o.type(cc)

Check the object type of cc.

pp = list(aa = aa, bb = bb, cc = cc)

pp

o.type(pp)

Check the object type of pp.

xx = 1:5

yy = 1.5 * xx + rnorm(5, 0, 1)

lm.out = lm(yy ~ xx)

lm.out

names(lm.out)

o.type(lm.out)

Check the object type of lm.out. Note that lm.out is a

list that is a special class.

fac1 = c(1, 2, 2, 1, 2, 1, 1, 1, 2)

fac2 = c(1, 3, 2, 3, 1, 3, 3, 2, 1)

(tbl = table(fac1, fac2))

o.type(tbl)

Check the object type of tbl. Again, tbl is a special class

of matrix.

ff = factor(c("aa", "bb", "aa"))

ff

o.type(ff)

Check the object type of ff.

aa = c(1,3,5)

ff = factor(c("aa", "bb", "aa"))

kk = c(TRUE, FALSE, TRUE)

DD = data.frame(aa, ff, kk)

DD

Create a dataframe to be checked for object type.

o.type(DD) Checks the object type of DD.

o.type(DD, variable = TRUE) Checks the object types of the variables in DD.

11. pchlist function documentation TOC

Description: Give the command, pchlist(), to see a display of the different plotting symbols and

their codes.

Usage:
pchlist()

 File = E:\r\jm.utility.fns.docm 10

Arguments: None

Table 9. Example of pchlist
R Code # Explanation

pchlist() Use pchlist() to choose plotting

symbols.

xx = c(2, 3, 2.5, 4, 2.5, 3.3)

yy = c(5, 10, 9, 12, 7.3, 9)

plot(xx, yy, pch = 1, cex = 2)

pchlist() Use pchlist() to choose plotting

symbols.

plot(xx, yy, pch = 19, cex = 2)

pchlist() Use pchlist() to choose plotting

symbols.

plot(xx, yy, pch = 4, cex = 2)

12. plot.jm function documentation TOC

Description: plot.jm makes the JM default plot.

Usage:
plot.jm(x=c(0,100), y=c(0,100), no.margins = FALSE, type= "n", ...)

Arguments:
x The lower and upper limits on the X axis. The default is x = c(0,100).

y The lower and upper limits on the Y axis. The default is y = c(0,100).

no.margins If no.margins = TRUE, the plotting area has no space for margins. This is preferred when making text

plots or diagrams. The default value is no.margin = FALSE. If no.margins = FALSE, the plotting

area is created with the default margins.

type The plot type. The setting, type = "n", suppresses plotting (to be finished by subsequent calls to lines

and points. See below for other plot types.

... Other arguments to be passed to plot.

13. rm.sv function documentation TOC

Description: The function rm.sv deletes an R object from another environment on the search path, and

then saves that environment to its associated file. The rm.sv function also applies to the objects specified

by a character vector of object names.

Usage:
rm.sv(list, env.on.path = "", pos = NA, rm.doc.objects = TRUE,

 feedback = TRUE)

Arguments:
list The object or objects to be deleted; to specify multiple objects,

specify the objects with a character vector of object names.

env.on.path env.on.path = the name of R-environment containing the

object; Specify pos or env.on.path, but not both. Note

that env.on.path has the form, env.on.path =

"c:/..." or env.on.path = "c:\\...", and NOT as,

env.on.path = "file:c:\...", i.e., directories on a

path are separated by a forward slash or a double backslash

and not by a single backslash. Furthermore, env.on.path is

 File = E:\r\jm.utility.fns.docm 11

matched by partial matching, so that env.on.path =

"myfuns.rda" will be matched to

"file:c:/job/myfuns.rda\" if it is on the search path

(and a unique match). Note also that env.on.path and pos

may NOT specify a package. If env.on.path = ""

(default), then the environment is set by pos.

pos pos = position number of the directory containing the object;

by default, pos = NA. The environment where the object is to

be deleted should be specified by env.on.path or by pos,

but not both.

rm.doc.objects If rm.doc.objects = TRUE, then .doc objects that

correspond to objects in list will also be deleted. If

rm.doc.objects = FALSE, then only the objects names

in list will be deleted.

feedback feedback = TRUE (default) means that the call to rm.sv

will give feedback about the success or failure of the move.

feedback = FALSE omits this feedback.

Table 10. Examples of the rm.sv function
R Code # Explanation

aa = 1:3

bb = 11:13

save(aa, bb, file = "temp1.rda")

rm(list = c("aa", "bb"))

Create a file called, temp1.rda with two

objects in it.

attach("temp1.rda", pos = 2)

ls.jm("temp1.rda")

Attach "temp1.rda" to the search path.

search()

ls.jm("temp1.rda")

Note that temp1.rda is now attached to the

search path and it contains objects aa and

bb.

rm.sv(aa, "temp1.rda")

ls.jm("temp1.rda")

Remove aa from temp1.rda on the search

path, and then save temp1.rda to its

associated file (happens automatically within

the rm.sv function.

cc = list(

 x = "Label for this list",

 just.a.matrix = matrix(1:12, ncol = 3))

dd = (1:3)*2

cc

dd

move(list = c("cc", "dd"), "temp1.rda")

ls.jm("temp1.rda")

Now we create some new objects. They will

be moved into temp1.rda after checking the

contents of .GlobalEnv and temp1.rda.

rm.sv(list = c("bb", "cc"), "temp1.rda")

ls.jm("temp1.rda")

We can remove more than one object from an

environment on the search path, but we must

pass the names of the to-be-removed objects

to rm.sv as a character vector of object

names.

ff = function(x) { x^2 }

ff.doc = c(

"The ff function computes the square of its input.")

doc(ff)

Next: Create a function with documentation

for the function.

ls(1)

ls(2)

Note that move automatically moves the

corresponding doc object, i.e., by moving ff,

 File = E:\r\jm.utility.fns.docm 12

R Code # Explanation

move(ff, "temp1")

ls(1)

ls(2)

it also moves ff.doc. This default can be

suppressed.

rm.sv(ff, "temp1.rda")

ls.jm("temp1")

Note that if we remove an object that has

corresponding doc object, e.g., ff and

ff.doc, then removing the object removes

the corresponding doc object.

det.jm("temp1") The det.jm function is like the detach

function except that environments on the

search path can be matched by partial

matching of the names and the output gives

better feedback regarding the result of the

detachment. See Section 5 for a description

of the det.jm function.

14. save.jm function documentation TOC

Description: save.jm is exactly like the R save function except that it checks whether the target file

exists. If it does, then it won't save the objects to this file unless specifically instructed to do so.

Usage:
save.jm(list = character(0), overwrite = FALSE,

 file = stop("'file' must be specified."), ascii = FALSE,

 version = NULL, envir = parent.frame(), compress = FALSE)

Arguments:
list list is a vector of object names.

overwrite If overwrite = FALSE (default), then save.jm will not overwrite an existing file. If the user

attempts to write to an existing file, the function call stops with an error message that states that the target

file exists. If overwrite = TRUE, then save.jm will overwrite an existing file if the target file

already exists.

The remaining arguments of save.jm are taken directly from the arguments of save. R-help gives the following description

of the arguments:

file file is a (writable binary-mode) connection or the name of the file where the data will be saved (when

tilde expansion is done). Must be a file name for version = 1.

ascii ascii: If TRUE, an ASCII representation of the data is written. The default value of ascii is FALSE

which leads to a binary file being written.

version version indicates the workspace format version to use. NULL specifies the current default format. The

version used from R 0.99.0 to R 1.3.1 was version 1. The default format as from R 1.4.0 is version 2.

envir envir indicates the environment to search for objects to be saved.

compress compress is a logical or character string specifying whether saving to a named file is to use compression.

TRUE corresponds to gzip compression, and (from R 2.10.0) character strings "gzip", "bzip2" or "xz"

specify the type of compression. Ignored when file is a connection and for workspace format version 1.

15. setwd.jm function documentation TOC

Description: setwd.jm sets the current working directory and attaches the data.rda file in this

directory, if one exists. If no such file exists, then it creates such a file.

Usage:
setwd.jm(dir2)

Arguments:
dir2 dir2 names the new working directory.

http://127.0.0.1:16660/library/base/help/connection
http://127.0.0.1:16660/library/base/help/tilde%20expansion

 File = E:\r\jm.utility.fns.docm 13

	Documentation for JM R Utility Functions Last Updated: Spring 2012
	Contents (Cntrl-left click on a link to jump to the corresponding section)
	1. Preliminary Setup TOC
	Table 1. Attach jm.utilities.rda to the search path

	2. Function Documentation
	3. attach.jm function documentation TOC
	Table 2. Examples of attach.jm

	4. colors.jm function documentation TOC
	5. det.jm function documentation TOC
	Table 3. Examples of the det.jm function

	6. doc function documentation TOC
	Table 4. Examples of the doc function

	7. ls.jm function documentation TOC
	Table 5. Examples of ls.jm

	8. make.names.jm function documentation TOC
	Table 6. Examples of make.names.jm

	9. move function documentation TOC
	10. o.type function documentation TOC
	Table 8. Examples that use the o.type function

	11. pchlist function documentation TOC
	Table 9. Example of pchlist

	12. plot.jm function documentation TOC
	13. rm.sv function documentation TOC
	Table 10. Examples of the rm.sv function

	14. save.jm function documentation TOC
	15. setwd.jm function documentation TOC

