
 File = E:\r\bugs.fns.docm 1

John Miyamoto (), Department of Psychology, University of Washington

Seattle, WA 98195 June 6, 2012

** This document is under revision. A finished copy should be completed in a few days. **

JM Functions for Working
with OpenBUGS, WinBUGS & JAGS Output

TERMINOLOGY: In this document, BUGS refers to either OpenBUGS or WinBUGS or JAGS.

This terminology is a bit inaccurate because there was an original BUGS program from which all

of these are descendents. So far as I know, all of the functions that are described in this

document work with all versions of BUGS.

Still to do: Hidden bk = todo

 Redo the sample output to include WinBUGS and JAGS examples for the same data.

 Add the 'wb2ob.mod' function (converts WinBUGS model file to an OpenBUGS model file. This

function is based heavily on the 'Win2OpenBUGS' function that can be downloaded from

'http://www.openbugs.info/w/UserContributedCode'.

Add to Documentation: to.mcmc.chains,

 Add 'n.thin' to the output of show.bugs.

 draw.beta & draw.gamma have a strange NA in the stats output. fix.

 Standardize the argument names in all of the distribution plotting functions. Make plot.dist be the

argument that controls plotting. Functions that use plot.dist argument:
* draw.beta, draw.normal, res.param,

#--h.bk = todo ---##

This document explains the use of my R functions that were designed for looking at BUGS

output. The bugs function in the R2OpenBUGS package transfers data from R to OpenBUGS, tells

OpenBUGS where to find the model file that defines the probability model, and returns the results of the

OpenBUGS analysis to R in the form of a list. If Bugs.Out is the list that is returned by a call to bugs,

then the functions described in this document access the parameter estimates and other information in

Bugs.Out for analysis in R. Similar remarks apply to the WinBUGS package. For the JAGS program,

the R2jags provides an interface with R; the jags function plays the analogous role as the bugs

function. Again, if Bugs.Out is the list that is returned by a call to jagsfs, then the functions

described in this document access the parameter estimates and other information in Bugs.Out for

analysis in R.

Contents

Section Topic

1 Software requirements

2 Files that are distributed with the present document

3 Creating the bugs objects that are used to illustrate the functions in this document

4 bugs outputs that are used as examples in the documentation of these functions

5 Documentation for JM BUGS-Related R Functions

 File = E:\r\bugs.fns.docm 2

6 brugs.chains: A function that loads MCMC chains into R that were created by using

OpenBUGS and function in the BRugs package

7 ci.bugs: A function for computing the limits of an (-level credible interval from a sample of

parameter values from OpenBUGS or JAGS output.

8 doc: A function for displaying "on the fly" documentation for home-grown R functions

9 extract.chains: A function for extracting multiple chains of samples for each model

parameter that is monitored (saved). This function is useful when examining issues of

dependence on starting value and convergence.

10 extract.vars: A function for creating a dataframe of samples from parameters of a

model. Each variable in the dataframe combines the chains of samples for a parameter.

The function allows the user to control the manner of combination, i.e., the user specifies

the dropping of burnin samples, thinning of the samples, or randomization of the samples.

11 from.mcmc.chains: A function for converting a list of class mcmc.list to a list of chains

with one component per parameter.

12 make.names.jm: A function that makes reasonably attractive R-legal names from

variable names in bugs outputs (some BUGS legal names are not R-legal names).

13 o.type: A function that shows what type of object an inputted object is.

14 plot.chains: A function that plots the chains of samples for a parameter (useful when

examining dependence on starting values and mixing of chains)

15 res.param: A function for plotting the distribution of a sample from the posterior

distribution of a parameter.

16 show.bugs: A function for quickly displaying information about a bugs output.

17 to.mcmc.list: A function that converts a list of chains to a list of class mcmc.list.

18 Code for JM BUGS-Related R Functions

19 Code for doc

20 Code for extract.chains

21 Code for extract.vars

22 Code for make.names.jm

23 Code for o.type

24 Code for plot.chains

25 Code for plot.param function ## OBSOLETE??? ##

26 Code for res.param

27 Code for show.bugs

1. Software requirements ** Add OpenBUGs & JAGS to this table **

This document assumes that you have installed the following software:

 File = E:\r\bugs.fns.docm 3

R Download R from CRAN (http://cran.us.r-project.org/). Installation instructions are

available at the website.

WinBUGS Download WinBUGS from http://www.mrc-bsu.cam.ac.uk/bugs/. Installation

instructions are available at the website.

R2WinBUGS This is a R package.
* The easiest method for downloading this package is to run R on your computer, then run the R

command: install.packages("R2WinBUGS"). The package will automatically be

downloaded and installed.

* Alternatively, go to the website that can be downloaded from http://cran.us.r-project.org/; then,

click on the link to "Packages" in the left column. Search for R2WinBUGS in the extensive list

of packages.

polspline This is a R package.
* The easiest method for downloading this package is to run R on your computer, then run the R

command: install.packages("polspline"). The package will automatically be

downloaded and installed.

* Alternatively, go to the website that can be downloaded from http://cran.us.r-project.org/; then,

click on the link to "Packages" in the left column. Search for polspline in the extensive list

of packages.

jmbugs.rda This is a R file containing the functions that are described in this document. This file

can be downloaded from

 http://faculty.washington.edu/jmiyamot/downloads.htm.

After attaching jmbugs.rda to the search path, you can view documentation for a

function in jmbugs.rda by using the doc function that is in jmbugs.rda. For

example, doc(plot.chains) will result in a display of documentation for the

plot.chains function.

2. Files that are distributed with the present document

bugs.fns.pdf This is the present document, which describes John Miyamoto's R

functions for working with bugs output.

bugs.fns.example.txt WinBUGS model file to create the bugs objects that are discussed in

this document.

bugs.fns.rcode.txt A text file containing the R code that is also shown in this document.

jmbugs.rda A R file that contains the data and functions described in the present

document. Put this file on the search path by issuing the R command:

attach("PATH/jmbugs.rda", pos=2), where PATH denotes

the directory path to the location of jmbugs.rda.

To run the examples shown below, first run the following R command:

attach("PATH/jmbugs.rda", pos=2). In this command, replace PATH with a specification of

the Windows directory path to the jmbugs.rda file.

3. Creating the bugs objects that are used to illustrate the functions in this

document TOC

The functions that are explained in this document use two bugs objects (objects of class bugs

that are created by a call to the bugs function) to illustrate the function. This section creates these two

objects. The following R-code is a modification of R-code that was distributed with Lee and

Wagenmakers (2010) chapter 5.

 File = E:\r\bugs.fns.docm 4

Set up the attached libraries.
preferred.bugs.program = "OpenBUGS"

#set to "WinBUGS" if it is preferred.

if (preferred.bugs.program == "OpenBUGS") {

 detach("package:R2WinBUGS")

 library(R2OpenBUGS)

 } #end 'if (preferred.bugs.program == "OpenBUGS)'

if (preferred.bugs.program == "WinBUGS") {

 detach("package:R2OpenBUGS")

 library(R2WinBUGS)

 } #end 'if (preferred.bugs.program == "OpenBUGS)'

Note that the detach commands will produce an error message if the named package is

not on the search path, but this will not cause a problem.

Attach the file, jmfuns.rda, to the search path.
attach("c:/mydata/jmfuns.rda")

You may have to modify this attach command to indicate the directory where the jmfuns.rda file

is located on your computer.

Create the data and variables which will be modeled in the subsequent call to bugs.

Note that this R-code is 98% identical to code in Lee & Wagenmakers (2010).

Create a matrix of data for the examples in this document

x <- matrix(c(10,8.04, 8,6.95, 13,7.58, 9,8.81, 11,8.33,

 14,9.96, 6,7.24, 4,4.26, 12,10.84, 7,4.82,

 5,5.68), nrow=11, ncol=2, byrow=T)

Sample size

n <- nrow(x) # number of people/units measured

data.names <- list("x", "n") # to be passed on to WinBUGS

initial.vals <- list(

 chain1 = list(rho = 0, mu = c(0,0), lambda = c(1,1)),

 chain2 = list(rho = 0, mu = c(0,0), lambda = c(1,1)),

 chain3 = list(rho = 0, mu = c(0,0), lambda = c(1,1))

) #end list

parameters to be monitored:

params <- c("rho", "mu", "sigma")

The following model file was distributed with Lee & Wagenmakers (2010).

The name for the correlation has been changed from "r" to "rho".

model.file = "

This model file was distributed with Lee & Wagenmakers (2010).

Pearson Correlation

model {

 # Likelihood

 for (i in 1:n){

 File = E:\r\bugs.fns.docm 5

 x[i,1:2] ~ dmnorm(mu[],TI[,])

 }

 # Priors

 mu[1] ~ dnorm(0,.001)

 mu[2] ~ dnorm(0,.001)

 lambda[1] ~ dgamma(.001,.001)

 lambda[2] ~ dgamma(.001,.001)

 rho ~ dunif(-1,1)

 # Reparameterization

 sigma[1] <- 1/sqrt(lambda[1])

 sigma[2] <- 1/sqrt(lambda[2])

 T[1,1] <- 1/lambda[1]

 T[1,2] <- rho*sigma[1]*sigma[2]

 T[2,1] <- rho*sigma[1]*sigma[2]

 T[2,2] <- 1/lambda[2]

 TI[1:2,1:2] <- inverse(T[1:2,1:2])

} #end of model file

" #end of the string that represents the model file.

writeLines(model.file, con = "func.expl.txt")

Now run the bugs function (the bugs function is slightly different in R2OpenBUGs

and R2WinBUGS, but not in ways that will affect this document.

N.iter <- 1000

N.chains <- 3

N.burnin <- 0 #set N.burnin to either 0 or 500

samples <-

 bugs(

 data = data.names,

 inits = initial.vals,

 parameters.to.save = params,

 model.file = "func.expl.txt",

 n.chains = N.chains,

 n.iter = N.iter,

 n.burnin = N.burnin,

 n.thin = 1,

 DIC = T, codaPkg = F, debug = T)

if (N.burnin == 0) bugs.0 <- samples

if (N.burnin == 500) bugs.500 <- samples

4. bugs outputs that are used as examples in the documentation of these

functions

The objects, bugs.0 and bugs.500 can be created by running the R commands in Section 3.

Of course, R and OpenBUGS or WinBUGS installed on the computer to make these commands work.

 File = E:\r\bugs.fns.docm 6

bugs.0 bugs.0 contains output from the bugs function in the R2WinBUGS package.

The data are 11 pairs of observations. The output contains chains of samples for

the correlation rho, the means of the populations, mu[1] and mu[2], and the

standard deviations of the populations, sigma[1] and sigma[2]. The bugs

analysis computed 3 chains of 1000 iterations. No burnin samples were dropped.

The only difference between bugs.0 and bugs.500 is that n.burnin = 0

for bugs.0 and n.burnin = 500 for bugs.500.

bugs.500 bugs.500 contains output from the bugs function in the R2WinBUGS

package. The data are 11 pairs of observations. The output contains chains of

samples for the correlation rho, the means of the populations, mu[1] and

mu[2], and the standard deviations of the populations, sigma[1] and

sigma[2]. The bugs analysis computed 3 chains of 1000 iterations. 500

burnin samples were dropped, so 500 samples were saved in each chain. The only

difference between bugs.0 and bugs.500 is that n.burnin = 0 for

bugs.0 and n.burnin = 500 for bugs.500.

5. Documentation for JM BUGS-Related R Functions

6. brugs.chains: A function that loads MCMC chains into R that were created

by using OpenBUGS and function in the BRugs package. TOC

7. ci.bugs: A function for computing the limits of an -level credible interval

from a sample of parameter values from OpenBUGS or JAGS output. TOC

8. doc: A function for displaying "on the fly" documentation for home-grown R

functions

EXAMPLES OF doc: The following examples assume that the jmbugs.rda file is on the

search path in position 2. If it is in a different position, modify the code to indicate the correct

position.

search()

ls(2)

Note that for most of the objects, I have created corresponding doc objects, e.g., the

function extract.vars is accompanied by an object called extract.vars.doc.

To see the nature of the latter object, simply type:
extract.vars.doc

The purpose of the doc function is to display this character vector in

a more user-friendly format:
doc(extract.vars)

 File = E:\r\bugs.fns.docm 7

In general, the doc function expects to receive as input an R object that has a

corresponding .doc object, e.g., doc(xxx) causes doc to look for a

character vector named xxx.doc. doc prints xxx.doc to the screen in

an attractive format. Of course, the user must create xxx.doc before attempting

to use doc(xxx).

Other examples:
doc(extract.chains)

doc(bugs.500)

doc(doc)

doc(jmbugs)

Suppose xxx is an object, and we want to create documentation for xxx (to be

saved within R).
xxx = c(3.14159, 2.718282)

There are a few simple rules for creating a doc object. First, doc takes an R

objects as argument, and looks for a doc object with a corresponding name.

For example:
doc(xxx)

The preceding command produces an error message. Now create xxx.doc.

xxx.doc = c("This is preliminary documentation for a dummy object xxx")

doc(xxx)

doc(xxx) expects xxx.doc to be a character vector. It automatically

combines the components of xxx.doc into a paragraph of output.

xxx.doc = c(

 "This is component 1 of the input. Blah, blah, blah, blah. ",

 "This is component 2 of the input. Blah, blah, blah, blah. ",

 "This is component 3 of the input. Blah, blah, blah, blah. ")

doc(xxx)

Therefore when creating documentation for an object xxx, simply enter the

documentation as a series of lines - doc will reformat the lines into a continuous

paragraph. Sometimes it is preferable to force the documentation to start on a

new line. In this case, remember that \n is the character for a new line of text

in R. For example:
xxx.doc = c(

 "This is component 1 of the input. Blah, blah, blah, blah. ",

 "This is component 2 of the input. \n",

 "This line is forced to start on a new line. Blah, blah, blah, blah. ",

 "Blah, blah, blah, blah. Blah, blah, blah, blah.",

 "Blah, blah, blah, blah. \n\nThis line is forced to be preceded",

 "by a blank line. Blah, blah, blah, blah. Blah, blah, blah, blah.",

 "Blah, blah, blah, blah. Blah, blah, blah, blah.")

doc(xxx)

 File = E:\r\bugs.fns.docm 8

9. extract.chains: A function for extracting multiple chains of samples for

each model parameter that is monitored (saved). This function is useful when
examining issues of dependence on starting value and convergence. TOC

extract.chains takes bugs function output as input and returns a list. Each component of

the output list is a vector or a matrix for a parameter whose samples were monitored (saved) in a call to

bugs. The component is a vector if the inputted bugs output was computed with only 1 chain or if the

call to extract.chains specified that multiple chains are to be combined into a single vector (see

combine.chains below). If the multiple chains in the bugs run are preserved (combine.chains

= FALSE), then each component is a matrix whose columns are the chains for that parameter. The

samples of parameters are enumerated in the order in which they were computed unless randomization is

requested. Each matrix has as many columns as there were chains in the bugs run.

extract.chains (bugs.out, burnin = 0, n.thin = 1, parameters = NA, improve.names = TRUE,

combine.chains = FALSE, randomize = FALSE, Warn = TRUE)

bugs.out Output from a call to bugs in the R2WinBUGS package.

burnin burnin = 0 (default) is used to set the number of burn-in samples to be

discarded. If the bugs call was computed with a non-zero burnin specification,

then these samples will have been discarded before extract.chains can

access these samples. Therefore if extract.chains is called with burnin >

0, then these samples are discarded in addition to any that were discarded as

burnin samples in the call to bugs. In other words, if the call to bugs specified a

burnin of 10 samples, and the call to extract.chains specified a burnin of 5

samples, then the output of extract.chains will contain chains that have had

an initial 15 sample removed. Typically, extract.chains should be used

with a bugs call that specifies a burnin of 0 because extract.chains can

drop any burnin samples after examining all samples for poor mixing in the initial

samples.

n.thin Indicates the rate at which samples are saved. If n.thin = 1, then all samples

are saved (not counting the discarded burnin samples. Note that the discarding of

samples by n.thin occurs after discarding the initial burnin samples and after

thinning has occurred in the call to bugs. In other words, if the call to bugs

specified a thinning rate of 3, and if the call to extract.chains specified a

thinning rate of 2, then the output of extract.chains will contain chains that

retain every 6-th sample (6 = 3*2). Typically, the user will specify a thinning rate

of 1 for either the call to bugs or the call to extract.chains, but not both.

parameters If parameters = NA (default), then all saved parameters are extracted.

Otherwise, set parameters to a character vector that names the parameters

whose samples are to be extracted. Use show.bugs(Bugs.Out) or

dimnames(Bugs.Out$sims.array)[[3]] to see the names of the

parameters whose samples were saved in the call to bugs (substitute the name of

the bugs output for Bugs.Out).

 File = E:\r\bugs.fns.docm 9

improve.names improve.names = TRUE (default) uses make.names.jm to create names

for list components that are syntactically valid in R. If improve.names =

FALSE, then the parameter names in the bugs output are retained without

changes. E.g., parameter name like mu[1], is a legal name in BUGS but not in

R; if improve.names = TRUE, then the list component that contains the

chains for mu[1] is named mu.1.

combine.chains combine.chains = FALSE is the default. If $n.chains > 1 &

combine.chains = FALSE, then each component of the output list is a

matrix with $n.chains columns and $n.iter - burnin rows. If

$n.chains = 1 or if combine.chains = TRUE, then each component of

the output is a vector. In the case where $n.chains > 1 and

combine.chains = TRUE, the separate chains of samples are combined into

a single vector of samples (after discarding burnin samples from each chain).

randomize randomize = FALSE is the default. If the output vectors or matrices are in the

order of $sims.array (after discarding burnin samples. If randomize =

TRUE, then the rows of the output matrix (multiple chains), or the elements of the

output vector (1 chain) are randomly reordered.

Warn Warn = TRUE (default) gives the user feedback whenever any burnin samples

were dropped either in the original bugs call or in the call to

extract.chains. If Warn = FALSE, the feedback is suppressed.

EXAMPLES OF extract.chains: The following examples assume that bugs.0 and

bugs.500 have been created and are in a file on the search path. If they are not, see

Section 4 for the code that is used to create these objects.

The main use of extract.chains is to extract multiple chains of samples for the parameters

that were saved from a WinBUGS model.
b0.chains <- extract.chains(bugs.0)

is.list(b0.chains)

names(b0.chains)

is.matrix(b0.chains$rho)

head(b0.chains$rho) #see 3 chains for rho

head(b0.chains$mu.1)#see 3 chains for mu.1

This output shows that each component of b0.chains is a matrix. Each column of a matrix

is a chain of samples for the designated parameter. There are three columns in each matrix

because there were three chains in the bugs run that create bugs.0.

10. extract.vars: A function for creating a dataframe of samples from

parameters of a model. Each variable in the dataframe combines the chains of
samples for a parameter. The function allows the user to control the manner
of combination, i.e., the user specifies the dropping of burnin samples,
thinning of the samples, or randomization of the samples. TOC

extract.vars extracts one or more posterior distributions from bugs output. If Bugs.Out

is the output of a call to bugs within R, then Bugs.Out$sims.array is an array that contains the

WinBUGS results for all of the saved parameters. extract.vars extracts the posteriors for one or

more saved parameters from output like Bugs.Out. If the samples were computed as 2 or more chains,

 File = E:\r\bugs.fns.docm 10

extract.vars combines these chains into a single vector after (optionally) removing an initial set of

burnin samples from each chain. extract.vars differs from the Bugs.Out$sims.list

component of bugs output insofar as Bugs.Out$sims.list randomizes the order of the samples so

that it is not possible to identify and remove burnin samples from Bugs.Out$sims.list (the burnin

samples have to be eliminated within WinBUGS before transferring the samples to R). extract.vars

gives the user a choice whether to randomize (default) or not randomize the order of samples within a

vector of parameter samples. By default, the extract.vars output is a vector if the samples for only

1 parameter are extracted, and the output is a dataframe with k variables if the samples for k > 1

parameters are extracted.

Use the extract.chains function to extract the individual chains of samples for a parameter

(usually to examine issues of convergence). extract.vars uses extract.chains to extract the

chains of samples, so you should look at extract.chains to see exactly how the samples were

extracted.

extract.vars(bugs.out, parameters = NA, burnin = 0, n.thin = 1,

 new.names = NA, randomize = TRUE)

bugs.out Output from a call to bugs in the R2WinBUGS package.

parameters parameters = NA (default) extracts samples for all parameters that were

saved in bugs.out. parameters can be set to a vector of variable names if

only a subset of the variables are to be extracted.

burnin burnin = 0 (default) is used to set the number of burn-in samples to be

discarded. Note that these samples are discarded from the initial segment of each

chain prior to combining them into a vector.

.thin n.thin indicates the thinning rate. n.thin = 1 indicates no thinning.

new.names new.names = NA (default) if the R-legal versions of the WinBUGS parameter

names are to be used as column names in the output dataframe. Set new.names

to a character vector of names if alternative names are preferred.

randomize randomize = TRUE (default) if the samples are randomly reordered. If

randomize = FALSE, then the samples in a vector are ordered [chain 1 -

burnin][chain 2 - burnin]...[chain k - burnin]

EXAMPLES OF extract.vars:

The next code shows that the default operation of extract.vars creates a dataframe. Each variable in the

dataframe is as long as the sum of the lengths of the three chains that were sampled in the creation of

bugs.0, i.e., 3,000 samples in length.

v.frame <- extract.vars(bugs.0)

is.data.frame(v.frame)

head(v.frame)

length(v.frame[,1])

Notice that the parameter names in v.frame are not the same as the parameter names in the bugs

output, bugs.0.

names(v.frame)

dimnames(bugs.0$sims.array)[[3]]

 File = E:\r\bugs.fns.docm 11

extract.vars changes the parameter names that are given by WinBUGS to names that conform

to R rules for object names. It is possible to use the extract.chains function to retain the

WinBUGS parameter names, but this is rarely useful.

The next example shows that you can extract the samples for just one parameter.

names(v.frame)

rho.only <- extract.vars(bugs.0, parameters = "rho")

rho.only[1:25]

is.data.frame(rho.only)

is.vector(rho.only)

The next example shows that you can extract the samples for a subset

of the parameters.

names(v.frame)

mu.1.2 <- extract.vars(bugs.0, parameters = c("mu.1", "mu.2"))

is.data.frame(mu.1.2)

head(mu.1.2)

The next example shows that you can drop a burnin sample from the beginning of each chain of

samples prior to storing the samples in a dataframe
drop.500 <- extract.vars(bugs.0, burnin = 500)

head(drop.500)

length(drop.500[,1])

length(v.frame[,1])

The bugs.0 output was created with 1000 iterations, 3 chains and no burnin.

Therefore there are 1000 x 3 = 3000 samples for each parameter that was saved

in bugs.0. The drop.500 dataframe was created by dropping 500 samples

from each chain prior to combining them into individual vectors of parameter

samples. Thus drop.500 has variables of length 500 x 3 = 1500. Recall

that the bugs.500 output was created by having WinBUGS drop a burnin sample

of 500 from each chain. Therefore bugs.500 should have the same samples

as drop.500, except for the fact that the variables in drop.500 were randomized

in a different order from the samples in bugs.500. This is illustrated by the

following code.

burn500.frame <- extract.vars(bugs.500)

The next series of commands demonstrate that burn500.frame (derived from

bugs.500 which was created by dropping a burnin of 500 samples within

WinBUGS, and drop.500 which was created by using the extract.vars function

to drop an initial 500 samples from the chains in bugs.0 that was produced with

a burnin of 0 are equivalent datasets.
names(burn500.frame)

names(drop.500)

length(burn500.frame[,1])

length(drop.500[,1])

sapply(burn500.frame, mean)

sapply(drop.500, mean)

sapply(burn500.frame, sd)

sapply(drop.500, sd)

 File = E:\r\bugs.fns.docm 12

The next two statements show that burn500.frame and drop.500 are identical except

for the random order in which the vectors of samples have been saved.

all(sort(burn500.frame$rho) == sort(drop.500$rho))

all(burn500.frame$rho == drop.500$rho)

The final example shows that if burnin samples are dropped from both the bugs run and

the extract.vars call, then a warning is issued that states that burnin samples have

been dropped twice. (Remember that bugs.500 was run with a burnin of 500 samples.

drop.twice = extract.vars(bugs.500, burnin = 100)

11. from.mcmc.chains: A function for converting a list of class mcmc.list to a

list of chains with one component per parameter. TOC

12. make.names.jm: A function that makes reasonably attractive R-legal

names from variable names in bugs outputs (some BUGS legal names are not

R-legal names).

The make.names.jm function is called internally by the extract.chains function, so an

understanding of this function is not critical to this document. Nevertheless, a brief explanation will be

given here. R has a function, make.names, for creating R-legal names from a character vector, some of

whose elements may not be legal names for R objects. In some cases, make.names will create a name

from a bugs output name that is not attractive. make.names.jm is designed to create more attractive

names than would be created by make.names. Here is an example.

EXAMPLE of make.names.jm:

dimnames(bugs.0$sims.array)

dimnames(bugs.0$sims.array)[[3]]

make.names(dimnames(bugs.0$sims.array)[[3]])

make.names.jm(dimnames(bugs.0$sims.array)[[3]])

Note that the names created by make.names.jm are slightly more attractive.

13. o.type: A function that shows what type of object an inputted object is.

o.type tests for the mode, factor status and other classifications of an object.

o.type(x, variables = FALSE, sorted = TRUE)

x is the object to be tested. variables = TRUE only has an effect if x is a dataframe. In this case,

variables = TRUE causes o.type to list information about every variable in x. sorted = TRUE

causes the output to printed with the TRUE attributes first; otherwise the attributes are always printed in

the same order. sorted = TRUE has no effect if x is a dataframe and variables = TRUE.

EXAMPLES of o.type:
o.type(bugs.0) #bugs.0 is a list

o.type(rho.only) #rho.only is a numeric vector

o.type(v.frame) #v.frame is a dataframe (both a list & a dataframe)

o.type(v.frame, var = T) #information is returned about each variable in v.frame

 File = E:\r\bugs.fns.docm 13

14. plot.chains: A function that plots the chains of samples for a parameter

(useful when examining dependence on starting values and mixing of chains)

TOC

plot.chains plots the chains for parameters that were saved in a call to bugs.

plot.chains(param, bugs.out = NA, xlim.f = NA, ylim.f = NA, legend = FALSE,

add.labels = TRUE, cex.lab = 1.5, ...)

ARGUMENTS:

param param is one of three things: If bugs.out is the output to a call to bugs, then

param must be the name of a parameter that was saved in this output. This name

can be specified either by means of the name given to it by WinBUGS, or by the R-

legal name that was created by the extract.chains function. If bugs.out is

NA, then param is either a matrix of chains or it is a list whose sole component is a

matrix of chains.

bugs.out bugs.out is either NA or it is the output from a call to bugs. If bugs.out is

NA, then param must be either a matrix of chains or a list whose sole component is

a matrix of chains (as in the output of extract.chains. If bugs.out is the

output from a call to bugs, then param must be the name of a parameter that was

saved in this output.

xlim.f xlim.f = NA (default) causes plot.chains to plot all of the iterations for the

chains. Alternatively, set xlim.f to the lower and upper bounds on the x-axis,

e.g., xlim.f = c(200, 300) to plot the iterations from 200 to 300.

ylim.f ylim.f = NA (default) means that plot.chains determines the limits on the

y-axis. Alternatively, set ylim.f to the lower and upper limit on the y-axis, e.g.,

ylim.f = c(.2, .8).

legend legend = FALSE (default) then no legend is plotted. If legend = TRUE, a

legend is printed across the top of the graph to show the correspondence between

the line colors and chains.

add.labels add.labels = TRUE (default) to have plot.chains generate the axis labels.

If FALSE, the axis labels are omitted.

cex.lab cex.lab controls the character size for the axis labels. The setting cex.lab =

1.5 (default) generally looks good.

EXAMPLES OF plot.chains:

First, specify a plot by naming a parameter that was saved in bugs.0.

plot.chains(param = "mu[1]", bugs.out = bugs.0)

The preceding example named the parameter by its WinBUGS name.

Note that the parameter can also be named with its corresponding R-legal name.
plot.chains(param = "mu.1", bugs.out = bugs.0)

We can also input a parameter that was previously extracted with extract.chains

params.0 <- extract.chains(bugs.0)

plot.chains(param = params.0$sigma.1)

 File = E:\r\bugs.fns.docm 14

Of course, we can suppress the ugly y-label in the preceding plot, and add a better looking one.
plot.chains(param = params.0$sigma.1, add.labels = FALSE)

mtext("Iterations", side = 1, cex = 1.5, line = 2.5)

mtext("Samples of sigma.1", side = 2, cex = 1.5, line = 2.5)

mtext("Check Convergence of 3 Chains for sigma.1", side = 3, cex = 1.5, line = 1)

We can also control the range of iterations in the display.
plot.chains(param = params.0$sigma.1, xlim = c(1, 100))

plot.chains(param = params.0$sigma.1, xlim = c(101, 301))

We can add a legend to distinguish the chains.
plot.chains(param = params.0$sigma.1, xlim = c(1, 200), legend = TRUE)

We can alter the range of the y-axis.
plot.chains(param = params.0$sigma.1, xlim = c(1, 200),ylim = c(0, 8), legend = TRUE)

15. res.param: A function for plotting the distribution of a sample from the

posterior distribution of a parameter. TOC

The function res.param computes basic statistics for the prior or posterior distribution of a

parameter in a WinBUGS analysis. By default, it plots the density of the parameter. Upon request, it

displays credible intervals and location statistics on the graph.

res.param(param.post, plot.dist = TRUE,

 method.density = c("density", "logspline")[1],

 method.ci = c("HDI", "equal.tails")[1],

 output = c("stats", "density")[1],

 stats.which = c("mean", "median", "mode", "conf"),

 level = 0.95, conf.pct = NA, show.conf = FALSE, show.stats = TRUE,

 digits.f = 3, lwd.f = 3, cex.stats = 1.15,

 xlab.f = paste("Samples of", deparse(substitute(param.post))),

 ylab.f = "Probability Density", xlim.f = NA, stats.ht = 0.9)

Arguments
param.post A numeric vector whose distribution is to be displayed. Typically, param.post

is the vector of simulated samples of a parameter that results from a WinBUGS

run.
plot.dist plot.dist = TRUE (default) to produce a density plot that shows the

distribution of param.post. If plot.dist = FALSE, no plot is produced.

method.density method.density determines the method by which the density of

param.post is approximated. The default method is density which uses the

density function in the stats package. If method.density is set to

logspline, then the logspline function in the polspline package is used

to estimate the density of param.post. See ?density and ?logspline for

descriptions of these two methods.
method.ci method.ci determines the type of credible interval. The default is HDI (highest

density interval), but a credible interval with equal probability tails can be selected

(method.ci = equal.tails).

output output controls whether to return a vector of statistics (output = "stats"), or the

xy coordinates of the density (output = "density").

 File = E:\r\bugs.fns.docm 15

lwd.f lwd.f controls the weight of the line in a density plot (default lwd.f = 3).

stats.which The statistics selected by stats.which are outputed as a vector by

param.post; optionally, the values of these statistics are printed on the density

plot by setting show.stats = TRUE. If show.stats = FALSE, the

statistics selected by stats.which are outputted by param.post but they are

not plotted on the density plot. stats.which can be set to any or all of the

statistics, mean, median, mode or conf. If stats.which includes conf,

the lower and upper bounds of a credible interval are computed and optionally

printed on the density plot. The level of the credible interval is set by level

(choose any number between 0 and 1.0 - the default value is .95). A pre-4/5/2011

version used an argument called conf.pct to set the level of the credible

interval. The conf.pct argument has been retained in this function to make the

function compatible with older code, but in post-4/5/2011 uses of this function,

use level to indicate the level of the credible interval.

xlab.f,

ylab.f
The axis labels to be displayed on the X and Y axes are controlled by xlab.f

and ylab.f.

xlim.f The range of values displayed on the X axis is controlled by xlim.f - if

xlim.f = NA (default), the default X axis range is used.

digits.f digits.f specifies the number of digits to the right of the decimal place to

display in the statistics. The default is 3 digits; if desired, different numbers of

digits can be specified for each statistics. WARNING: If specifying separate

numbers of digits for each statistic, you need to specify the number of digits for

each of the statistics, mean, median, mode and conf, even if only a subset of

these statistics is selected. stats.ht controls the height at which the statistics

are printed on a plot, expressed as a proportion of the maximum height of the

density plot. The default, stats.ht = .90, indicates that the stats are

vertically centered around 90% of the maximum height of the density plot.

16. show.bugs: A function for quickly displaying information about a bugs output.

TOC

show.bugs displays basic information about bugs output, specifically, it shows the WinBUGS

names for the parameters, and the number of iterations, the number of burnin samples, and the number of

chains of samples.

show.bugs(bugs.out)

bugs.out Output from a call to bugs.

EXAMPLES OF show.bugs:

show.bugs(bugs.0)

show.bugs(bugs.500)

17. to.mcmc.list: A function that converts a list of chains to a list of class

mcmc.list. TOC

 File = E:\r\bugs.fns.docm 16

18. Code for JM BUGS-Related R Functions

19. Code for doc function

doc <- function(x, File = , complete = FALSE, suppress.o.type = FALSE) {

o.name is the R name of the x object.

o.name <- deparse(substitute(x))

These flags are useful later in the function. Easiest to set them to FALSE here.

has.doc.extension <- FALSE; doc.object.exists <- FALSE

Following internal function, named reformat, reformats a vector of strings in order

to take advantage of string wrapping.

reformat <- function(cc) {

Each component of tmz is a string of text that is to be separated from preceding

and following components by a carriage return.

 tmz <- strsplit(paste(cc, collapse=), \\\n)[[1]]

tma is like tmz except any single leading blanks are removed.

 tma <- NULL

 for (i in 1:length(tmz)) {

 if (nchar(tmz[i]) > 1 & substr(tmz[i], 1, 1) ==)

 tma <- c(tma, substr(tmz[i], 2, nchar(tmz[i]))) else

 tma <- c(tma, tmz[i])

 } #end for (i in 1:length(tmz))

tmb is like tma except that each component has been broken into separate lines that

fit nicely on the screen.

 tmb <- sapply(tma, function(x) {

 strwrap(x, width=0.9 * getOption("width") - 8) })

 tmb

} #end def of reformat function

This code takes care of the case where x is an object whose name has the form, yyy.doc.

name.parts0 is a list of length 1. Its only component is a character vector of o.name

that has been split on ".". Note that name.parts0 may be redundant. If you do a revision,

perhaps you can replace it with name.parts1.

name.parts0 <- strsplit(o.name, split = \\.)

if (mode(x) == character && length(name.parts0) == 1) {

 name.parts1 <- unlist(name.parts0)

 if (length(name.parts1) > 1 &

 tolower(name.parts1[length(name.parts1)]) == doc) {

 has.doc.extension <- TRUE

Prints o.type to screen.

 obj0.name <- o.name

 obj.type <- o.type(x)

 if (exists(obj0.name) & !suppress.o.type) {

 cat(paste("", obj0.name,

 ", is the following type of object:\n", sep=), file = File)

 print(obj.type)

Print function arguments to screen if it is a function.

 if (obj.type[fn]) {

 cat(\n, file = File, append = TRUE);

 print(args(get(obj0.name))) } #end if

 File = E:\r\bugs.fns.docm 17

 } #end if (exists(obj0.name))

 if (!suppress.o.type) cat(\nDocumentation:\n, file = File)

Reformats the input to make use of screen wrap.

 tmb <- reformat(x)

The next for loop writes tmb to the screen.

 for (i in 1:length(tmb)) cat(tmb[[i]], sep=\n, file = File)

The next code cleans up objects.

 rm(tmb)

 } #end if (length(name.parts1) > 1 & name.parts1[length(name.parts1)] == doc)

 } #end if (mode(x) == character && length(name.parts0) == 1)

This if takes care of the case where an object of the form o.name.doc exists.

if (exists(paste(o.name, .doc,sep=))) {

 doc.object.exists <- TRUE

Print location of object to screen

 find.locs <- find(o.name)

 o.locs <- paste(find.locs, collapse = ", ")

 find.doc.locs <- find(paste(o.name, .doc,sep=))

 doc.locs <- paste(find.doc.locs, collapse = ", ")

 if (length(find.locs) > 1) {

 cat(paste("Locations of ", o.name, " on the search path: ",

 o.locs, "\n", sep = ""))

 if (find.locs[1] != find.doc.locs[1]) {

 cat(paste("Locations of ", paste(o.name, .doc,sep=),

 " on the search path: ", doc.locs, "\n", sep = ""))

 cat(paste("WARNING: ", o.name, " and ", paste(o.name, .doc,sep=),

 ", are not in the same location on the search path.\n",

 "Check that the object and documentation pertain to the same object.\n",

 sep = ""))

 } #end if (find.locs[1] != find.doc.locs[1])

 } else { #end if (length(find.locs) > 1)

 cat(paste("Location of ", o.name, " on the search path: ",

 o.locs, "\n", sep = ""))

 } #end of else for if (length(find.locs) > 1)

Prints o.type to screen.

 obj0.name <- o.name

 obj.type <- o.type(get(obj0.name))

 if (!suppress.o.type) {

 cat(paste("", obj0.name,

 ", is the following type of object:\n", sep=), file = File)

 print(obj.type)

 } #end if (!suppress.o.type)

Print function arguments to screen if it is a function.

 if (obj.type[fn]) {

 cat(\n, file = File); print(args(get(obj0.name))) } #end if

 if (! suppress.o.type) cat(\nDocumentation:\n, file = File)

reformat x to make use of screen wrap.

 tmb <- reformat(get(paste(o.name, .doc,sep=)))

The next for loop writes tmb to the screen.

 for (i in 1:length(tmb)) cat(tmb[[i]], sep=\n, file = File)

The next code cleans up objects.

 rm(tmb)

 } #end if (exists(paste(o.name, .doc,sep=)))

 File = E:\r\bugs.fns.docm 18

This long if creates a name for the type of object that x is.

if (is.data.frame(x)) x.type <- dataframe else

 if (is.list(x)) x.type <- list else

 if (is.factor(x)) x.type <- factor else

 if (is.numeric(x)) x.type <- numeric variable else

 if (is.logical(x)) x.type <- logical variable else

 if (is.character(x)) x.type <- string variable else

 if (is.function(x)) x.type <- function

if (!is.null(attr(x, doc))) {

Prints o.type to screen.

 obj0.name <- o.name

 cat(paste("", obj0.name, ", is the following type of object:\n", sep=),

 file = File)

 obj.type <- o.type(get(obj0.name))

 print(obj.type)

 cat(\nDocumentation:\n, file = File)

Print function arguments to screen if it is a function.

 if (obj.type[fn]) {

 cat(\n, file = File); print(args(get(obj0.name))) } #end if

reformat x to make use of screen wrap.

 tmb <- reformat(get(paste(o.name, .doc,sep=)))

The next for loop writes tmb to the screen.

 for (i in 1:length(tmb)) cat(tmb[[i]], sep=\n, file = File)

The next code cleans up objects.

 rm(tmb)

The next if writes out factor levels for x, if they exist.

 if (is.factor(x)) {

 lv <- matrix(c(level=levels(x), 1:length(levels(x))),

 ncol=2, dimnames = list(rep(, length(levels(x))),

 c(Level, Numeric Value)))

 cat("\nThe variable, ", o.name,

 ", is a factor with levels:\n", sep=, file = File)

 print(lv, quote=FALSE)

 } #end if.factor(x))

 } else {

The next clause writes a message to the user in the case where x has a null doc attribute.

 if (!exists(paste(o.name, .doc,sep=)) & !has.doc.extension

 & !doc.object.exists)

 cat("\nThe ", x.type, ", ", o.name,

 ", has a NULL doc attribute ",

 "and there is no ", o.name, ".doc object.\n", sep=, file = File)

 } #end else of if (!is.null(attr(x, doc)))

The next if writes out documentation for individual variables in the case where

x is a dataframe and complete == TRUE.

if (is.data.frame(x) & complete)

 if (any(sapply(x, function(y) !is.null(attr(y, doc))))) {

 var.mat <- matrix(c(VARIABLE, names(x),

 LABELS, sapply(x, function(x) attributes(x)$doc)),

 ncol=2)

 max.char <- max(nchar(var.mat[,1]))

 left.indent <- paste(rep(, max.char+2), collapse=)

 var.info <- NULL

 File = E:\r\bugs.fns.docm 19

 for (i in 1:length(var.mat[,1])) {

 var.mat[i,1] <- paste(var.mat[i,1],

 paste(rep(, max.char - nchar(var.mat[i,1])),

 collapse=), , sep=)

 wrap.label <- strwrap(var.mat[i,2],

 width = getOption("width") - max.char - 12)

 if (is.null(wrap.label) | length(wrap.label) == 0) {

 v.tmp <- c(var.mat[i,1], (no documentation))

 } else {

 v.tmp <- c(var.mat[i,1], wrap.label[1])

 if (length(wrap.label) > 1)

 v.tmp <- rbind(v.tmp,

 cbind(left.indent, wrap.label[2:length(wrap.label)]))

 } #end if (is.null(wrap.label)) v.tmp <- var.mat[i,]

 var.info <- rbind(var.info, v.tmp)

 } #end for (i in 1:var.mat[,1])

 cat(\nVariables in the dataframe: , o.name, \n, file = File)

 cat(paste(

 apply(var.info, 1, function(x) paste(x, sep=, collapse=)),

 sep=), sep=\n, file = File)

 cat(\n, file = File)

 } else { #start else of if (any(sapply(x, function(y) !is.null(...

 cat("\nThe ", x.type, ", ", o.name,

 ", has no variables with non-NULL doc attributes.\n", sep=,

 file = File)

 } #end if (any(sapply(x, function(y) !is.null(attr(y, doc)))))

cat(\n, file = File)

} #end def of doc function

20. Code for extract.chains

extract.chains <- function(bugs.out, burnin = 0, n.thin = 1,

 parameters = NA, improve.names = TRUE,

 combine.chains = FALSE, randomize = FALSE, Warn = TRUE) {

params.all <- dimnames(bugs.out$sims.array)[[3]]

if !all(is.na(parameters)) and parameters are not a subset of params.all, then

the procedure stops with an error message.

if ((!all(is.na(parameters))) && !all(parameters %in% params.all))

 stop(

 "At least some of the parameters names in the parameters argument\n",

 "do not correspond to parameter names in bugs.out. \n\n",

 "Parameter names in bugs.out:\n\n",

 strwrap(paste(params.all, collapse = ", "))

) #end stop

The next if sets param.names to the desired parameters to be extracted.

if (length(parameters) == 1 && is.na(parameters))

 param.names <- params.all else

 param.names <- parameters

n.names <- length(param.names)

param.index contains the index numbers for the parameters in param.names

param.index <- match(param.names, params.all)

 File = E:\r\bugs.fns.docm 20

n.samples <- bugs.out$n.iter - bugs.out$n.burnin

n.chains <- bugs.out$n.chains

Next: Warning if the original bugs call specified a burnin > 0 and the current call

to extract.chains also specified a burnin > 0. In this case, the total burnin is the sum

of the two separate burnins. Usually you would only need to specify a burnin on the

original bugs call or the extract.chains call, but not both, so this warning lets the

user know that something odd is happening.

if (Warn & burnin > 0 | bugs.out$n.burnin > 0) { warning(paste(

 "The original bugs call specified a burnin of ", bugs.out$n.burnin,

 " samples.\n",

 "The current call to extract.chains specified a burnin\nof ",

 burnin, " samples. ",

 "Consequently, a total of ", bugs.out$n.burnin + burnin, " samples were\n",

 "discarded from each chain of samples in the original\n",

 "bugs call.\n"

 , sep = "")) #end paste and end warning

 } #end if (n.samples < bugs.out$n.iter)

Next: Create R-legal names from the WinBUGS parameter names. Names like x[2] are legal

in WinBUGS but not in R.

if (improve.names)

 new.names <- make.names.jm(param.names) else

 new.names <- param.names

Create an ordering variable for the case where the simulations will NOT be saved in a random order.

if (!randomize & !combine.chains) new.order <- 1:trunc((n.samples - burnin)/n.thin)

if (!randomize & combine.chains)

 new.order <- 1:(n.chains*trunc((n.samples - burnin)/n.thin))

Create an ordering variable for the case where the simulations will be randomized but they will

not be combined into a single vector (separate chains will be retained).

if (randomize & !combine.chains) {

 iter.id <- 1:(n.samples - burnin)

 random.var <- runif(trunc((n.samples - burnin)/n.thin))

 new.order <- order(random.var)

 warning(

 "The call to extract.chains specifies that the chain elements be randomly\n",

 "reordered without combining the chains into a single vector. This is odd\n",

 "because the main reason for retaining the separate chains of samples\n",

 "is that one wants to examine the chains in the order that they were \n",

 "computed. Check that you really want to preserve the separate chains\n",

 "while randomizing their orders.\n")

 } #end if (randomize & !combine.chains)

Create an ordering variable for the case where the simulations will be randomized and the and

they will be combined into a single vector (separate chains will be lost).

if (randomize & combine.chains) {

 n.chains <- bugs.out$n.chains

 n.case <- n.chains*(trunc((n.samples - burnin)/n.thin))

 iter.id <- 1:n.case

 random.var <- runif(n.case)

 new.order <- order(random.var)

 } #end if (randomize & !combine.chains)

tmL <- NULL

for (i in 1:length(param.index)) {

 tmL <- c(tmL, list(NA))

 File = E:\r\bugs.fns.docm 21

m0 is the matrix of chains for the i-th parameter

 m0 <- bugs.out$sims.array[,, param.index[i]]

 if (is.matrix(m0)) m1 <- m0 else m1 <- matrix(m0, ncol = 1)

 m.noburn <- m1[(burnin + 1):n.samples,]

 if (n.thin <= 1) m.keep <- m.noburn

 if (n.thin > 1) {

 N.noburn <- length(m.noburn[,1])

 index.keep <- n.thin * seq(from = 1, to = N.noburn/n.thin, by = 1)

 m.keep <- m.noburn[index.keep ,]

 } #end if (n.thin > 1)

 if (combine.chains) {

 tm.mat <- as.vector(m.keep)[new.order]

 } else { #end if (combine.chains)

 tm.mat <- m.keep[new.order,]

 if (is.matrix(tm.mat))

 dimnames(tm.mat) <- list(NULL, paste("chain", 1:ncol(tm.mat), sep="."))

 } #end else

 tmL[i] <- list(tm.mat)

 } #end for

names(tmL) <- new.names

return(tmL)

 } #end def of extract.chains function

21. Code for extract.vars. TOC

extract.vars <- function(bugs.out, parameters = NA, burnin = 0, n.thin = 1,

 new.names = NA, randomize = TRUE) {

extract the samples for all variables from bugs.out.

vars.ini <- extract.chains(

 bugs.out = bugs.out, burnin = burnin, n.thin = n.thin,

 combine.chains = TRUE, randomize = randomize,

 improve.names = FALSE)

By default, extract.chains changes the variable names from WinBUGS names to legal R names.

The following code allows us to specify parameters using either the WinBUGS

names or the R names.

if (all(is.na(parameters))) vars <- names(vars.ini) else

 vars <- make.names.jm(parameters)

Next: Check that parameters actually specifies variable names in vars.ini

if (!all(vars %in% names(vars.ini))) {

 bugs.out.name <- deparse(substitute(bugs.out))

 BUGS.names <- dimnames(bugs.out$sims.ar)[[3]]

 R.names <- names(vars.ini)

 cmt.parameters <- paste(

 "The function call requested the extraction of the following variables:\n",

 paste(\", paste(parameters, collapse = \", \"), ", sep=""), "\n",

"\n",

 "The WinBUGS names for the variables in ", bugs.out.name, " are:\n",

 paste(\", paste(BUGS.names, collapse = \", \"), ", sep = ""), "\n",

 File = E:\r\bugs.fns.docm 22

"\n",

 "The R names for these variables are:\n",

 paste(\", paste(R.names, collapse = \", \"), ", sep = ""), "\n",

"\n",

 sep = "")

 stop(

 "At least one of the variable names specified\n",

 "by parameters is not present in the WinBUGS output. \n",

 cmt.parameters,

 "parameters must be specified either as NA or in terms \n",

 "of the WinBUGS names or R names.")

 } #end if (!all(vars %in% names(vars.ini)))

out.0 <- vars.ini[vars]

if (length(vars) > 1) {

 out <- data.frame(out.0)

 if (!is.na(new.names)) names(out) <- new.names

 } #end if (length(vars > 1))

if (length(vars) == 1) {

 out <- unlist(out.0)

 } #end if (length(vars == 1))

return(out)

 } #end def of extract.vars function

22. Code for make.names.jm

make.names.jm <- function(names.jm, unique.jm = TRUE,

 rm.double = TRUE, allow_.jm = TRUE) {

n.vec.0 <- make.names(names.jm, unique = unique.jm, allow_ = allow_.jm)

n.vec.1 <- NULL

for (i in 1:length(n.vec.0)) {

 rr <- unlist(strsplit(n.vec.0[i], ""))

 ss <- NULL

 if (rm.double) {

 for (j in 1:length(rr)) {

 if (j == 1 & rr[1] != ".") ss <- rr[1]

 if (j > 1 && rr[j] != ".") ss <- c(ss, rr[j])

 if (j > 1 && rr[j] == "." && rr[j-1] != ".") ss <- c(ss, rr[j])

 } #end for (j in 1:length(rr))

 } else { #end if (!rm.double)

 ss <- rr

 } #end else

 c.nu <- NULL #c.nu will become the new character vector

 c.end <- TRUE #c.end is a flag for whether any non-. have been found.

 for (k in length(ss):1) {

 if (ss[k] != "." | !c.end) {

 c.end <- FALSE

 c.nu <- c(ss[k], c.nu)

 File = E:\r\bugs.fns.docm 23

 } #end if (ss[k] == "." & c.end)

 } #end for (k in length(ss):1)

n.vec.1 <- c(n.vec.1, paste(c.nu, collapse = ""))

} #end for (i in 1:length(n.vec.0))

out <- make.names(n.vec.1, unique = unique.jm, allow_ = allow_.jm)

return(out)

 } #end def of make.names.jm function

23. Code for o.type TOC

o.type <- function(x, variables=FALSE, sorted=TRUE) {

if (is.data.frame(x) & variables)

 out1 <- t(sapply(x, function(y) c(

 scalar=(is.numeric(y) & !is.factor(y) & length(y) == 1),

 vector= (is.vector(y) & length(y) > 1),

 numeric=is.numeric(y), factor=is.factor(y), char=is.character(y),

 logical=is.logical(y), NULL = is.null(y), zero=(length(y) == 0))))

out2 <- c(

 scalar=(is.numeric(x) & !is.factor(x) & length(x) == 1),

 vector= (is.vector(x) & length(x) > 1), matrix=is.matrix(x), array=is.array(x),

 list=is.list(x), d.frame = is.data.frame(x),

 numeric=is.numeric(x), factor=is.factor(x), char=is.character(x),

 logical=is.logical(x), NULL = is.null(x),

 all.NA = if (is.logical(x) | is.character(x) | is.numeric(x))

 all(is.na(x)) else FALSE,

 zero=(length(x) == 0), fn=(is.function(x)))

if (sorted) out2 <- c(out2[out2], out2[!out2])

if (is.data.frame(x) & variables) {

 main.out <- list(out2, out1)

 names(main.out) <- c(deparse(substitute(x)), variables)

 } else { #end if (variables)

 main.out <- out2

 } #end of else for if (variables)

return(main.out)

} #end of function definition

24. Code for plot.chains TOC

plot.chains <- function(param, bugs.out = NA,

 xlim.f = NA, ylim.f = NA, legend = FALSE,

 add.labels = TRUE, cex.lab = 1.5, ...) {
#Subp.ini ----hidden parameter settings --------end hidden----

First extract the name of the parameter to be plotted. Later param will be redefined

in the case where param is a list, so we need to extract this parameter name before

the redefinition of param.

if (is.character(param)) param.name <- make.names.jm(param) else

 File = E:\r\bugs.fns.docm 24

 param.name <- deparse(substitute(param))

Next we break down the analysis into 2 cases.

case <- NA

if (class(bugs.out) == "bugs" && is.character(param)) case <- 1

if (is.na(bugs.out) && (is.matrix(param) | is.list(param)))

 case <- 2

if (is.na(case)) stop("\n",

 "The call to plot.chains did not specify the param and/or bugs.out\n",

 "argument correctly. Either bugs.out should be NA and param should be\n",

 "a matrix of chains for a parameter, or bugs.out should specify the output\n",

 "of a call to the bugs function in the R2WinBUGS package and param should\n",

 "be the name of a parameter that was saved in this output. The parameter can\n",

 "be specified by either its WinBUGS name or the R-legal name that is created\n",

 "by the extract.chains function (it uses the make.names.jm function to\n",

 "creat R-legal names.") #end stop

The next if takes care of the case where param is a list that was created by using extract.chains to extract

the chains of samples for one parameter. In this case, the output of extract.chains is a list of length 1.

For this case, the next if converts param to a matrix.

if (case == 2 && is.list(param) && length(param) == 1 && is.matrix(param[[1]]))

 param <- param[[1]]

The next if gives an error message when the preceding if does not apply.

if (case == 2 && is.list(param) && (length(param) != 1 || !is.matrix(param[[1]])))

 stop("\n",

 "If bugs.out is NA, then param must be either a matrix of chains, or\n",

 "a list whose only component is a matrix of chains. Check that param\n",

 "has been specified appropriately.\n"

) #end stop

if (case == 1) { #begin case where bugs.out is a bugs output file

 list.chains <- extract.chains(bugs.out, improve.names = TRUE)

 if (!(param.name %in% names(list.chains))) stop(paste(

 "The specified parameter name is not among the parameter names in\n",

 "the bugs output. The requested parameter is named, ", param,

 " and\nthe parameters in the bugs output are named:\n ",

 paste(names(list.chains), collapse = ", "), "\n", sep = "") #end paste

) #end stop

 param <- make.names.jm(param)

 y.vals <- list.chains[[param]]

 } #end if (case == 1) The case where bugs.out is a bugs output file

In case 2, param is a matrix of chains.

if (case == 2) y.vals <- param

Stop procedure if xlim.f is out of range.

if (!any(is.na(xlim.f)))

 if ((xlim.f[1] < 1) | (xlim.f[2] > length(y.vals[,1]))) stop(paste(

 "xlim.f = c(", xlim.f[1], ", ", xlim.f[2], ")\n",

 "Either the lower bound of xlim.f is less than 1 or the upper\n",

 "bound of xlim.f exceeds the number of iterations in the chains.\n",

 "Check that the bounds in xlim.f make sense.\n"

 File = E:\r\bugs.fns.docm 25

 , sep = "") #end paste

) #end stop

Next define xx

if (is.matrix(y.vals)) {

 if (any(is.na(xlim.f))) {

 xx <- 1:length(y.vals[,1])

 xlim.f <- range(xx)

 } else { #end if (any(is.na(xlim.f)))

 xx <- xlim.f[1]:xlim.f[2]

 y.vals <- y.vals[xx,]

 } #end else

 n.chains <- ncol(y.vals)

 } else { #end if (is.matrix(y.vals)

 if (any(is.na(xlim.f))) {

 xx <- 1:length(y.vals)

 xlim.f <- range(xx)

 } else { #end if (any(is.na(xlim.f)))

 xx <- xlim.f[1]:xlim.f[2]

 y.vals <- y.vals[xx]

 } #end else

 n.chains <- 1

 } #end of else for if (is.matrix(y.vals)

x.dummy & y.dummy are just dummy variables that establish the lower and

upper limits of the plot. See the following plot command.

 x.dummy <- xlim.f

 y.dummy <- range(y.vals)

If legend = TRUE, then the upper limit of y.dummy is extended slightly upwards.

 y.dummy[2] <- y.dummy[2] + .025*(y.dummy[2] - y.dummy[1])

The y-limits are set to y.dummy only if they are not specified in the function call.

if (any(is.na(ylim.f))) ylim.f <- y.dummy

plot(x.dummy, y.dummy, type = "n", xlab = "", ylab = "", ylim = ylim.f,

 bty = "l", ...)

line.col designates different colors for different chains. See the for loop below.

If there are more than 8 chains, the remaining chains are all plotted in black.

line.col <- c(

 "red","blue","green", "black", "azure3", "deeppink",

 "cyan2", "darkmagenta")

if (length(line.col) < ncol(y.vals))

 line.col <- c(line.col,

 rep("black", ncol(y.vals) - length(line.col)))

if (is.matrix(y.vals)) {

 if (legend) {

 aa <- (xlim.f[2] - xlim.f[1])/n.chains

 L.ini <- xlim.f[1] + aa/4

 for (cc in 1:(n.chains - 1)) L.ini <- c(L.ini, L.ini[cc] + aa)

 inc.1 <- aa/6

 inc.2 <- (aa/6) + (aa/20)

 for (cc in 1:n.chains) {

 lines(c(L.ini[cc], L.ini[cc] + inc.1), c(ylim.f[2], ylim.f[2]),

 File = E:\r\bugs.fns.docm 26

 lwd = 2, col = line.col[cc])

 text(L.ini[cc] + inc.2, ylim.f[2], paste("Chain", cc), adj= 0)

 } #end for (cc in 1:n.chains)

 } #end if (legend)

 for (kk in 1:n.chains) {

 lines(xx, y.vals[, kk], col = line.col[kk])

 } #end for (kk in 1:ncol(y.vals))

 } else { #end if (is.matrix(y.vals))

 lines(xx, y.vals, col = line.col[1])

 } #end of else for if (is.matrix(y.vals))

if (add.labels) {

 mtext("Iteration", side = 1, cex = cex.lab, line = 2.5)

 mtext(paste("Sample of", param.name),

 side = 2, cex = cex.lab, line = 2.5)

 mtext(paste(n.chains, "Chains of Samples for", param.name),

 side = 3, cex = cex.lab, line = 1)

 } #end if (add.labels)

 } #end def of plot.chains function

25. Code for plot.param function

plot.param <- function(param.post, plot.dist = TRUE,

 method = c("density", "logspline")[1],

 output = c(stats, density)[1],

 stats.which = c(mean,median,mode,conf), conf.pct = 95,

 show.conf = FALSE, show.stats = TRUE, digits.f = 3, lwd.f = 3,

 cex.stats = 1.15,

 xlab.f = paste("Samples of", deparse(substitute(param.post))),

 ylab.f = "Probability Density", xlim.f = NA, stats.ht = .90) {
#Subp.ini ----hidden code ---- end hidden-----------

Replace conf with bnd.low & bnd.hi

if (conf %in% stats.which) {

 stats.which[match(conf, stats.which)] <- bnd.low

 stats.which <- c(stats.which, bnd.hi)

 } #end if (conf %in% stats.which)

if (method == "density") {

Compute statistics for of the density function

 xx <- density(param.post)$x

 yy <- density(param.post)$y

 mode.dist <- xx[yy == max(yy)]

 tm.stats <- c(mean(param.post), median(param.post), mode.dist,

 quantile(param.post, prob = (1 - conf.pct/100)/2),

 quantile(param.post, prob = 1 - (1 - conf.pct/100)/2))

 if (length(digits.f) == 1) dig.nu <- rep(digits.f, length(tm.stats)) else

 dig.nu <- c(digits.f, digits.f[length(digits.f)])

 File = E:\r\bugs.fns.docm 27

 res.stats <- NULL

 for (i in 1:length(tm.stats))

 res.stats <- c(res.stats, round(tm.stats[i], dig.nu[i]))

 names(res.stats) <- c(mean,median,mode,bnd.low,bnd.hi)

 } #end if (method == "density")

if (method == "logspline") {

 tmr <- require(polspline, quietly = TRUE)

 if (!tmr) stop("\n",

 "This function requires the package polspline which is not available\n",

 "on this computer system. If this is your personal computer, run the ",

 "function\n",

 "\n",

 "install.packages(\"polspline\")\n",

 "\n",

 "to install polspline on this computer. If this is a network computer,\n",

 "ask the system administrator to install polspline on this network.\n"

) #end stop

 fit.post <- logspline(param.post)

 xx <- seq(from = min(param.post), to = max(param.post), length = 1000)

 yy <- dlogspline(q = xx, fit.post)

 mode.dist <- xx[yy == max(yy)]

 tm.stats <- c(mean(param.post), median(param.post), mode.dist,

 quantile(param.post, prob = (1 - conf.pct/100)/2),

 quantile(param.post, prob = 1 - (1 - conf.pct/100)/2))

 if (length(digits.f) == 1) dig.nu <- rep(digits.f, length(tm.stats)) else

 dig.nu <- c(digits.f, digits.f[length(digits.f)])

 res.stats <- NULL

 for (i in 1:length(tm.stats))

 res.stats <- c(res.stats, round(tm.stats[i], dig.nu[i]))

 names(res.stats) <- c(mean,median,mode,bnd.low,bnd.hi)

 } #end if (method == "logspline")

if (plot.dist) {

 if (any(is.na(xlim.f))) xlim.f <- c(min(xx), max(xx))

 plot(xx, yy, xlab="", ylab="", main ="", type = "n",

 xlim=xlim.f, ylim = c(0, max(yy)*1.15), bty = "l")

 if (show.conf) {

 int <- xx >= res.stats[bnd.low] & xx <= res.stats[bnd.hi]

 xx.ci <- xx[int]

 yy.ci <- yy[int]

 polygon(area.under(x = xx.ci, y = yy.ci), col = yellow)

 } #end if (show.conf)

 File = E:\r\bugs.fns.docm 28

 lines(xx, yy, lwd = lwd.f)

 abline(h=0, lty=2, lwd = .5)

 mtext(xlab.f, side = 1, cex = 1.75, line = 3)

 mtext(ylab.f, side = 2, cex = 1.5, line = 2.5)

 if (show.stats) {

 stats.out <- res.stats[stats.which]

 stats.names <- names(stats.out)

 text.out <- NULL

 for (i in 1:length(stats.out)) {

 text.out <- c(text.out,

 paste(stats.names[i], " = ", stats.out[i], "\n", sep=""))

 } #end for (i in 1:length(stats.out))

 if (res.stats[mode] > xlim.f[1] + (xlim.f[2] - xlim.f[1])/2)

 text(xlim.f[1] + .03*(xlim.f[2] - xlim.f[1]), stats.ht*max(yy),

 paste(text.out, collapse = ""), adj = 0, cex = cex.stats) else

 text(res.stats[mode] + .33*(xlim.f[2] - res.stats[mode]),

 stats.ht*max(yy), paste(text.out, collapse = ""), adj = 0,cex =

cex.stats)

 } #end if (show.stats)

 } #end if (plot.dist)

if (all(output == stats)) out <- res.stats[stats.which][stats.which]

if (all(output == density)) out <- cbind(x = xx, y = yy)

if (stats %in% output & density %in% output)

 out <- list(stats = res.stats[stats.which][stats.which],

 density = cbind(x = xx, y = yy))

return(out)

 } #end def of plot.param function

26. Code for res.param TOC

27. Code for show.bugs TOC

show.bugs <- function(bugs.out) {

 param.names <- dimnames(bugs.out$sims.array)[[3]]

 info <- c(n.iterations = bugs.out$n.iter,

 n.burnin = bugs.out$n.burnin,

 n.chains = bugs.out$n.chains)

 out <- list(

 parameters = param.names,

 about.samples = info

) #end list

 return(out)

 } #end def of show.bugs function

 File = E:\r\bugs.fns.docm 29

**

	** This document is under revision. A finished copy should be completed in a few days. **
	JM Functions for Working with OpenBUGS, WinBUGS & JAGS Output
	TERMINOLOGY: In this document, BUGS refers to either OpenBUGS or WinBUGS or JAGS. This terminology is a bit inaccurate because there was an original BUGS program from which all of these are descendents. So far as I know, all of the functions that ar...
	## Still to do: Hidden bk = todo
	Add to Documentation: to.mcmc.chains,
	#--h.bk = todo ---##

	Contents
	1. Software requirements ** Add OpenBUGs & JAGS to this table **
	2. Files that are distributed with the present document
	3. Creating the bugs objects that are used to illustrate the functions in this document TOC
	# Set up the attached libraries.
	# Attach the file, jmfuns.rda, to the search path.
	# Create the data and variables which will be modeled in the subsequent call to bugs.
	# Note that this R-code is 98% identical to code in Lee & Wagenmakers (2010).
	# The following model file was distributed with Lee & Wagenmakers (2010).
	# The name for the correlation has been changed from "r" to "rho".
	# Now run the bugs function (the bugs function is slightly different in R2OpenBUGs # and R2WinBUGS, but not in ways that will affect this document.

	4. bugs outputs that are used as examples in the documentation of these functions

	5. Documentation for JM BUGS-Related R Functions
	6. brugs.chains: A function that loads MCMC chains into R that were created by using OpenBUGS and function in the BRugs package. TOC
	7. ci.bugs: A function for computing the limits of an (-level credible interval from a sample of parameter values from OpenBUGS or JAGS output. TOC
	8. doc: A function for displaying "on the fly" documentation for home-grown R functions
	EXAMPLES OF doc: The following examples assume that the jmbugs.rda file is on the search path in position 2. If it is in a different position, modify the code to indicate the correct position.

	9. extract.chains: A function for extracting multiple chains of samples for each model parameter that is monitored (saved). This function is useful when examining issues of dependence on starting value and convergence. TOC
	extract.chains (bugs.out, burnin = 0, n.thin = 1, parameters = NA, improve.names = TRUE, combine.chains = FALSE, randomize = FALSE, Warn = TRUE)
	EXAMPLES OF extract.chains: The following examples assume that bugs.0 and bugs.500 have been created and are in a file on the search path. If they are not, see Section 4 for the code that is used to create these objects.

	10. extract.vars: A function for creating a dataframe of samples from parameters of a model. Each variable in the dataframe combines the chains of samples for a parameter. The function allows the user to control the manner of combination, i.e., the...
	EXAMPLES OF extract.vars:

	11. from.mcmc.chains: A function for converting a list of class mcmc.list to a list of chains with one component per parameter. TOC
	12. make.names.jm: A function that makes reasonably attractive R-legal names from variable names in bugs outputs (some BUGS legal names are not R-legal names).
	EXAMPLE of make.names.jm:

	13. o.type: A function that shows what type of object an inputted object is.
	o.type(x, variables = FALSE, sorted = TRUE)
	EXAMPLES of o.type:

	14. plot.chains: A function that plots the chains of samples for a parameter (useful when examining dependence on starting values and mixing of chains) TOC
	plot.chains(param, bugs.out = NA, xlim.f = NA, ylim.f = NA, legend = FALSE, add.labels = TRUE, cex.lab = 1.5, ...)
	EXAMPLES OF plot.chains:

	15. res.param: A function for plotting the distribution of a sample from the posterior distribution of a parameter. TOC
	Arguments

	16. show.bugs: A function for quickly displaying information about a bugs output. TOC
	EXAMPLES OF show.bugs:

	17. to.mcmc.list: A function that converts a list of chains to a list of class mcmc.list. TOC

	18. Code for JM BUGS-Related R Functions
	19. Code for doc function
	20. Code for extract.chains
	21. Code for extract.vars. TOC
	22. Code for make.names.jm
	23. Code for o.type TOC
	24. Code for plot.chains TOC
	25. Code for plot.param function
	26. Code for res.param TOC
	27. Code for show.bugs TOC

