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Generic Utility Theory: Measurement Foundations and
Applications in Multiattribute Utility Theory
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A utility representation is formulated that is generic in the sense that it is implied by many
stronger utility theories, yet it does not make assumptions peculiar to particular utility
theories. The generic utility representation postulates that the preference order on a subset of
two-outcome gambles with fixed probability is represented by an additive combination of the
utility of the outcomes. Although many utility theories imply that this representation should
be satisfied, standard additive conjoint formalizations do not provide an axiomatization of the
generic utility representation because the preference ordering is only defined on a proper sub-
set of a Cartesian product. (The precise specification of the subset is stated in the paper.) An
axiomatization of the generic utility representation is presented here, along with proofs of the
existence and interval scale uniqueness of the representation. The representation and uni-
queness theorems extend additive conjoint measurement to a structure in which the empirical
ordering is only defined on a proper subset of a Cartesian product. The generic utility theory
is important because formalizations and experimental tests carried out within its framework
will be meaningful from the standpoint of any stronger theory that implies the generic utility
theory. Expected utility theory, subjective expected utility theory, Kahneman and Tversky’s
prospect theory ((1979). Econometrica, 47, 263-291), and Luce and Narens’ dual bilinear
model ((1985). Journal of Mathematical Psychology, 29, 1-72) all imply that selected subsets
of gambles satisfy generic utility representations. Thus, utility investigations carried out within
the generic utility theory are interpretable from the standpoint of these stronger theories. For-
malizations of two-factor additive and multiplicative utility models and of parametric utility
models are presented within the generic utility framework. The formalizations illustrate how
to develop multiattribute and parametric utility models in the generic utility framework and,
hence, within the framework of stronger theories that imply it. In particular, the for-
malizations show how to develop multiattribute and parametric utility models within prospect
theory and the dual bilinear model.  © 1988 Academic Press, Inc.

This essay investigates the measurement foundations of a generic utility theory.
The theory is generic in the sense that its validity is implied by many stronger
utility theories, yet it does not make assumptions peculiar to particular utility
theories. Although the assumptions of the generic utility theory are weak, they are
strong enough to provide a framework for the axiomatization of the basic utility
models of multiattribute utility theory. Here we find the principal advantage of the
generic utility theory. It has just enough structure to allow the formalization and
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testing of utility models without commitment to the full strength of a theory like
expected utility (EU) or subjective expected utility (SEU) theory, Kahneman and
Tversky’s (1979) prospect theory, or Luce and Narens’ (1985) dual bilinear model.
Formalizations and experimental tests that are carried out within the generic utility
framework will be meaningful from the standpoint of stronger theories that imply
the generic theory. Thus, the generic utility theory provides a convenient framework
in which to investigate utility models without being forced to address the complex
issues pertaining to the validity of stronger theories.

The structure of this essay is as follows. First, I will formulate the utility represen-
tation of the generic theory and show how it is implied by EU and SEU theory,
prospect theory, and the dual bilinear model. Second, the generic utility theory will
be axiomatized and the existence and uniqueness of the representation will be
proved. The representation theorem extends additive conjoint measurement to a
structure in which the empirical ordering is defined only on a proper subset of a
Cartesian product of the form A4 x A. The precise definition of the subset will be
given below. Third, it will be demonstrated that basic utility models can be
axiomatized within the generic utility framework. In particular, the two-factor
additive and multiplicative utility representations will be axiomatized.
Axiomatizations will also be presented for the log/power family of utility functions,
and for the linear/exponential family of utility functions. These axiomatizations are
essentially standard EU axiomatizations translated into the generic utility
framework. The present analysis emphasizes that each of these utility models can be
derived from functional equations, that there are strong analogies between the
functional equations underlying different utility models, and that qualitative
axiomatizations of the functional equations can be formulated within the generic
utility theory.

Finally, I will argue that the generic utility theory provides a useful framework
for the investigation of utility models. Theoretical and empirical results established
within the generic utility framework will be intelligible within any theory that
implies it. In particular, the axiomatizations developed here in the generic utility
framework constitute axiomatizations of these models in prospect theory or the
dual bilinear model, for these theories imply the generic utility theory. These results
are themselves of some importance, for it has not been previously shown how to
introduce additive and multiplicative utility models, and parametric utility models
into prospect theory or the dual bilinear model. The generic utility theory allows
one to study the utility component of the theory of preference under risk while
minimizing issues and problems concerning the mental representation of probability
that are addressed in stronger theories.

I should also mention a secondary benefit of the generic utility theory, namely,
that it provides a representation theorem that may be useful in the axiomatization
of the dual bilinear model of Luce and Narens (1985).
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THe GENERIC UTILITY THEORY

Let C denote a set of outcomes, let [0, 1] denote the closed unit interval, and let
(0,1)=[0,1]—{0,1}. For any pe(0, 1) and x, yeC, let (x p y) denote a gamble
with a p chance of receiving x and a 1 — p chance of receiving y. Let T*(p) denote
the set of all such gambiles, ie.,

T*(p)={(xpy): x, yeC}. (1)

Finally, let >, denote a weak ordering of T*(p). The utility representation for the
structure (C, p, T*(p), =,) is well known, but it will be stated here for reference in
later discussions. (In the present notation, “iff” stands for “if and only if” and “Re”
stands for the real numbers.)

DeFniTioN 1. Let C be a nonempty set of consequences, pe(0,1),
T*(p)={(xpy):x, yeC}, and >, be a weak ordering (transitive, connected
relation) of T*(p). The structure (C, p, T*(p),>,) is said to have an identical
components (1C) additive representation iff there exists a scale U: C — Re and real
constants o >0 and f> 0 such that

wpx)2,(ypz) it aUw)+BU(x)2al(y)+ BU(z) (2)

for every w, x, y, ze C.

The representation (2) is called an identical components (IC) representation
because the same scale U applies to the first and second outcomes of a gamble. If
the scales for the two outcomes were not linearly related to each other, then (2)
would be a two-factor additive representation, but not an IC additive represen-
tation. It is not assumed that « and f satisfy a + # = 1. Although this constraint is
consistent with the analysis developed here, it will not be required. The assumption
that >0 and §> 0 is made because it is natural under the interpretation that >,
is a preference ordering of two-outcome gambles. In a more general context, one
might also allow negative values of « and f§, but this generalization will not be
discussed here. The formal work developed below is based on the axiomatization of
(2) in Krantz et al. (1971, pp. 245-259, 303-305).

The generic utility representation is a weakening of the IC additive represen-
tation, defined as follows. A riskless consequence x can be interpreted as a gamble
with constant outcomes of the form (x p x). Define a riskless preference relation R
by the condition

xRy iff  (xpx)2,(ypy) (3)

for any x, y e C. The only reason for adopting this definition of R is that it reduces
the number of primitives needed to state the generic utility theory. One could as
easily think of R as having an independent definition, and (3) as a consistency
condition whose satisfaction is required by the theory.
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Define T*(p) and T —(p) by the conditions

T~(p)={(xpy)e T*(p) such that xRy} 4)
T*(p)={(xpy)e T*(p) such that yRx}. (5)

Note that T (p)u T*(p)=T*(p). The sets T~ (p) and T*(p) will be called
triangular sets of gambles; T —(p) will be called a lower triangular set and T*(p)
will be called an wpper triangular set. The rationale for this terminology is as
follows. If C were a set of monetary payoffs, and the gambles in T*(p) were
arranged on the X x Y plane, with (x, y) being the coordinates of (x p y), then the
condition x=y would determine a diagonal in this plane. Assuming that xRy
whenever x > y, T (p) is the set of gambles that are on or below the diagonal, and
T*(p) is the set of gambles that are on or above the diagonal. Of course, the
generic utility theory is not limited to this interpretation. Outcomes need not be
monetary, and if they are, preference need not be increasing with money.

For any pe (0, 1), let >,- and >,. denote the restrictions of >, to T~ (p) and
T *(p), respectively. The generic utility representation asserts that the structures
(C, p, T~ (p), 2,-) and (C, p, T*(p), =,+) possess utility representations.

DermNITION 2. Let C be a nonempty set of consequences, pe (0, 1), let T~ (p) be
a lower triangular set of gambles, and let >,- be a weak ordering of T ~(p). The
structure (C, p, T~ (p), >,-) is said to have a generic utility representation iff there
exists a function U: C — Re, and real constants « >0 and #> 0 such that

(wpx)2,-(ypz) iff aU(w)+ BU(x)=al(y)+BU(2) (6)

for every (wp x), (y pz)e T ~(p). Similarly, let T *(p) be an upper triangular set of
gambles, and let >,. be a weak ordering of T*(p). Then (C, p, T *(p), =,+) is
said to have a generic utility representation iff there exists U': C — Re, and real
constants o’ >0 and f’> 0 such that

wWpx)2,+ (ypz) il UW)+BUx)22’U(y)+BU'2) (7

for every (wpx), (ypz)eT*(p).

The IC additive representation is the special case of the generic utility represen-
tation where a =o' and = §'. I will show below that prospect theory and the dual
bilinear model both posit cases where a #a' and 8 # f§'.

The noteworthy feature of the generic utility representation is that represen-
tations (6) and (7) are restricted to preferences for gambiles in a triangular set. Stan-
dard axiomatizations of additive representations do not apply to the generic utility
representation because they assume that the representation is satisfied by the
preference ordering over the full set T*(p) of gambles. According to prospect
theory and the dual bilinear model, it could be the case that there does not exist an
IC additive representation for (C, p, T*(p), =,) even though there exists a generic
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utility representation for (C, p, T ~(p), =2,-) or (C, p, T*(p), 2,+). To axiomatize
the generic utility representation, we require a generalization of additive conjoint
measurement that is based on an ordering of a triangular set of gambles. The
axiomatization of the generic utility representation developed here consists of minor
modifications of standard additive conjoint axioms together with an innocuous
regularity condition. From the measurement standpoint, what is interesting is not
the choice of axioms but rather the demonstration that these axioms are sufficient
to imply the existence of the additive representation (6) even when the empirical
ordering is defined only on T~ (p) or T *(p). Before developing the axiomatization,
it will be instructive to see that the genenc utility representation is implied by many
theories of preference under risk.

EU, SEU, ASEU, NASEU, and SWU Theories

Obviously, if a theory implies that the utility of fixed-probability, two-outcome
gambles satisfies an IC additive representation, then it also implies the validity of
the generic utility representation. Thus, EU theory implies (6) and (7) with
a=a'=pand f=p =1- p (Luce & Raiffa, 1957). If SEU theory is construed as a
theory in which the stated probability p is transformed to a subjective probability
s(p) prior to evaluating the utility of a gamble, then SEU theory implies (6) and (7)
with a =a’ =s(p) and §=p'=1-s(p) (Tversky, 1967). Edwards (1962) formulated
an additive subjective expected utility (ASEU) model and a nonadditive subjective
expected utility (NASEU) model. According to these models, (6) and (7) are
satisfied, but it is not assumed that a + =1, or o' + ' = 1. The difference between
the ASEU and the NASEU models is that the ASEU model implies that the
weights assigned to mutually exclusive and exhaustive events sum to the same value
for any choice of events, whereas the NASEU model allows for the possibility that
the weights sum to different values for different choices of mutually exclusive and
exhaustive events. Karmarkar (1978) proposed a subjectively weighted utility
(SWU) model in which (6) and (7) are satisfied with a =o' = p**/(p*® + ¢*°) and
B=pB =q*/(p*® + q*°), where g=1— p and 6 >0 is a parameter.

Prospect Theory

Kahneman and Tversky (1979) have proposed a theory of preference under risk,
called prospect theory, that attempts to account for empirical violations of EU and
SEU theory. I will follow Kahneman and Tversky in presenting prospect theory as
a theory of preference between monetary gambles. It is clear from their discussion
that a generalization to nonmonetary gambles is consistent with their approach.

Prospect theory proposes that outcomes are perceived as gains or losses relative
to a neutral reference level. Let ¢, denote the reference level. The outcome x is a
gain if x>c, and a loss if x <¢,. Kahneman and Tversky assume that ¢, =0 in
many choice problems; ie., x is a gain if one receives money, and x is a loss if one
pays out money. They note, however, that if one expects to receive a large sum of
money, then it might be perceived as a loss to receive a lesser sum, and if one
expects to lose a large sum of money, it might be perceived as a gain to suffer a
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smaller loss. The value of ¢, can vary depending on the context or framing of a
choice problem (Kahneman & Tversky, 1979; Tversky & Kahneman, 1981).

By definition, a prospect is a three-outcome gamble (x, p; y, ¢) in which one
receives x with probability p, y with probability g, and ¢, with probability
1 — p—gq. It is assumed that p and ¢ are probabilities satisfying p + ¢ < 1. Prospect
theory postulates the existence of a scale V defined on prospects such that V preser-
ves the preference order over prospects. The value V{(x, p; y, q) is a function of the
subjective values of x and y, and a subjective weighting of p and ¢, but the com-
bination rule determining V{(x, p; y, q) is different depending on whether x and y
are greater or less than ¢o. f p+g<1,0r x 2 ¢y 2 y, or x< ¢y < y, then (x, p; y, q)
is said to be a regular prospect, and

Vix, p; y, )= n(p)v(x) + n(g)v(y), @)

where = is a function mapping probabilities to subjective weigths in the unit inter-
val, and v is a function mapping outcomes to real numbers. It is assumed that
n(0)=0, n(1)=1, and v(c,)=0.

If p+g=1 and either x> y> ¢, or x< y<cy, then (x, p; y, q) is said to be an
irregular prospect, and

V(x, p; y, ) = n(p)o(x) + (1 = =(p))v(y). 9)

Equation (9) and the plausible assumption that V(x, p; y, )= V(y, ¢; x, p) imply
that if p+q =1 and either y > x> ¢, or y < x<c¢y, then

V(x, p; ¥, 9)=V(, q; %, p)
= (1 —n(1 = p))v(x) + n(1 — p)ov(y). (10)

I will call the gambles that occur in (9) irregular prospects of the first kind, and the
gambles that occur in (10) irregular prospects of the second kind. Prospect theory
must distinguish among these three classes of gambles in order to account for the
Allais paradox, and assumptions of symmetry and betweenness that are discussed in
Miyamoto (1987).

Note that if y =¢,, then v(y)=0, so

V(x, p; y, q) =n(p)v(x) + =n(q)v(y)
=n(p)o(x)+ [1—n(p)]v(y).

Therefore the combination rule in (9) yields the value of V(x, p; y, ¢) when y=¢,.
Similarly, the combination rule in (10) yields the value of V(x, p; y, ¢) when x =¢,.
Thus, when x = ¢, or y = ¢, the value of V(x, p; y, g) remains the same regardless
of whether V(x, p; y, q) is computed by Eq. (8), the equation for regular prospects,
or Eq. (9) or (10), the equations for irregular prospects. In subsequent discussions, I
will include prospects of the form (x, p; y, 1 — p) where x =¢, or y =c, among the
irregular prospects. Although Kahneman and Tversky’s (1979) definition would
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classify this type of prospect as a regular prospect and not an irregular prospect,
calling it an irregular prospect is perfectly consistent with prospect theory.

Prospect theory implies that the generic utility representation, but not the IC
additive representation, is satisfied. To see this, let C be the set of outcomes that are
nonlosses, ie., C is the set of x such that x> c,. Choose any pe (0, 1) and define
T*(p), T (p), and T (p) by

T*(p)={(xpy):x, yeC} (11)
T~(p)={(xpy):x, ye C and xRy} (12)
T*(p)={(xpy)x, yeC and yRx}. (13)

T~ (p) and T *(p) are triangular subsets of gambles. Let >,- and >,. be the
restriction of >, to T~(p) and T *(p), respectively. Equation (9) implies that
(C, p, T~(p), 2,-) has a generic utility representation, and (10) implies that
(C, p, T*(p), =,+) has a generic utility representation. Kahneman and Tversky’s
(1979) analysis of the Allais paradox implies that there exist p such that
n(p)#1—n(1—p). If n(p) #1 —n(1 — p), then (C, p, T*(p), >,) does not have an
IC additive representation, because V(x, p; y,1—p) is given by (9) or (10)
depending on whether (xpy)eT ~(p) or (xpy)e T*(p), and a=n(p)#1—
n(1 — p) =a’. Similar arguments show that prospect theory implies the existence of
generic utility representations for triangular subsets of irregular prospects whose
outcomes are less than c¢,. Thus, if one assumes prospect theory and Kahneman
and Tversky’s analysis of the Allais paradox, there are numerous sets of prospects
of the form T ~(p) or T *(p) that have generic utility representations, even when
the full set T*(p) does not have an IC additive representation.

An axiomatization of the generic utility representation will facilitate the study of
the v function of prospect theory. To study the v function on nonlosses, one would
consider the preference order on triangular subsets of gambles with nonloss out-
comes. To study the v function on nongains, one would consider the preference
order over triangular subsets of gambles with nongain outcomes. Later it will be
demonstrated that multiattribute utility models can be formalized in the generic
utility framework. The formalizations permit the generalization of prospect theory
to multiattribute utility representations, using the fact that triangular subsets of
irregular prospects satisfy generic utility representations.

The Dual Bilinear Model

Luce and Narens (1985) have proposed a utility theory, called the dual bilinear
model, that is intended to account for many of the same violations of SEU theory
that motivated prospect theory (see also Narens & Luce, 1986). Their theory
applies to more general classes of gambles than prospect theory. The notation used
here is slightly different from that of Luce and Narens (1985).

For any event A, let (x 4 y) denote a gamble in which one receives x if 4 occurs
and y if A does not occur. The outcomes of gambles may themselves be gambles.
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For example, ((w B z) Ay) denotes a gamble in which one receives w if 4 and B
occur, z if A but not B occurs, and y if neither 4 nor B occurs. The different events
in a gamble are regarded as independent; thus ((x 4 y) Az) denotes a gamble in
which the two occurrences of A4 stand for independent experiments whose outcomes
are A or not 4. Let Q be a nonempty set of events. Let X be a nonempty set con-
sisting of pure outcomes and gambles. X is assumed to be closed under formation of
gambles in the sense that (x A y) € X whenever, x, ye X and A€ Q. Let >, denote
a binary relation on X. The structure (X, 2, =) is said to have a dual bilinear
utility representation iff there exists an interval scale U:X—Re and scales
St:Q2-[0,1] and S : Q2 — [0, 1] such that for any x, ye X and 4, Be 2,

wAx)z2g(yBz) if UwAx)zU(yBz) (14)
UxAy)=S*(A)UXx)+(1-S*(4)U(y) if x>gy (15)
U(x Ay)=U(x) if x~gy (16)
UxAy)=S " (A)U(x)+(1—-S(4))U(y) if y>gx. (17)

No assumptions are made concerning the relationship between the two probability
weighting functions, S* and S~. If S* and S~ are identical, then (14)-(17) are
called the bisymmetric utility representation, and if, in addition, S * is a probability
measure, then (14)-(17) is the SEU theory (Luce & Narens, 1985).

The prospect theoretic representation for nonlosses is a special case of the dual
bilinear model. Suppose that p+¢=1, and x and y are monetary gains that are
equal to or more preferred than c,. Then, prospect theory asserts that V(x, p; y, q)
satisfies (9) or (10) depending on whether x> y or y 2 x. If V(x, p; y,q)=U(xp y),
where U is the dual bilinear utility function, then V(x, p; y, q) also satisfies (15),
(16), or (17) depending on whether x> y, x=y, or x<y. The case where x>y
implies that S *(p)=n(p), and the case where x<y implies that S~ (p)=
1—n(1—p)=1-S*(1—p). Thus, the prospect theoretic representation for
nonlosses implies that the dual bilinear representation is satisfied subject to the
constraint that S*(p)+S (1 — p)=1. The prospect theoretic representation for
nongains implies the same constraint. The representation of gambles in prospect
theory is a special case of the dual bilinear representation within the domain of
nonlosses or, separately, within the domain of nongains. If S *(p)+S~(1—p)#1,
then preferences for nonlosses or nongains satisfy the dual bilinear model, but not
prospect theory. If x> ¢y > y, then (x, p; y, 1 —p) and (y, 1 — p; x, p) are regular
prospects, and  V(x, p; y, | — p) =n(p)v(x) + n(1 — p)v(y)==(1 - p)v(y) +
n(p)v(x) = V(y, 1 — p; x, p). If regular prospects also satisfy the dual bilinear model,
then =n(p)=S*(p), n(1—p)=1-S*(p), n(l—p)=S~(1-p), and =n(p)=
1—S~(1— p). With respect to regular prospects, neither prospect theory nor the
dual bilinear model is a special case of the other theory. If regular prospects satisfy
both theories, then n(p)+ n(1 — p)=1, which is not assumed by prospect theory,
and S*(p)+ S (1—p)=1, which is not assumed by the dual bilinear model.
Furthermore, if regular prospects satisfy both theories, S*(p)=mn(p)=S5"(p) so
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that the utility of regular prospects is given by an IC additive representation, which
is not assumed by either theory in its general form.

The present discussion has compared prospect theory and the dual bilinear
model in terms of the constraints that each theory imposes on the numerical
representation of subjective probability. An analysis of the qualitative properties of
preference that distinguish prospect theory from the dual bilinear model would be
of considerable interest, but it is beyond the scope of the present discussion.

It should be clear that if there exists a dual bilinear utility representation of
(X, 2, 25), then (X, 2, >;) contains many substructures that satisfy a generic
utility representation. Let C denote the pure outcomes in X, ie, C={xeX: if
x=(yAz)for any AeQ and y, ze X, then y=x=1z}. Define sets T*(4), T*(4),
and 7 (A4) by

T*(A)={(x A y) such that x, ye C},
T*(A4)={(x Ay) such that x, ye C and x> y} (18)
T-(A)={(x Ay) such that x, ye C and y > x}.

Let >, denote the restriction of >4 to T*(A), let >+ denote the restriction of
2 to T (A), and let > ,- denote the restriction of > to T ~(4). Obviously (15)
and (16) imply that (C, 4, T *(A4), = ,+) has a generic utility representation with
a=S*(4) and B=(1—-S*(4)). Similarly, (17) and (16) imply that
(C, A, T~(A4), =,-) has a generic utility representation with a=S"(4) and
B=(1—S7(A4)). But the combined structure (C, 4, T*(4), > ,) does not have an
IC additive representation if S *(A4) # S ~(A4), because in this case the coefficients of
U(x) and U(y) depend on the relative preference for x and y.

A conjoint measurement analysis of the generic utility representation contributes
to the analysis of the dual bilinear model in two ways. First, an axiomatization of
the generic utility representation provides a basis for multiattribute and parametric
generalizations of the dual bilinear model. These generalizations will be described
below. Second, standard formalizations of additive representations do not apply in
a straightforward way to the axiomatization of the dual bilinear model because they
are formulated in terms of the elements of a Cartesian product, while in general, the
dual bilinear representation is only additive on triangular subsets of gambles. Given
an axiomatization of the generic utility representation, one can seek additional
consistency conditions that allow the many substructures of the form
(C, A, T*(4), 2,,) and (C, 4, T~ (4), > ,_) to fit together into a dual bilinear
representation. I hope to explore this approach to the axiomatization of the dual
bilinear representation in a later work. I should mention that Luce (1986) has
described an alternative approach to the axiomatization of the dual bilinear model,
in which a relational structure of the form (C, 4, T *(4), = ,,) is extended formally
to a virtual structure on the full set T*(A4). I refer to the latter as a virtual structure
because the relations on T*(A) are created by definition and construction from the
primitive ordering >,, defined on T*(4). A comparative analysis of these two
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approaches to the axiomatic analysis of the dual bilinear model cannot be given
here.

MEASUREMENT FOUNDATIONS FOR GENERIC UTILITY THEORY

A measurement axiomatization of the generic utility representation (Definition 2)
will be presented in this section that generalizes the axiomatization of the IC
additive representation to an ordering that is only defined on a lower triangular set
of gambles. Obviously, the representation theory for an ordering of an upper
triangular set is analogous, so it will be omitted. The formalization will be
developed in terms of abstract sets and relations. The primitives need not be inter-
preted as a preference ordering over two-outcome gambles, but it will be obvious
that the primitives can be interpreted in this way. Once the main representation
theorem has been stated in abstract terms, the application of this theorem to the
existence and uniqueness of a generic utility representation will be formulated as a
corollary of the theorem.

Representation Theory for a Lower Triangular Additive (LTA) Representation

Let A be an arbitrary nonempty set. Pairs in 4 x 4 will be denoted by juxtaposed
symbols; e.g., if x, y € 4, then xye A x A. Let >, denote a binary relation on 4 x 4.
Although >, is assumed to be transitive, it is not assumed to be connected on
Ax A. We need to formulate properties of >, that distinguish the elements on
which >, is defined.

In the context of preference under risk, a riskless consequence can be interpreted
as a gamble with constant outcomes of the form (x p x). Hence a riskless preference
of x over y can be viewed as a preference for (x p x) over (y py), In the abstract
formalism, this relationship is represented by the condition xx >, yy. In addition,
we want to axiomatize a utility representation using a preference relation that is
only defined on gambles (wp x) and (y p z) where w is preferred to x and y is
preferred to z. Thus the abstract relation >, should be defined on precisely the
pairs wx and yz such that ww >, xx and yy >, zz. These considerations motivate
the following definition.

DEFINITION 3. Let 4 be an arbitrary nonempty set. A binary relation >, is said
to be a lower triangular relation on A x A iff the following conditions hold:

(i) Forany x, ye A, xx=, yy or yy =, xx.
(i) For any w,x, y,z€ A4, ww>,xx and yy>, zz iff either wx>, yz or
yzz, wx. v

Interpreted as statements about gambles, condition (i) asserts that the ordering
over certain outcomes is connected, and condition (ii) asserts that >, is only
defined on pairs wx and yz such that w is preferred to x and y is preferred to z.
Define P< A x A by the condition xy € P iff xx >, yy. Conditions (i) and (ii) imply
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that >, is a connected relation on P. The representation problem is formulated
using the concept of a lower triangular relation.

DEFINITION 4. Let A be a nonempty set, let >, be a lower triangular relation
on AxA. The pair (4, >,) is said to have a lower triangular additive (LTA)
representation iff there exists a function ¢: 4 — Re and a constant >0 such that

ax>,bz il $(a)+ id(x) > 4(b) + Ag(2) (19)

whenever a, b, x, ze A and ax, bze P.

The axiomatization of (19) is similar to that of the IC additive representation
(Krantz et al., 1971, Sects. 6.1, 6.2, and 6.11), except that the axioms are formulated
in terms of elements of P, rather than elements of 4 x 4. Conditions (i) and (ii) of
Definition 3 are Axioms1 and2 of the LTA axiomatization. Axiom 3 is the
assumption that >, is transitive. These three axioms imply that >, is a weak
ordering of P.

We will need an independence assumption. Conditions (20) and (21) below are
the standard independence assumptions restricted to pairs in P:

aw>,bw il ax>,bx (20)

yaz yb it za>,zb 1)

whenever aw, bw, ax, bx, ya, yb, za,zbe P. We will actually adopt a slightly
stronger independence assumption. The assumption, stated in the following
definition, implies that the orderings induced on the first and second components of
A x A are the same.

DEFINITION 5. Let A be a nonempty set, let >, be a lower triangular relation
on Ax A, and let P< Ax A be defined as above. The relation >, is said to be
independent provided that

ax =, bx iff yaz,yb (22)

whenever a, b, x, y€ A, and ax, bx, ya, ybe P.

Clearly (22) is implied by the LTA representation. It will be proved in Lemma 1
that (22) implies (20) and (21). Condition (22) is Axiom 4 of the LTA represen-
tation.

Axioms 5-7 of the LTA representation are taken from Krantz et al’s (1971)
axiomatization of additive conjoint measurement. Each axiom restricts an axiom
of Krantz ef al. to pairs in P. Axiom 5 is the Thomsen condition. Axiom 6 is a
restricted solvability condition. Axiom 7 is an Archimedean condition. To state the
Archimedean condition, we need to reformulate the definition of a standard
sequence in terms of elements of P.
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DEerFINITION 6. Let 4 be a nonempty set, and >, a triangular relation on 4 x 4.
Define P as above. Then, for any set N of consecutive integers (positive or negative,
finite or infinite), a set {a;e A:ie N} is said to be a standard sequence on the first
component iff for some b,x, ye A, the following holds: bx, bye P, bx £, by,
a;x,a;,,,y€P, and a;x~,a,,,y for every i, i+ 1€ N. The sequence is said to be
bounded iff there exist u, v, z€ 4 such that uz,vz,a,z€ P and uz >, a;z >, vz for
every i€ N. The definitions of a standard sequence on the second component and of a
bounded sequence on the second component are analogous, with elements of the form
xa; substituted for elements of the form a,x.

Axioms 8 and 9 of the LTA representation are technical axioms. Axiom 8 asserts
that there exist ax, bx, ay, by e P such that ax>_ bx and ax > ¢ @y. In Krantz et al.
(1971), this axiom is called the assumption that each component is essential. It
merely excludes the trivial case where all elements in A x 4 are equivalent. Axiom 9
asserts that if ax, bxe P and ax >, bx, then there exists ¢ such that cxe P and
ax >, cx >, bx; similarly, if ax, aye P and ax >, ay, then there exists z such that
aze P and ax>,az>,ay. When combined with the remaining LTA axioms,
Axiom 9 implies that the ordering induced by >, on each component is like the
rational numbers in the sense that it is free from empty gaps. Once the function ¢
has been constructed, it can be shown that ¢(4) is dense in an interval of real num-
bers in the sense that for any « and B in the interval, if « > g, then a > ¢(x) > g for
some x€ A.

The last axiom, Axiom 10, is also taken from Krantz et al’s formalization of the
IC additive representation. Whereas the previous axioms pertain to an additive
representation on a product of the form A4 x B, an additional assumption is required
if B=A and the scale on the second component of 4 x A is linear with respect to
the scale on the first component. Axiom 10 implies that if a,, a,, @,, ... is a standard
sequence on the first component and if the spacing between each a; and a,, , is suf-
ficiently fine, then a,, @, a,, ... is also a standard sequence on the second com-
ponent. The requirement that the spacing must be sufficiently fine merely reflects
the fact that if the spacing is too large, there may not exist elements on the other
component whose differences can be equated to the differences between the a; and
a;,1- Axiom 9 is used to establish the existence of standard sequences whose spac-
ing is arbitrarily fine. The linearity of the scale on the second component with
respect to the scale on the first component follows from the fact that standard
sequences on either component are also standard sequences on the other com-
ponent (provided that they are sufficiently fine-grained).

The preceding ten axioms are sufficient to imply the LTA representation. It is of
interest that only Axiom 9 does not correspond to an axiom in Krantz et al’s
axiomatization of the IC additive representation. The remaining axioms merely
restrict axioms taken from Krantz et al (1971) to elements of P A x A.
Axioms 1-3 assert that >, is a weak ordering of P. Axiom4 asserts that >,
satisfies independence. Axiom 5 asserts that >, satisfies the Thomson condition.
Axiom 6 is a solvability condition. Axiom 7 is an Archimedean condition. Axiom 8
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asserts that each component is essential, and Axiom 10 asserts that elements that
are equally spaced on one component cannot be unequally spaced when they are on
the other component.

The following definition summarizes the properties of a lower triangular additive
(LTA) structure. The theorem which follows asserts that any LTA structure
possesses an LTA representation.

DerFNITION 7. Let A be any nonempty set, and let >, be a binary relation on
AxA. Let P<Ax A be defined by xye P iff xx>, yy. The pair (4, >,) will be
called a lower triangular additive (LTA) structure iff Axioms 1-10 holds:

(1) For any x, ye 4, xx =, yy or yy =, xx.

(2) For any w,x, y,zed, ww>,xx and yy>,zz iff either wx>, yz or
yzz, wx.

(3) =, is transitive.

(4) For every a, b, x, ye A, if ax, bx, ya, ybe P, then ax >, bx iff ya>, yb.

(5) For any a, b, c, x, y, z€ A, such that ax, by, bz, cx, az, cy e P, if ax~, by,
and bz ~, cx, then az~, cy.

(6) For any a, b, c, x, y€ A4, if ax, by, cxe P and ax =, by >, cx, then there
exists de A such that dx~,by. For any a,b,x, y,z€ A, if ax,by,aze P and
ax 2, by >, az, then there exists w e 4 such that aw ~, by.

(7) Every bounded standard sequence is finite (see Definition 6).
(8) There exist a, b, y € A such that ax, bx, ay, by € P, ax >, bx and ax >, ay.

(9) Ifax, aye P and ax >, ay, then there exists z € 4 such that ax >, az >, ay.
If ax, bx € P and ax >, bx, then there exists c € 4 such that ax >, cx >, bx.

(10) Suppose that a,b,c,x, ye A and aw, bx, bw, cx, ya, zb, yb, zce P. If
aw ~, bx, bw ~, cx, and ya~, zb, then yb ~, zc. If ya~, zb, yb ~, zc, and aw ~ ,bx,
then bw ~, cx.

THEOREM 1. Let (A, =,) be an LTA structure. Then there exists a function
¢: A - Re and a constant 2> 0 such that

ax2gby  iff ¢(a)+4(x) = ¢(b)+g(y) (23)

for every a, b, x, y € A such that ax, by € P. Furthermore, if ¢’ A - Re and A’ >0 are
any other function and constant satisfying (23), then ¢’ =ad + f and A’ = 4, for some
constants o.>0 and p.

I will briefly sketch the strategy of proof. The complete proof is given in Appen-
dix L. For any x € 4, define U, and D, by

aelU, iff axeP

beD, iff xbeP.
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Mnemonically, U, and D, can be thought of as Up-x and Down-x, i.e., the set of
elements that are above x and below x, respectively. If axe P, let >,, denote the
restriction of >, to U,xD,. Lemma 3 establishes a crucial fact about substruc-
tures of the form (U,xD,, =..): if U, and D, are essential in the sense that there
exist b,ceU, such that bx #,cx and v,weD, such that av £, aw, then
(U,xD,, >=,.) satisfies the additive conjoint axioms of Krantz et al. (1971). Con-
sequently, (U,x D,, =,,) is an additive conjoint structure whenever U, and D, are
both essential.

Let K denote the set of all a € 4 such that U, and D, are both essential. Axioms 8
and 9 guarantee that K is nonempty, and indeed, K contains infinitely many
elements. Furthermore, if ae K, let S(a) denote the set of all pairs of scales that
represent the additive structure of (U,x D,, =,,). In other words, if (x, 7)€ S(a),
then x: U, — Re, 7: D, — Re, and y + t preserves the >,, ordering of U, x D,. The
next set of results strengthens the relationships between the additive substructures
of (4, =,).

Suppose that ae K and (x, t)e S(a) are chosen arbitrarily, and consider any
other be K. It is easy to show from the definition of K that U,n U, # & and
D,nD,# 5. Lemma 4 establishes that we can always find scales (x’,1')e S(d)
such that x(x) = x'(x) for every xe U,n U,, and 1(y)=1'(y) for every ye D,n D,.
If f and g are any functions such that f(x) = g(x) for every x in the intersection of
their domains, then I will write £ = g. In this notation, Lemma 4 asserts that for any
aek, (x, )€ S(a) and be K, there exist (', ') e S(b) such that y’' =y and ' =7

After showing that the sets y(U,) and t(D,) are dense in intervals of real numbers
for any ae K and (x, t) € S(a), I prove the central result in the proof of Theorem 1.
To formulate the result, consider first an analogous issue in the theory of the IC
additive representation. To derive the IC additive representation, one first shows
that there exists an additive representation for the ordering of 4 x 4, but then one
must show that the scales on the first and second components are linear with
respect to each other. In the present case, we do not have an additive representation
defined on every pair in 4 x A, but we can still establish the linear relationship
between the scales on the first and second components by considering relations
between additive substructures of the form (U,xD,, =,,). Suppose that g, be K,
bb >, aa, (y, t)€ S(a), and (y’, 7') € S(b). Note that U, is the domain of y, that D, is
the domain of 7/, and U, D, # . Lemma 7 establishes that whenever these con-
ditions hold, the scale y is linear with respect to ' on U,n D,. Loosely speaking,
the “upward” and “downward” scales of different additive substructures are linear
with respect to each other whenever the intersection of their domains is nonempty.
The lemma actually establishes a stronger result. For any ae K and (x, t) € S(a),
there exist constants A> 0 and v such that for any be K, if (x', ') e S(b), x=x', and
7', then 7'(x)= Ay(x) +v for every xe U,n D,, and 7(y)=Ayx'(y) +v for every
yeD,n U,. What is important is that a single choice of A and v determines the
linear relationship between (x, t) and (x’, ') when y =y’ and =1’

This last result can be further strengthened. It is possible to choose (x, 7)€ S(a)
such that v =0, for the constants 1 and v that relate (x, t) to (', v’). Thus, for any
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ac K, there exist (y,7)eS(a) and a constant A>0, such that for any beK, if
(x',7)eS(b), x=y', and r=1t’, then t'(x)=2Ax(x) for every xeU,nD,, and
1(y)=Ax'(y) for every ye D,n U, (Lemma 8). With this result it is possible to
define the scale ¢ of the LTA representation.

Choose any aeK, and choose (x,t)eS(a) and A1>0 that satisfy this last
relationship. Define ¢: 4 - Re by

_fax) if xx>,aa
¢(x)_{t(x)//l if aa>,xx.

It can be shown (Lemma9) that if ce K, (¢, t')eS(c), x= ', and t=1, then
¥’ (x)=¢(x) for every xe U, and 1'(y) = A¢(y) for every ye D,.

With these lemmas in hand, it is not difficult to show that ¢ and A satisfy the
LTA representation. The proof requires that one consider various cases. I will
describe only the most important of these cases here. Suppose that wx >, yz. If
there exists b € K such that w, ye U, and x, ze D,, then choose ()’, 7') € S(b) such
that y’ = y and ©' =1, where y and t were used to define . We then have wx >, yz
iff wx>y, pz iff Z(W)+7' ()20 (P)+7(2) il $(w)+A(x)>¢(y) +14(z). Of
course there may not exist b€ K such that w, ye U, and x, ze D,. For example, it
could be that ww>,xx>_ yy>,zz. But in this case it is easy to show that
d(w)=d(x)>d(y) = #(z), and hence, ¢(w)+ Ap(x)>¢(y)+ Ad(z). There are a
number of other cases to consider, but they all yield to similar kinds of argument.

Existence and Uniqueness of the Generic Utility Representation

Evidently the LTA structure constitutes an axiomatization of the generic utility
representation when the primitives of the LTA structure are interpreted as a
preference ordering on a triangular set of gambles. Here I will define a generic
utility structure that is isomorphic to an LTA structure, and then state the
representation theorem for the generic utility representation.

DerFINITION 8. Let C be a nonempty set of consequences, let T ~(p) be a set of
gambles of the form (x p y) where x, ye C, and let >,- be a binary relation on
T~ (p). Define a binary relation >, on C x C by the condition

axz,by  iff (apx)>,-(bpy) (24)

for any a, b, x, yeC. Then, (C, p, T (p), 2,-) will be called a generic utility
structure iff (C, >,) is a LTA structure in the sense of Definition 7.

Definition 8 defines the obvious translation from the generic utility primitives to the
LTA primitives. It would be routine to restate the axioms of the LTA structure
directly in terms of (C, p, T~ (p), =,-), but this formalization will be omitted for
the sake of brevity. In subsequent discussions, the issue will arise whether a struc-
ture of form (C, p, T ~(p), =,-) is a generic utility structure. In these discussions, I
will say that (C, p, T~ (p), =,-) satisfies or fail to satisfy axioms of the LTA struc-



372 JOHN M. MIYAMOTO

ture, rather than to speak more precisely of the question whether the associated
structure (C, >,) satisfies these axioms. This imprecision should cause no con-
fusion.

The following corollary to Theorem 1 establishes that any generic utility
structure has a generic utility representation.

CoroLLARY 1. Let (C, p, T~ (p), 2,-) be a generic utility structure. Then there
exist a function U: C — Re and constants >0 and >0 such that

(wpx)2,-(ypz) iff aU(w)+BU(x)>alU(y)+BU(z) (25)

whenever w, x, y,z€ C and (wp x), (ypz)e T ~(p). Moreover if U': C — Re, o' and
B’ are any other function and constants that satisfy (25), then o' =0, ' =1p, and
U =nU+7y for some t,n >0 and some 7.

The proof of Corollary 1 is immediate from Theorem 1. Since (C, >,) is a LTA
structure, there exist ¢: C —» Re and 1> 0 that satisfy the LTA representation (23).
Define U=¢, a=1/(1+1), and B=4/(1+4). Then, for any (wpx),(ypz)e
T (p),

wpx)2,-(ypz) iff wxz,yz
iff g(w)+A¢(x) = d(y) + 14(2)
iff aU(w)+ pU(x)2aU(y)+ BU(2),

s0 (25) is satisfied. If U": C - Re, o, and B’ are any other function and constants
that satisfy (25), then define ¢’ = U’, 2’ = f'/a’. We have

wx2,yz Ml (wpx),- (yp2)
iff AU w)+pUx)=2a’U(y)+p'U(2)
W)+ 19 (x) > 4(9) + 14(2)

for every w, x, y, ze C. Therefore by Theorem 1, ¢’ =n¢ +7y for some >0 and
some y. Thus U’ =nU + 7y by definition of ¢’. Furthermore by Theorem 1, A’ = 4, so
(B'/a’)=(B/x). Let T=p'/B. Then (B'/a’)= (zB/za), so &’ =ta. Thus Corollary 1 is
proved.

MULTIATTRIBUTE UTILITY THEORY IN THE GENERIC UTILITY FRAMEWORK

Multiattribute utility theory, as developed by Fishburn, Keeney, Raiffa, and
others, provides formalizations of additive and multiplicative utility models, and
also parametric utility models. The formalizations of these models are based on
functional equations that are derived from postulated isomorphisms between sub-
structures of a utility structure, and from the fact that the restrictions of the utility
scale to such substructures are interval scales. The generic utility theory provides a
framework for formalizing these utility models because it is possible to axiomatize
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the relevant classes of isomorphisms within the generic utility framework. I will
present formalizations of the two-factor additive and multiplicative utility models,
of the log/power family of utility models, and of the linear/exponential family of
utility models. Emphasis will be placed on the derivation of functional equations
from isomorphisms between utility substructures, and on the role of the interval
scale uniqueness of the utility scale. The purpose of the analysis is to show that the
generic utility theory permits the formalization of basic utility models, and also to
reveal why the structure of the generic utility theory is suited to the construction
and analysis of utility models.

Additive and Multiplicative Utility Models

Let C=C,xC, be a Cartesian product of nonempty sets. Pairs in C will be
denoted by juxtaposed symbols; thus, if ae C, and x € C,, then axe C. A function
U: C - Re will be said to be additive iff there exist functions ¢,: C; —» Re and
¢,: C, —» Re and a constant k such that

Ulax)=¢(a)+ $a(x) +k (26)

for any axe C. A function U: C — Re will be said to be multiplicative iff there exist
functions #,: C; —» Re and 6,: C, — Re and a constant k such that

U(ax)=0,(a)0,(x)+k (27)

for any ax e C. If U is an interval scale, then the constant k can be eliminated from
(26) and (27) by an admissible change of scale. It will be more convenient, however,
to retain k in the definition of the additive and multiplicative representations.

To formalize the additive and mutliplicative representations, we first need to
define utility substructures of a generic utility structure. It will simplify the dis-
cussion to develop all formalizations with respect to a lower triangular set of gam-
bles, even though an upper triangular set would serve equally as well. The structure
(C, p, T~ (p), =,-) will be denoted by the simpler expression (C, T~, >,).

DeFINITION 9. Let (C, T, 2,) be a generic utility structure. Then (D, Q~, >,)
is said to be a substructure of (C,T~, 2,)if D€C, Q" ={(apx)eT " :a,xeD},
and >, is the restriction of >, to Q7. A substructure (D, 0™, >,) is said to be a
utility substructure iff (D, Q~, >,) is a generic utility structure in the sense of
Definition 8.

It will simplify the discussion of utility substructures if we adopt a convention
regarding the gambles in 7~ and Q~. We have no need to discuss gambles that are
not elements of T ~. Therefore reference to a gamble will include an implicit
stipulation that it is in T~. For example, the expression (wpx)=,(ypz) is
equivalent to the assertion that (wpx), (ypz)eT~ and (wpx)=,(ypz).
Similarly, if x, y € D, then reference to (x p y) will implicitly include the stipulation
that (xpy)e @~. This convention avoids the need to state repeatedly that the
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gambles under discussion are elements of T~ or Q . In stating definitions, lemmas,
and theorems, however, I will explicitly state that the gambles in question are
elements of T~ or Q.

It is easy to see that any substructure of a generic utility structure satisfies the
universal axioms of the LTA structure. An axiom is universal if it states a condition
that must hold of every element of C. For example, Axiom 1 of Definition 7 is a
universal axiom because it asserts that (xp x)>,(ypy) or (ypy)=>,(xpx) for
every x, ye C. If x, ye D and (D, @7, >,) is a substructure of (C, T~, 2,), then
(xpx)z,(ypy)or (ypy)=,(xpx) because >, is the restriction of >, to Q~.
Hence (D, @, >,) also satisfies Axiom 1.

Since a substructure of a generic utility structure necessarily satisfies the universal
axioms of a generic utility structure, only the existential axioms (axioms that assert
the existence of elements with specific properties) need to be checked to determine
whether the substructure is a utility substructure. The existential axioms of the LTA
structure are restricted solvability (Axiom 6), the assumption that each component
is essential (Axiom 8), and the assumption that there always exist elements that are
strictly between nonequivalent elements (Axiom 9). Therefore a substructure
(D, @7, =,) is a utility structure if and only if it satisfies Axioms 6, 8, and 9 of the
LTA structure. The following lemma states this result formally.

LEMMA 10. Suppose that (C,T~, 2,) is a generic utility structure, and that
(D, Q~, =,) is a substructure of (C, T, >,). Then (D, Q", 2,) is a utility sub-
structure iff it satisfies Axioms 6, 8, and 9 of the LTA structure.

The proof of Lemma 10 was sketched above, so it will be omitted here.

The multiattribute utility analysis of additive and multiplicative models is based
upon classes of isomorphisms between utility substructures, defined as follows. Let
(C, T, >,) be a generic utility structure, where C=C, x C, is a Cartesian product
of nonempty sets. For any aeC, and xeC,, define substructures (axC,,
axT~, =,) and (C;xx, T~ xx, =,) by the conditions

axCy,={ayeC: yeC,},
axT~ ={(aypaz)eT:y,zeC,},
>, is the restriction of >,toaxT",
C,xx={bxeC:beC,},
T-xx={(bxpex)eT :b,ceC,},
and
>, is the restriction of >, to T~ xx.

Thus (ax C,, ax T, >,) is the substructure based upon elements whose first com-
ponent is constantly equal to a. Similarly (C; x x, T~ xx, =,) is the substructure
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based upon elements whose second component is constantly equal to x. The sets
ax C, and C, x x can be thought of as one dimensional subsets of C; x C,. I will
say that (C,T~, >,) is rich in one dimensional utility substructures iff
(axCy,axT~, 2,) and (C;xx, T~ xx, >,) are utility substructures for any
choice of ae C, and xe C,.

The assumption that (C, T~, >,) is rich in one dimensional utility substructures
is rather strong. It rules out the possibility of a multiplicative representation in
which some elements are mapped to 0. For example, if the utility function is mul-
tiplicative and c € C, is mapped to zero, then (cw p cx) ~, (cy p cz) for any choice of
w, x, ¥, ze C,. For such an element, (¢x C,,cx T ™, =_) violates the assumption
that each component of the LTA representation is essential (Axiom 8). Although
the present discussion could be generalized to take zero and negative elements into
account, the generalization will not be developed here (cf. Fishburn & Keeney,
1974, 1975; Krantz et al., 1971, Chap. 7).

Keeney and Raiffa introduced a property called utility independence that charac-
terizes utility functions that are either additive or multiplicative (Keeney,
1967, 1971; Keeney & Raiffa, 1976; Raiffa, 1969). Although their definition of utility
independence assumes that preferences under risk satisfies EU or SEU assumptions,
it is straightforward to reformulate utility independence in the generic utility theory.

DerFINITION 10. Let C=C, x C, be a Cartesian product of nonempty sets, and
let (C, T, >,) be a generic utility structure. Then C, is said to be utility indepen-
dent of C, iff for any x, ye C, and a, b, ¢, de C,, the following condition holds:

(axp bx), (cxpdx)e T~ and (ax p bx) =, (cx p dx) (28)
iff (aypby),(cypdy)eT~  and  (aypby)=,(cypdy).

Conversely, C, is said to be utility independent of C, iff for any a,be C, and
w, X, J, z€ C,, the following condition holds:
(awpax), (aypaz)e T~ and (aw p ax) > ,(ay p az)

29
iff (bwpbx), (bypbz)eT™ and (bwp bx) =, (by p bz). (2)

C, and C, are said to be mutually utility independent iff each is utility independent of
the other. :

The equivalences (28) and (29) imply the existence of families of isomorphisms
between utility substructures. For instance, define a function h,:(axC;)—
(bx C,) by h,(ax)=bx for xe C,. Then (29) implies that

(awpax)z,aypaz) il (hu(aw) p ha(ax)) 2, (hastay) p ha(az)).

Hence A, is an isomorphism of (¢ xC,,ax T, 2, )onto (bxC,,bx T, =,) for
any a, be C,. Similarly, the function j,.: (C; xw)— (C, x z) defined by j,.(cw)=cz
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for ce C, is an isomorphism of (C, xw, T~ xw, =,) onto (Cyxz, T~ xz, =,) for
any w,zeC,. The following lemma states the principal implication of utility
independence.

Lemma 11, Suppose that (C,xC,,T~, 2,) is a generic utility structure that
is rich in one dimensional utility substructures. Let U:C;xC,—>Re, a, and f
be a utility function and coefficients for a generic utility representation of
(CixCy, T™, =,). Then the following two conditions hold.

(1) If C, is utility independent of C,, then there exist functions ¢,: C, - Re,
F,:C,—>Re, and G,: C,— Re such that

Ulax) = F,(x) ¢:(a) + G,(x) (30)

Jor every ae C, and xe C,.

(ii) If C, is utility independent of C,, then there exist functions ¢,: C, = Re,
F,: C,—>Re, and G,: C, — Re such that

U(by) = Fx(b) $2(y) + G(b) (31)

Jor every be C, and ye C,.

Equations (30) and (31) exemplify a basic approach to model construction in mul-
tiattribute utility theory. The equations are a numerical representation of the
underlying isomorphisms determined by mutual utility independence of C, and C,.
These isomorphisms will be discussed after other analogous utility constructions
have been presented.

I will sketch a proof of 30 to show the relationship between utility independence
and the interval scale uniqueness of generic utility representations. The method of
proof was developed by Keeney and Raiffa (Keeney, 1967; Keeney & Raiffa, 1976;
Raiffa, 1969) and was analyzed in detail by Miyamoto (1983). If U, a, and f§ are the
scale and coefficients of a generic utility representation for (C, T~, >,), it must be
that for any xe C, and a, b, ¢, de C,;, we have

(ax p bx) =, (cx p dx)
iff (axpbx)=,(cxpdx)
iff aU(ax)+ BU(bx) =z aU(cx)+ pU(dx).

Therefore, for any x € C,, the restriction of U to C, x x is a generic utility represen-
tation of (C, xx, T~ xx, =,).

Choose an arbitrary fixed yeC,, and define functions ¢,: C; —+Re and
n:Cyxy—>C, by ¢,(a)=U(ay) and =n(ay)=a for every aeC,. Thus
¢,°n(ay) = Uay) for every aye C, x y. It must be that ¢,n, «, and B are the scale
and coefficients of a generic utility representation for (C, xy, T~ xy, =) because
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¢,°m is equivalent to the restriction of U to C, x y. For any x € C,, the function j,,
defined by j,.(ay) = ax for every ae C, is an isomorphism of (C;xy, T~ xy, =,)
onto (Cyxx, T~ xx, >,). Therefore U-j,, satisfies

(ayp by) =, (cy pdy)
it (Jyx(ay) pJyx(by)) 2 Uyxlcy) pys(dy))
iff  aU(j,.(ay)) + BU(j,=(by)) = aU(j,.(cy)) + BU(,(dy)).

Therefore U-j,, is another utility scale for (C; xy, T~ xy, > ). By the uniqueness
of the generic utility representation, there must exist # >0 and { such that

U-jyxlay) =né, nlay) +{ (32)

for every aye C, x y. But U(ax)=U"j . (ay) and n(ay)=a for every ae C,. Hence,
U(ax)=n¢(a) +{ (33)

for every ae C,.

The values of # and { that satisfy (33) are unique because there exist a, be C,
such that ¢,(a)# ¢,(b) (see Axiom 8 of the LTA structure). Since the values of 5
and { depend on the choice of x e C,, we can define F,: C, - Re and G;: C, — Re
by the conditions F,(x)=# and G,(x)={ for the n and { that satisfy (33). Then,

U(ax)=Fy(x) ¢:(a) + G,(x)

for every ae C, and x € C,. This proves part (i) of Lemma 11. The proof of part (ii)
is similar.

It can be proved that if U satisfies (30) and (31), then there exist constants
p, 7, 0, and o such that

Ulax) = p¢,(a) 45(x) + t¢:(a) + 04;5(x) + @ (34)

for every ae C, and x € C, (Keeney, 1967; Keeney & Raiffa, 1976; Miyamoto, 1983;
Raiffa, 1969). The proof that (30) and (31) imply (34) requires only that U be a
nonconstant function of its arguments in the sense that there exist a, b, ce C; and
x, y, z€ C, such that U(az)+# U(bz) and U(cx)# U(cy). No other assumptions of
EU, SEU, or the generic utility theory are required to prove this implication
(Miyamoto, 1983). The proof that (30) and (31) imply (34) will omitted for the
sake of brevity.

Equation (34) implies that U is either additive or multiplicative. If p =0, then
clearly U is additive. If p #0, then we can define 8,, 0;, and k by the conditions
8.(a)=pd(a)+ 0, O,(x)=¢,(x)+1/p, and k= (pw—10)/p. Substituting these
values in (34) yields that U(ax)=0,(a)8,(x)+k for every aeC, and xeC,.
Therefore U is either additive or multiplicative. It is not hard to show that the con-
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verse also holds: if U is either additive or multiplicative, then C, and C, must be
mutually utility independent (Miyamoto, 1983). These results are stated in the
following theorem.

THEOREM 2. Let C=C,xC, be a Cartesian product of nonempty sets, let
(C,T™, >,) be a generic utility structure that is rich in one dimensional utility sub-
structures, and let U: C — Re, a, and f be the scale and constants of a generic utility
representation for (C,T~, 2,). Then C, and C, are mutually utility independent iff
U is either additive or multiplicative.

Theorem 2 established conditions under which F is either additive or multiplicative,
but it does not distinguish between the two representations. Fishburn (1965) poin-
ted out within the EU framework that utility functions on a Cartesian product are
additive iff gambles with identical marginal probability distributions over attributes
are always equally preferred. This condition, called marginality or additive indepen-
dence, cannot be formulated in the generic utility framework because the generic
utility representation is restricted to a triangular set of two-outcome gambles with
fixed probability, and marginality is stated in terms of gambles with more outcomes
and probabilities. Furthermore, the application of this diagnostic assumes that one
knows the numerical values of the subjective weights associated with the
probabilities. Although these subjective weights might be estimated by a scaling
procedure, they would not be easy to estimate at the level of precision needed to
determine whether gambles have the same marginal subjective probability
distributions over attributes.

A possible diagnostic for the multiplicative utility model is a property called sign
dependence (Krantz & Tversky, 1971; Krantz et al, Roskies, 1965). A general
definition of sign dependence will not be given here (Krantz er al., 1971), but the
essential notion is that if attributes combine multiplicatively and some attributes
take on negative or zero values as well as positive values, then the ordering over the
remaining attributes will sometimes be inverted or made degenerate. If the
attributes combine additively, however, the ordering over any attribute will be the
same regardless of the chosen level of other attributes. It is possible to generalize
utility independence to take account of the reversals or degeneracy of order that
characterize sign dependence (Fishburn & Keeney, 1974). If a preference order is
sign dependent and also satisfies such a generalized utility independence, then it
must be multiplicative (Fishburn & Keeney, 1974, 1975). The converse is not true,
however, for a function can be multiplicative without any components ever taking
negative or zero values. Thus sign dependence is sufficient but not necessary for a
multiplicative representation.

Next I will formulate a condition that is necessary and sufficient for the additive
representation under the assumption that C; and C, are mutually utility indepen-
dent. Suppose that

(aw p bx) =, (cw p dx) . (35)
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for some a, b, ¢, de C, and w, xe C,. If U is additive, then (35) implies that

aU(aw) + BU(bx) = a(@,(a) + $o(w) + k) + B($,(b) + ¢2(x) + k)

Za(pi(c) + ¢:(w) + k) + B(:1(d) + 45(x) + k)
=alU(cw)+ BU(dx). (36)
Therefore ag,(a)+ Bo(b)>ad,(c)+ Bd,(d). But then we must have alU(ay)+
BU(bz) > aU(cy) + BU(dz) for any other y, ze C,. If (ay p bz), (cy pdz)e T, then
(ayp bz} 2, (cy p dz). (37)

Therefore, the additivity of U implies that if 4, b, ¢, deC,, w, x, y,zeC,, and
(aw p bx), (cw p dx), (ay p bz), (cy pdz)e T, then (35) implies (37).

This implication is also sufficient for the additive representation, provided that it
holds true for every choice of gambles in 7~. To see this, note that mutual utility
independence implies that U is either multiplicative or additive. I will show that if U
is multiplicative rather than additive, then there must exist cases where (35) is
satisfied and (37) is violated.

Assume that U is multiplicative. For any a e C, and x € C,, the restriction of U to
ax C, is the scale of a generic utility representation for (ax C,,axT~, >=,), and
the restriction of U to C,x x is the scale of a generic utility representation of
(Cyxx, T~ xx, 2,). By Lemma 6 of the LTA representation theorem, U(a x C,)
and U(C, x x) must be dense in intervals of real numbers. This shows that if U is
multiplicative as in (27), then 8,(C,) and 6,(C,) must both be dense in intervals of
real numbers. Therefore we can choose a, b, ¢, de C; and w, x, y, ze C, such that

0:(a)>0,(c)>0,(d)>08,(b)>0,  B:(w)>0,(x)>0,(y)>0,(z)>0,

and
ab,(w) _ 8,(d)—0,(6)  2:(y)
BOx(x)" B(a)—0(c)” POy(z)

Algebraic manipulation yields
alU(aw) + BU(bx) = a(0,(a) O,(w) + k) + B(6,(b) Ox(x) + k)
>a(0;(c) 0,(w)+k)+ B(0,(d) 05(x) + k)
=al(cw)+ BU(dx)
and (38)
aU(ay)+ BU(bz) = a(8,(a) 0,(y) + k) + B(8,(b) 0,(z) + k)
<a(flc) 6,(y)+k)+ B(0,(d) 6,(z) + k)
=al(cy)+ pU(dz).
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Furthermore, a, b, ¢, and d, and w, x, y, and z were chosen to satisfy the inequalities
01(a) 62(w)>0,(b) 0x(x), 8(c) 82(w)>0,(d) O5(x), 0,(a)0,(y)>0,(b)0b,(z) and
0,(c) 0,(y)>0,(d) 8,(z). Therefore (aw p bx), (cwp dx), (aypbz), (cypdz)eT ™,
and (aw p bx)>, (cw p dx) and (ay p bz) <, (cy p dz). Hence (35) is satisfied and
(37) is violated. Therefore, the condition that (35) implies (37) is both necessary
and sufficient for the additive representation, under the assumption of mutual
utility independence and the generic utility representation.

An analogous argument shows that U is additive iff (39) implies (40) whenever
the gambles are in 7 ~:

(aw p bx)>, (ay p bz), (39)
(ew pdx)>, (cy p dz). (40)

If U is multiplicative, there exist gambles in T~ such that (39) is satisfied and (40)
is violated.
We thus have the following corollary to Theorem 2.

COROLLARY 2. Let C=C,;xC, be a Cartesian product of nonempty sets, let
(C, T™, 2,) be a generic utility structure that is rich in one dimensional utility sub-
structures, let U: C— Re, a, and B be the scale and constants of a generic utility
representation for (C, T, >,), and suppose that C, and C, are mutually utility
independent. Then the following conditions distinguish the additive and multiplicative
representations.

(i) U is additive iff (35) implies (37) for every a,b,c,deC, and every
w, x, y, z€ C, such that (aw p bx), (cwp dx), (aypbz), (cypdz)eT~. U is mul-
tiplicative iff there exist a, b, c,de C, and w, x, y, z€ C, such that (35) is satisfied
and (37) is violated.

(i1) U is additive iff (39) implies (40) for every a,b,c,de C, and every
w, X, ¥, z€ C, such that (aw p bx), (ayp bz), (cwpdx), (cypdz)eT~. U is mul-
tiplicative iff there exist a, b, c,de C| and w, x, y, z€ C, such that (39) is satisfied
and (40) is violated.

Theorem 2 and Corollary 2 provide a diagnostic procedure for additive and mul-
tiplicative utility representations. If C; and C, are not mutually utility independent,
neither the additive nor the multiplicative utility representation is valid. If they are
mutually utility independent, then U is either additive or multiplicative, but it is not
yet determined which representation obtains. If C, and C, are mutually utility
independent, then either condition (i) or (ii) of Corollary 2 can be tested to deter-
mine whether U is additive or multiplicative. As far as I know, conditions (i)
and (ii) of Corollary 2 have not previously been formulated as diagnostics for
additivity.

In their discussion of polynomial conjoint measurement, Krantz et al. have said
that the additive and multiplicative representations are notational variants when
the attributes are not sign dependent (Krantz et al., 1971; Krantz & Tversky, 1971).
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This statement would appear to contradict the present results, where the additive
and mulitiplicative representations are distinguished even when sign dependence is
not present. This contradiction, however, is only apparent.

The generic utility representation implies an ordering of utility differences. Thus,
if aU(au)+ BU(bv) = alU(cw)+ BU(dx) and al(ey)+ BU(dx) = aU(fz) + BU(bv),
then

a(U(au) — U(ew)) = B(U(dx) — U(bv)) = o U( fz) — Uley)).

The difference U(au)— U(cw) can thus be ordered relative to U(fz)— Uley). If
U=¢,+ ¢, +k, then standard sequences on ¢, or ¢, are also equally spaced with
respect to the intervals in U. If U= 0,80, + k, then standard sequences on 8, or 6,
correspond to sequences of equal ratios in U—k. Of course, a sequence of equal
ratios in U —k will be a sequence of unequal intervals in U — k. The generic utility
representation allows one to distinguish whether the utility of attributes combines
additively or multiplicatively, because one can compare the ordering of utility
differences to the ordering of subjective differences or ratios on single attributes.

The polynomial conjoint measurement analysis of additive and multiplicative
models is based on an ordering of multiattribute outcomes, and not on an ordering
of gambles for such outcomes (Krantz ez al., 1971; Krantz & Tversky, 1971). Since
only the ordering of outcomes is under consideration, the theory does not deter-
mine an ordering of utility differences independently from the ordering of subjective
intervals or ratios on single attributes. In the absence of sign dependence, the
additive and multiplicative representations are notational variants when the order-
ing of outcomes is the only available empirical property and it satisfies indepen-
dence. If one observes an ordering of gambles as well as an ordering of outcomes,
however, the additive and multiplicative representations are distinguishable even
when sign dependence is not present.

Power and Exponential Utility Models

Let C be a one dimensional physical continuum like money or survival duration.
Elements of C are denoted by their physical measure, and I will assume that C is a
nonnegative real interval that is possibly bounded above. In other words, C is
isomorphic to a set of real numbers of the form {xeRe:e<x<w} where 0<e< w,
and o is finite or infinite. C is defined in terms of bounds ¢ and w to allow for cases
where the utility model is only posited of outcomes in an intermediate range of
values.

A utility function U:C— Re will be said to be a member of the family of
log/power utility functions iff either

U(x)=px’ +1 for some p#0, y+#0, and some real t (41)
or

U(x)=n(log x)+¢ for 70 and some ¢. (42)
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If (41) holds, then U is monotonic increasing iff p and y are both positive or both
negative; U is monotonic decreasing iff p and y are of opposite sign. If (42) holds,
then U is monotonic increasing or decreasing depending on whether # is positive or
negative. The logarithmic function is included in the same family as the power
functions because the preference ordering determined by the utility function
U(x) = x" approaches the preference ordering of a logarithmic utility function as y
approaches zero.

A utility function U: C — Re will be said to be a member of the linear/exponential
Sfamily of utility functions iff

Ux)=ve* "+  for v#0and 6+#0, (43)
or

U(x)=Ax+v for A#0 and some v. (44)

If (43) holds, then U is monotonic increasing if v and 6 are both positive or both
negative, and it is monotonic decreasing if v and 6 have opposite sign. If (44) holds,
then U is monotonic increasing or decreasing depending on whether A is positive or
negative. The linear utility function is included in the family of exponential
functions because the preference ordering determined by the utility function
U(x)=e% approaches the preference ordering of a linear utility function as 6
approaches zero.

I will first formalize the class of power utility models. Working in the EU
framework, Pratt (1964) showed that a utility function U is in the log/power family
iff U is twice differentiable, and — U"(x)/U’(x) = cx where c is a constant. It can be
shown that this condition is equivalent to asserting that U is twice differentiable,

Hm(—xU"(x)/U’(x)) exists as x — 0,
and

wpx)=2,(ypz) iff (swpsx)>,(sypsz) (45)

for any seRe* and w, x, y,ze C such that sw, sx, sy, sze C (Keeney & Raiffa,
1976). (Re* denotes the strictly positive real numbers). Condition (45) asserts that
preference between gambles is unaffected by a scalar multiplication of outcomes.
This condition has been interpreted to mean that the optimal gambling strategy is
determined only by the proportion of the total assets that the gamble outcomes
represent (Keeney & Raiffa, 1976; Pratt, 1964).

Here 1 will show that (45) also characterizes the log/power family of utility
functions within the generic utility theory. The analysis is based on the solution of a
functional equation investigated by Luce (1959). The use of functional equations to
formalize the log/power utility functions has two advantages. First, one can replace
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the assumptions that U is twice differentiable and that the limit of —xU"(x)/U’(x)
exists at 0 by the weaker assumption that U is continuous. Indeed, if one assumes
the validity of the generic utility theory, then one need only assume that U is
strictly monotonic. Second, the functional equations approach emphasizes the role
of interval scale uniqueness in the formalization of the log/power utility functions.
As I will argue below, the utility models discussed in this section are all formalized
in terms of isomorphisms that preserve interval scales.

Assume that (C, T ~, >,) is a generic utility structure, and let U: C —Re, o, and
B be the scale and coefficients of a generic utility representation. I will continue to
observe the convention that reference to a gamble (x p y) includes the assertion that
(xpy)eT~. For any se Re*, let C*s denote the set of x e C such that sxe C. Let
T*s denote the subset of T~ consisting of gambles with outcomes in C*s. Finally,
let >, denote the restriction of >, to T*s. Translated into the generic utility
framework, condition (45) can be stated as follows:

DerFmNTION 11, Let C be a nonempty interval of nonnegative real numbers. Let
T~ be a lower triangular set of gambles determined by the choice of some p € (0, 1),
and let >, be a binary relation on T ~. Then the ordering >, is said to be preserved
under scalar multiplication iff for any seRe* and w,x, y,zeC*s, if (wp x),
(ypz)eT, then (swpsx), (sypsz)e T~ and

(wpx)2,(ypz) il (swpsx)>,(sypsz). (46)

Condition (46) has essentially the same interpretation in the generic utility theory
as in SEU theory.

Let B={seRe: C*s is a nonempty interval}. B must be a nonempty interval
because C is a nonempty interval. If se B, then by Lemma 10, the substructure
(C*s, T*s, >.,) is a utility substructure of (C, T, >,) iff Axioms 6, 8, and 9 of the
LTA structure are satisfied by (C*s, T*s, >.,). These axioms are obviously true of
(C*s, T*s, =.,) if one assumes that U is continuous and strictly monotonic with
respect to the > ordering of C. Later I will show that if (C, T~, >,) is a generic
utility structure, then the assumption that U is strictly monotonic implies that U is
continuous. For the moment, let us assume that U is continuous and strictly
monotonic. Hence (C*s, T*s, >.,) is a utility substructure for any se B.

Note that if se B, then s~ '€ B. For any se B, let t=s"", and define a function
h,: C*s —» C*1 by h(x)=sx for any x € C*s. If the ordering >, is preserved under
scalar multiplication of outcomes, then A, is an isomorphism of (C*s, T*s, >.,)
onto (C*t, T*t, >.,). Clearly for any se B, the restriction of U to C* is a generic
utility representation for (C*s, T*s, >.,), because

(wpx)z.(ypz) if (wpx)=,(ypz)
iffl aU(w)+ BU(x)=aU(y)+ BU(z).
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But U-h, must also be a generic utility representaion for (C*s, T*s, >.,), because

(wpx)2e«(ypz) i (wpx)2,(yp2)
iff (swpsx)=,(sypsz)
iff aU(sw)+ BU(sx) = aU(sy) + BU(sz)
iff aU-h(w)+BU-h(x)=2aU-h(y)+ BU-h,2).

Since the restriction of U to C*s is an interval scale representation of
(C*s, T*s, >.,), there must exist constants >0 and ( such that
U-h(x)=nU(x)+{ for every xe C*s. But U-hy(x)= U(sx), so

U(sx)=nU(x)+¢ (47)

for every x e C*s. For any se B, the  and { in (47) must be unique because U is
nonconstant. Since the particular n and { in (47) are determined by the choice of
s€ B, we may define functions F: B— Re and G: B - Re by the conditions F(s)=1
and G(s)=/{ for the n and { in (47). Hence,

U(sx) = F(s) U(x) + G(s) (48)

for any se B and x € C such thaf

Luce (1959, Theorem 2) showea tnar e omy continuous solutions to (48) are
the logarithmic function or power functions. In the context of the generic utility
theory, it suffices to assume that U is strictly monotonic because the LTA axioms
imply that U(C) is dense in an interval of real numbers. If U is strictly monotonic
and U(C) is dense in an interval of real numbers, then U is continuous. The follow-
ing definition states a qualitative property that is equivalent to the assertion that U
is strictly monotonic.

DermNiTION 12, Let C be a nonempty interval of nonnegative real numbers. Let

T~ be a lower triangular set of gambles determined by the choice of some p € (0, 1),
and let >, be a binary relation on T~. Then the relation >, is said to be
strictly monotonic iff for every x,yeC, if x>y, then (xpy)eT~, and
(xpx)>,(xpy)>,(ypy)
It is routine to show that if U is the utility function of a generic utility represen-
tation and >, is strictly monotonic, then U is a strictly monotonic function with
respect to the > ordering of C. We can now state a representation theorem for
power or logarithmic utility functions. The proof of the theorem is based on
Eq. (48) and Luce’s (1959) Theorem 2.

THEOREM 3. Suppose that (C, T, =,) is a generic utility structure, where C is a
nonempty interval of nonmnegative real numbers and >, is strictly monotonic. Let
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U:C—Re, a, and f be the scale and coefficients of a generic utility representation.
Then, >, is preserved under scalar multiplication iff either U(x)=n(log x)+ ¢ for
some n#0 and some &, or else U(x)=px? + 1 for some p+#0, y+#0, and 1.

Proof. Since >, is strictly monotonic, U must be strictly monotonic. By
Lemma 6, the scale of a LTA representation is onto a dense subset of a real inter-
val. Hence U(C) must be dense in a real interval. Since U is strictly monotonic, it
must be continuous. Define sets B and C*s as in the preceding text. It was
demonstrated in the text that condition (46) implies that there exist functions
F:B—Re, G:B—- Re such that U(sx)=F(s)U(x)+ G(s) for every se B and
x € C*s. By Luce’s (1959) Theorem 2, U is either logarithmic or a power function,
i.e., either (41) or (42) holds. The converse claim that log or power functions imply
that >, is preserved under scalar multiplication is routine to prove. |

Theorem 3 characterizes the class of utility functions that are either power or
logarithmic, but it does not distinguish between positive powers, negative powers,
or logarithmic functions. Fagot (1963) has formulated diagnostic properties of these
three classes of representations using the notion of a subjective midpoint. To apply
Fagot’s criteria, one must note that the generic utility representation determines
utility midpoints as follows. Suppose q, b, ¢, y, z€ C satisfy

(@apy)~,(bpz), (bpy)~,(cpz), (ypz)>,(zp2) (49)

Although q, b, and c satisfying (49) might not exist for arbitrarily chosen y and z,
the LTA assumptions imply that they must exist for some choice of y and z,
because a, b, and ¢ are the first three elements in a standard sequence, and
the LTA representation theory implies that standard sequences exist. Then (49)
implies that oalU(a)+ BU(y)=alU(b)+ BU(z), aU(b)+ BU(y)=alU(c)+ BU(z),
and aU(y)+pU(z)>alU(z) + BU(z). Therefore Ufa)— U(b)=U(b)— U(c)=
(B/x)(U(z) — U(y)) 0. Hence U(a)# U(b)# U(c), and

U(b) = (U(a) + U(c))/2. (50)

Equation (50) asserts that b is the midpoint in utility between a and ¢. Fagot (1963)
pointed out that if a, b, and ¢ are any elements that satisfy (50), and U is either
power or logarithmic, then U(x) is a positive power of x iff b>\/;, U(x) is a
negative power of x iff b < \/a—(c, and U(x) is a logarithmic function of x iff b= ,/ac,
Thus, positive and negative power functions and logarithmic functions are dis-
tinguished by the relative magnitude of utility midpoints and geometric means of
stimulus values. Thus, Theorem 3 provides a representation theorem for generic
utility functions that are either power or logarithmic, and Fagot's conditions
diagnose which form of power or logarithmic functions is the case.

The axiomatization of the linear/exponential family of utility function is similar
to that of the log/power family, so the formalization will only be sketched. Pfan-
zagle formulated what he called a consistency axiom that is sufficient in com-
bination with other preference axioms to imply that utility is in the linear/exponen-
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tial family. Pfanzagl’s consistency axiom can be reformulated in the generic utility
framework as follows. Let (C, T, >,) be a generic utility structure, and let U, a,
and B be the scale and coefficients of a generic utility representation. For any s € Re,
let C+ s denote the set of x e C such that x+se C. Let T+ s denote the subset of
T~ with outcomes in C+s. Let >, denote the restriction of >, to T+s. Let V
denote the set of seRe such that C + s is a nonempty interval. It is clear that V is
nonempty because C is a nonempty interval. Furthermore s € V implies that —se V.
Pfanzagl’s consistency axiom can be reformulated in the generic utility framework
as follows:

DeFINITION 13, Let C be a nonempty interval of nonnegative real numbers. Let
T~ be a lower triangular set of gambles determined by the choice of some p e (0, 1),
and let >, be a binary relation on T~. Then >, is said to be preserved under trans-
lation iff for any secRe and w,c y,zeC+s, if (wpx),(ypz)eT™, then
(w+spx+s),(y+spz+s)eT™ and

(wpx)=2,(ypz) if (Wr+spx+s)2,(y+spz+s). (51)

I will sketch a proof that (51) implies that U is linear or exponential. The proof is
based on a functional equation studied by Aczel (1966). Pfanzagl based his proof
on a different functional equation from the one developed here.

Suppose that >, is strictly monotonic, and hence, that U is continuous. Then
(C+s, T+s, >,,) is a utility substructure for any se V. For any se V, let t= —s
and define h,: C+s—C+t by h(x)=x+s. By (51), h, is an isomorphism of
(C+s, T+s, =,,)onto (C+1, T+, >.,). Clearly the restriction of U to C+s is
the scale of a generic utility representation for (C+s, T+s, > ). But U-h, is also
a generic utility representation for (C+s, T+s, > ,,) because

(wpx)z,(ypz) il (h(w) ph(x)) 2, (h() P hs(2))
iff  aU(hy(w))+ BU(h,(x)) 2 aU(h(y)) + BU(h(2))

for any w, x, y, z€ C +s. But the generic utility representation is an interval scale,
S0

U-h(x)=nU(x)+r, (52)

for some >0, some 7, and every xe C+s. The constants # and t are unique
because C + s is a nonempty interval. Therefore we can define functions F: V' — Re,
G: V — Re by F(s)=n and G(s)=1 for the # and 7 in (52). Since x + 5= h(x), we
have

U(x + s) = F(s) U(x) + G(s) | (53)

for every se V and every xe C*s. Aczel (1966, Theorem 1, Sec. 3.13) showed that
the only solutions to (53) that are continuous on an interval are linear or exponen-
tial functions. Therefore we have the following theorem.
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THEOREM 4.  Suppose that (C, T~, >,) is a generic utility structure, where C is a
nonempty interval of nonnegative real numbers and >, is strictly monotonic. Let
U:C—>Re, o, and B be the scale and coefficients of a generic utility representation.
Then, >, is preserved under translation iff either U(x)=ve® + w for some v+#0,
8 +#0, and some w, or else U(x)=Ax+v for A+0, and some v.

Characterization of Utility Models by Isomorphisms of Utility Substructures

In the preceding sections, formalizations of additive and multiplicative utility
models and of log/power and linear/exponential utility models were presented.
These formalizations all share a common abstract structure. To understand this
structure, I will first describe the formalizations in abstract, set theoretic terms, and
then point out how the abstraction applies to the utility models presented in the
previous sections.

Suppose that (C, T—, >,) is a generic utility structure, and that U, a, and f are
the scale and coefficients of a generic utility representation for (C, T, >,). Let I’
denote a nonempty set of indices, and suppose that for each w e I', there exist utility
substructures (D, R, =,) and (E,,S,, =,) and an isomorphism f, of
(Dy,, R,, =,) onto (E,, S, =,). The restriction of U to D, is a generic utility
function for (D, R,,, =,), but so is U-f,,: D, — Re because f,, is an isomorphism.
Since generic utility representations are interval scales, there exist # # 0 and 7 such
that :

Ufu(x)=nU(x)+1 (54)

for every xe D,,. For any w e I', the constants n and t that satisfy (54) are unique
because U(D,,) is onto a dense subset of a real interval. Since n and t depend on the
choice of w e I', we can define functions F: I'—> Re and G: I - Re by F(w)=#n and
G(w)=r for the  and 1 in (54). Then,

U-fu(x) = F(w) U(x) + G(w) (55)

for every we I' and every xe D,,.

A functional equation of the form (55) played a central role in the formalization
of each of the classes of utility models described above. For example, in the for-
malization of additive and multiplicative utility representations, let I'=C, x C,,
and define j,,: (C, x y) - (C; x x) by j,(ay) = ax for every ae C,. The assumption
that C, is utility independent from C, implies that j,, is an isomorphism of
(Cyxy, T~ xy, 2, onto (C;xx, T~ xx, >,). Choose any ye C,, and define ¢,
by ¢,(a) = U(ay). Then,

Ulax) = U-j,.(ay) (56)
=F(y, x)U(ay) + G(y, x) (57)
=Fi(x) ¢,(a) + G,(x), (58)
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where F,(x)=F(y, x) and G,(x)= G(y, x) for every x. The equivalence of (56) and
(58) simply restates Eq. (30), the central result of Lemma 11 (i). The equivalence of
(56) and (57) follows from the abstract argument underlying Eq. (55), and the
equivalence of (57) and (58) is simply a definition of notation. A similar analysis
shows that Eq. (31), the central result of Lemma 11 (ii), is also derived by the
argument underlying Eq. (55).

In the formalization of the parametric utility models, the assumption that the
preference ordering >, is preserved under scalar multiplication implies that for any
s and t=s""', the structures of the forms (C*s, T*s, =.,) and (C*t, T*1, >.,) are
isomorphic under the transformation f(x)=sx. Similarly, the assumption that the
preference ordering >, is preserved under translation implies that for any s and
t= —s, the structures (C+s, T+s, =,,) and (C+1¢t, T+, >,,) are isomorphic
under the transformation g.(x)=x+s. These isomorphisms lead to functional
equations, (48) and (53), whose proofs are also based on the abstract argument
underlying Eq. (55).

Each of the utility models analyzed here was axiomatized in terms of an empirical
property (utility independence, invariance of preference under scalar multiplication
or translation) that implied isomorphisms between utility substructures. Functional
equations like (55) were inferred from the existence of the isomorphisms. It was
then found that the utility models were the unique solutions of these functional
equations, (30), (31), (48), and (53). It is important to note that the solutions of
these equations depend only on the form of the equations, and not on any utility
theoretic assumptions from which the equations were derived. Therefore to for-
malize these models, it was only necessary to provide a basis for the derivation of
Egs. (30), (31), (48), and (53). This basis consisted of (i) a specification of the
relevant utility substructures, (ii) an axiomatization of the appropriate
isomorphisms between substructures, and (iii) the existence of an interval scale of
utility whose restrictions to such substructures are also interval scales. The generic
utility theory provides a weak, but sufficient basis for axiomatizing these utility
models because it fulfills these three requirements.

Empirical Applications of the Generic Utility Theory

Miyamoto and Eraker (1988) tested a utility independence assumption in the
generic utility framework. They studied a two-attribute utility problem, where the
attributes were duration of survival and health quality during survival. Medical
patients were asked to judge durations of certain survival that were equivalent in
preference to an even-chance gamble for survival duration. For example, a subject
might be asked to state a duration X such that surviving X years for certain would
be equal in value to owning the gamble (20 years .5 2 years). Subjects were instruc-
ted to assume that all of the survivals in the choice would be accompanied by the
same specified health state, and to assume that health state was approximately con-
stant during the period of survival. The duration X satisfying this preference
equivalence will be called the certainty match of (20 years .5 2 years).
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The utility independence of survival duration from health quality was tested as
follows. Under one condition, subjects were instructed to assume that the certainty
matches and gamble outcomes were associated with excellent health. Under a
second condition, the same subjects were instructed to assume that the certainty
matches and gamble outcomes were associated with “poor health,” where a precise
definition of poor health was given in terms of health problems that the subjects
(medical patients) had been experiencing during the period prior to the experiment.
The stimulus gambles had the form (X.5 Y) where X >, Y. Thus the stimulus gam-
bles were elements of a lower triangular set. It was found that, with the exception of
a small minority of subjects, the certainty matches produced by subjects were
independent of assumed health state. This result supports the utility independence
of survival duration from health state.

Miyamoto and Eraker (1988) did not test the utility independence of health state
from survival duration. Instead, they noted that for most individuals, survival
duration and health state are sign dependent attributes. To see this, note that
preference for survival duration is an increasing function of duration when desirable
health states are assumed, but when the assumed health state is extremely
undesirable, less duration can be preferable to more; i.c., some health states are
regarded as worse than death. Furthermore, when survival duration is zero, the
preference ordering over health state degenerates—all health states are equally
desirable or undesirable when immediate death (duration=0) is the associated
duration. These patterns of preference are characteristic of sign dependence (Krantz
& Tversky, 1971). 1t is possible to show that if survival duration and health quality
are sign dependent, and if survival duration is utility independent of health quality,
then the utility function must be multiplicative (Miyamoto, 1985). Empirical
support for the utility independence of survival duration from health quality thus
supports the hypothesis that the utility of survival duration and health quality is
multiplicative.

Miyamoto and Eraker (in press) tested axioms for the log/power and
linear/exponential families of utility functions. As in the previous study, they had
subjects judge the certainty matches of even-chance gambles for survival duration of
the form (X .5 Y), where X' >, Y. Subjects were instructed to assume that health
state was approximately constant and very good. In terms of certainty matching,
the assumption that the preference ordering is preserved under scalar multiplication
asserts that X is the certainty match of (¥ .5 Z) iff sX is the certainty match of
(sY .5 sZ). Similarly, the assumption that the preference ordering is preserved under
translation asserts that X is the certainty match of (Y .5 Z) iff X + s is the certainty
match of (Y+s5.5Z+s). Of 38 subjects, 29 (76%) violated the assumption that
certainty matches are preserved under scalar multiplication and 22 (58 %) violated
the assumption that they are preserved under translation. Eighteen subjects (47 %)
violated both assumptions. It is clear that neither parametric class of models is
generally valid for the utility of survival duration.

An interesting feature of this experiment was that an attempt was made to deter-
mine each subject’s reference level for survival. Recall that prospect theory
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postulates that outcomes are coded as gains or losses. By definition, the reference
level is the boundary between gains and losses. Miyamoto and Eraker (in press)
asked subjects to state a duration ¢, such that any survival greater than ¢, would
be regarded as a gain, while any survival less than ¢, would be regarded as loss.
Subjects appeared to find the question meaningful after some explanation. Deter-
mination of a subject’s reference level was important for the analysis in terms of
prospect theory because the reference level determines which gambles in the
stimulus set are evaluated as regular or irregular prospects.

A subset of subjects gave reference levels that were either greater than the out-
comes of every gamble in the stimulus set or else less then the outcome of very gam-
ble in the stimulus set. According to prospect theory, these subjects should evaluate
every stimulus gamble by the same combination rule, because the stimulus gambles
had the form (X .5 Y) where X >, Y>, ¢, for every gamble , or ¢4>, X >, Y for
every gamble. As demonstrated in the Introduction, prospect theory implies that
the preferences of such subjects should satisfy a generic utility representation. There
were 31 such subjects, of whom 24 (77 %) violated the assumption that certainty
matches are preserved under scalar multiplication, 21 (68%) violated the
assumption that certainty matches are preserved under translation, and 17 (55%)
violated both assumptions. Therefore the parametric utility models are also
generally rejected for the subset of subjects whose data can be interpreted from the
standpoint of prospect theory.

The last result is interesting for it shows how one can test parametric utility
hypotheses in prospect theory. Tests of parametric utility hypotheses in the generic
utility framework can be interpreted as tests within prospect theory for any subject
whose reference level is outside the range of the gamble outcomes. Miyamoto and
Eraker (1988) also attempted to determine individual subject reference levels in the
test of the utility independence of survival duration from health quality. They
distinguished a subset of subjects for whom every stimulus gamble was an irregular
gamble. The majority of such subjects (11 of 17) satisfied the utility independence of
survival duration from health quality.

The examples illustrate the fact that if a utility model is tested within the generic
utility framework, the test is interpretable from the standpoint of any theory that
implies the validity of the generic utility representation. Thus, the tests of utility
models cited above are interpretable in terms of EU, SEU, SWU, NASEU, and
ASEU theories, and the dual bilinear model. Furthermore, the results for subjects
whose reference levels were outside the range of stimulus gamble outcomes were
also interpretable from the standpoint of prospect theory.

CONCLUSIONS
There are three major problems in the theory of preference under risk. The first is

to analyze the mental or subjective representation of probabilities and uncertainties.
The second is to investigate the subjective value of outcomes or consequences. The
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third is to describe how these two components are integrated in judging the worth
of gambles or in choosing between gambles. The main purpose of the generic utility
theory is to provide a framework within which the second question, the subjective
value of outcomes, can be addressed. The generic utility theory was formulated to
avoid rather than to solve problems arising in the first and third domains. Of
course, one would rather have a valid theory that accounted for preference in a
great variety of gambling situations, but empirical psychological studies have
revealed patterns of preference behavior that are difficult to incorporate into
existing theories (Grether & Plott, 1979; Kahneman & Tversky, 1979, 1981; Slovic
& Lichtenstein, 1983). The primary virtue of the generic utility theory is that it is
weak enough to be implied by many theories of preference under risk, yet it is
strong enough to formalize important utility models. Theoretical and empirical
results developed within the generic utility framework are interpretable from the
standpoint of stronger theories without being limited to the assumptions of these
theories. The generic utility theory thus helps to disentangle questions of utility
from issues concerning the integration of subjective probability and utility. It is
hoped that the formulation of a generic utility theory will encourage theoretical and
applied investigations of utility by providing testable formulations of utility models
that are neutral (or as neutral as possible) with respect to the representation of
subjective probability.

I have demonstrated that additive and multiplicative representations and
parametric representations can be axiomatized in the generic utility framework.
Although the additive and multiplicative formalizations were limited to the two-
attribute case, the generalization to arbitrarily many attributes is straightforward.
Furthermore, when more than two attributes are considered, a new kind of
representation called a multilinear utility function can also be derived from utility
independence assumptions (Keeney & Raiffa, 1976). The formalization of additive,
multiplicative, and multilinear utility functions of arbitrarily many attributes is like
the two-attribute case in that the different representations are characterized by
classes of isomorphisms between utility substructures (Miyamoto, 1983). The
generic utility theory provides a framework for these axiomatizations because the
relevant utility substructures and isomorphisms are definable within the generic
utility theory and because the utility measure of the generic utility representation is
an interval scale.

The last point deserves some elaboration. Clearly, utility independence
assumptions and the axioms for the parametric utility models could be introduced
into prospect theory or the dual bilinear model without developing the present
axiomatization of the generic utility theory. In the absence of the generic utility
theory, however, it would not be apparent whether these assumptions imply the
corresponding utility models. Each of these assumptions implies the existence of a
family of isomorphisms between substructures of an overall preference structure,
where the basic set of these substructures is a triangular set of gambles. If the
restriction of the utility function to these substructures is an interval scale, then com-
positions of isomorphisms with the utility function satisfy functional equations that
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characterize utility models (see Egs. (54) and (55)). Here we see the critical impor-
tance of the interval scale uniqueness of the generic utility representation. Without
the generic utility theory, one cannot establish that the restriction of a utility
measure to a triangular set of gambles is itself an interval scale, and without this
condition, one cannot develop the functional equations that characterize the utility
models formalized here. The uniqueness theorem of the generic utility theory is cen-
tral to the introduction of multiattribute and parametric utility models into
prospect theory and the dual bilinear, at least insofar as the formalization of these
models is based on functional equations of the form (55), because the derivation of
these equations requires that restrictions of the utility scale to triangular subsets of
gambles be interval scales. It has not previously been shown how to formalize
additive and multiplicative utility models and parametric utility models in prospect
theory or the dual bilinear model. As demonstrated here, the formalizations are
routine if we consider generic utility representations embedded within the stronger
theories.

Finally, I should mention the possibility that the generic utility theory may
provide a useful tool in the axiomatic analysis of the dual bilinear model. The stan-
dard additive conjoint measurement theory (Krantz, 1964; Krantz et al,, 1971; Luce
& Tukey, 1964) does not apply in a simple way to this problem, because it for-
malizes an additive representation on a Cartesian product X x X, while the dual
bilinear model postulates different additive representations for the lower triangle
and upper triangle of a Cartesian product. The generic utility theory provides a step
toward an axiomatization of the dual bilinear model. It axiomatizes the special case
of the dual bilinear model where the uncertain event is held fixed, and the
preference order is restricted to a lower or upper triangle of two-outcome gambles
for simple outcomes (ie., not gambles for gambles). There are at least two direc-
tions in which this case must be generalized in the study of the dual bilinear model.
First, if uncertain events are allowed to vary, it is necessary to formulate conditions
that imply the consistency of the utility functions and subjective probability
representations across different choices of events. Second, it is necessary to
represent the utility of gambles whose outcomes are themselves gambles. No
attempt will be made to develop the requisite theory here (cf. Luce, 1986), but I
would suggest that the generic utility theory appears to be suited to the task of
axiomatizing the dual bilinear model because the dual bilinear representation can
be viewed as a system of interlocking generic utility representations.

APPENDIX I: PROOF OF THEOREM 1

An informal sketch of the proof was presented earlier in the paper. The formal
details are given here.

LEmMma 1. Let (A4, >,) be an LTA structure, and let P be defined as in
Definition 1. Then, >, is a weak ordering of P.
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Proof. Choose any ax,byeP. By definition of P, aa>,xx and bb>, yy.
Therefore either ax >, by or by >, ax, according to Axiom 2. Hence >, is connec-
ted on P. Note that if ax >, by for any a, b, x, y€ A4, then aa>, xx and bb >, yy
from Axiom 2. Hence ax, bye P. So >, is defined precisely on the pairs in P. By
Axiom 3, >, is transitive, so >, is a weak ordering of P. |

Lemma 2. If (A, 2,.) is an LTA structure, then the following five conditions hold:

(i) For any a, b, x, ye A, if ax, ay, bx, by € P, then ax >, bx iff ay >, by.
(i) For any a, b, x, y€ A, if ax, ay, bx, by € P, then ax >, ay iff bx >, by.
(i) For any a, b, xe A, if ax, bx e P, then ax >, bx iff aa >, bb iff abe P.
(iv) For any a, b, ye A, if ya, ybe P, then ya>, yb iff aa>, bb iff abe P.
(v) Forany a,b,ce A, if ab, bce€ P, then ace P.

Proof. To prove (i), choose any a, b, x, y€ A such that ax, ay, bx, bye P. Let
w=a if abe P, and w = b otherwise. In either case wa, wb € P. By Axiom 4, ax >, bx
iff wa>,wb iff ay>,by. To prove (ii), choose any a,b,x, yeA such that
ax, ay, bx, bye P, and let c=y if xy e P, and ¢ = x otherwise. Then, xc, yce P, and
by Axiom 4, ax >, ay iff xc>, yc iff bx >, by.

To prove (iii), first suppose that ax, bxe P and ax >, bx. I want to show that
aa >, bb and ab € P. Suppose bb >, aa. Then bae P. Applying Axiom 4 to ax >, bx
yields ba >, bb and aa >, ba. Thus aa >, bb, contradicting bb >, aa. Thus aa >, bb.
Also, abe P by definition of P. Hence one direction of the implication is proved.
Now suppose that ax, bx, abe P. Then aa >, bb by definition of P. If bx >, ax, then
ab>, aa by Axiom 4, and bb >, ab by part (i), so bb >, aa, contradicting aa >, bb.
Hence ax >, bx, and (iii) is proved. The proof of part (iv) is similar. To prove part
(v), if ab, bc € P, then aa >, bb >, cc by definition of P. Hence ac € P by transitivity
of >, (Axiom 3). |

For any x € A, define subsets U, and D, of 4 by the conditions

beU, iff bxeP
yeD, iff xyeP.

Mnemonically, U, and D, can be thought of as Up-x and Down-x, respectively,
ie., the elements above x and below x in the ordering on A4 induced by >,. Define
a subset K of A by the condition x e K iff there exist b, ce U, and y, ze D, such that
bx 4, cx and xy #,xz. K is the set of xe A such that neither U, nor D, is
degenerate in the ordering induced by >,. If ax € P, then let >,, denote the restric-
tion of >, to U,x D,. The following lemma shows why the set K is important.

LeMMA 3. The set K defined above is nonempty. Moreover, if a, xe K and axe P,
then the structure (U,x D, >,.) is an additive conjoint structure in the sense of
Definition 6.7 of Krantz et al. (1971, p. 256).
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Proof. To show that K# ¥, Axiom 8 implies that there exist g, b, x, y€ 4 such
that ax, bx, ay€ P, ax >, ay, and ax >, bx. Then Lemma 2 (iv) implies that xy e P,
so Lemma 2 (v) implies that by € P. Hence Lemma 2 (ii) implies that bx >, by. Also,
ax>,bx implies ab>,bb by Axiom4 and Lemma 2 (i). Therefore be K by
definition of K, so K# (.

Let (F1)-(F6) denote the six axioms of Definition 6.7 of Krantz er al. (1971). 1
first show that Axiom F1 is satisfied. If bze U,x D,, then ba, xze P. Hence
ax, bx, bze P by Lemma 2 (v). Thus U,x D, = P. Hence >, is a weak ordering of
U,x D, because >, is a weak ordering of P. Thus F1 is satisfied. The >, relation
satisfies independence (F2) and the Thomsen condition (F3) because Lemma 2 and
Axiom 5 assert that these conditions are satisfied by pairs in P, and U,x D, < P. To
establish solvability (F4), suppose that bq, cp, dge U,x D, and bq >, cp=.. dq.
Then bg >, cp >, dg by definition of >,,. By Axiom 6 there exists e€ 4 such that
eq~,cp>,dg. Hence ee>,dd by Lemma 2 (iii). Since deU,, dd>,aa. Thus
ecU,, and eqe U,x D .. An analogous proof shows that if bp, cq, bre U, x D, and
bp >, cq =, br, then there exists s€ D, such that bs~,, cq and bse U, x D,. Thus
Axiom F4 is satisfied. The Archimedean property (F5) follows from Axiom 7 of
Definition 6 and the definition of >,,. Axiom F6 (each component is essential)
follows from the fact that ¢, xe K. |

As a special case of Lemma 3, if ae K, then (U, x D,, >,,) is an additive conjoint
structure. It will be useful to adopt a special notation for the additive scales for such
a structure. If ae K, let S(a) denote the set of all pairs of functions that constitute
additive scales for (U,xD,, =,). In other words, (x, t)e S(a) iff y: U,— Re,
7. D,— Re, and

bxz,cy T x(b)+1(x)>x(c)+(y)

for every bx,cyeU,xD,. Suppose that we choose an arbitrary ae K and
(x, 7)€ S(a). The next lemma establishes that for any be K, there exist scales
(x', T') € S(b) such that y(x)=y’'(x) for every x in the domains of both y and y’, and
t(y)=1'(y) for every y in the domains of both 7 and 7".

LemMa 4. Let ae K and scales (x, t)€ S(a) be chosen arbitrarily. Then for any
be K, there exist scales (x', t')e S(b) such that y(x)=yx'(x) for every xeU,nU,,
and ©(y)=1'(y) for every ye D,n D,.

Proof. Choose any be K and (y’, t') € S(b). Consider first the case where bae P.
Note that U, = U,, and D, 2 D,. Therefore wx =,, yz iff wx 2, yz iff wx >, yz for
any w, ye U, and x, ze D,. Therefore

WX =, yZ it y(w)y+t'(x)z2x(y)+1(2)
iff  x(w)+t(x) 2 2(y) +2(z)
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for any wx, yze U,x D,. Then (x| U,, ) and (¥, t’| D,) are two pairs of additive
scales for (U, xD,, >,,). By the uniqueness of the additive conjoint representation,
there exist constants ¢ >0, f,, and B, such that y|U,=ay’+ B, and =0t + f,.
Let " =ay'+ B, and t"=at’' + B’ Then (1", ") e S(b), and x"(x) = y(x) for every
xeU,nU,, and t"(y)=1(y) for every ye D,n D,. This proves the lemma for
the case where bae P. The proof for the case where abe P is similar and will be
omitted. |

It is useful to have a special notation for functions that are related as in
Lemma 4. If f and g are any functions, then f= g will denote that f(x)= g(x) for
every x in the intersection of their domains. In this notation, Lemma 4 asserts that
for any ae K, (x, ©) € S(a), and be K, there exist (', ') € S(b) such that y=y’, and
X1,

The next two lemmas show that if ae K and (y, t) € S(a), then x(U,) and ©(D,)
are dense in intervals of real numbers. (A set X is dense in the interval J iff for every
¥, z€J, if y >z, then there exists x € X such that y>x>z.)

LeMMA 5. Let ae K and (x, t) € S(a). Then for any ¢ >0 there exist b,ce U, and
x, ye D, such that £ > |y(b)— x(c)| >0, and ¢ > |t(x)—t(y)| > 0.

Proof. I will only give the proof for y. The proof for 7 is similar. By definition of
K, there exist b,,ce U, such that ca>, b,a. Using Axiom 9, we can choose a
sequence b,, b, by, ... satisfying ca>, b, ,a>, b,a for every integer i > 0. Since y is
a scale for (U,xD,, =,,), we have y(c)> x(b,, ) > x(b,) for every i>0. But then
the sequence (x(b,));. o is strictly increasing and bounded above by yx(c). Let d
denote its least upper bound. Then for any ¢ > 0, there exists an integer k such that
e>d—x(b,)>0 for every n> k. Hence ¢ > x(b, ) — x(b,) >0 for every n>k. |}

LEMMA 6. Let ac K and let (x, 7)€ S(a). (1) If X is the smallest interval contain-
ing x(U,), then y(U,) is dense in X. (ii) If Y is the smallest interval containing (D ,),
then 1(D,) is dense in Y.

Proof. 1 will prove part (i). The proof of part (ii) is similar. Choose any u, ve X
such that u>v. I need to show that there exists y(b)e[v, ] for some be U,.
Choose c, d, € U, such that y(c)>u and v > x(d,). Such ¢ and d, must exist because
otherwise X would not be the least interval containing y(U,). Let e=u—v. By
Lemma4, we can choose w,xeD, such that &>7(w)—1t(x)>0. Then
x(e)—x(d)) > t(w)—t(x) > x(d,)— x(d,), so x(c)+1(x)> x(dy)+ (W) > x(d)+7(x).
Hence, cx>,, d\w>, d,x, so cx>,d,w>,d,x. By Axiom 6, there exists d, such
that d,x ~, d, w. Therefore d,x ~ ., d,w, so x(d,)— x(d,) =1(w) —1(x). If x(d,) <0,
we can repeat the process to find d, such x(d,) — x(d,) = t(w) — 1(x). Let (d,);.., be
a sequence constructed as above such that y(d,, ,)— x(d;)=1t(w)—t(x) for every i.
By Axiom 7 the sequence (d,);. , is finite. Let d, be its last member. We must have
x(c)—x(d,) <t(w)—1(x), for otherwise we could find d,,, to continue the
sequence. Therefore & > y(c)— x(d,) = 0. Since y(c)>u and u—v=¢, we must have
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1(d,) >v. If u> x(d,), we are done. If x(d,) > u, there must exist some d, such that
uzd, >v, because &> x(d;, ) — x(d;) >0 for every i. This completes the proof of

part (i). §

The next lemma is the central result in the proof of the Theorem 1. The lemma
establishes that the “upward” and “downward” scales of different additive represen-
tations are linear with respect to each other on the overlap of their domains. Stated
symbolically, if a, be K, bb>, aa, (y, 7)€ S(a), and (¢, t')€ S(b), then y is linear
with respect to 7’ on U, N D,. The lemma actually establishes a stronger result—for
any ae K and (y, 7)€ S(a) there exist 1>0 and v such that ifbek, (x',1t')eS(b),
¥ ~y, T 2y, then v'(x) = Ax(x)+v for every xe U,n Dy, and ©(y)=iy'(y)+v for
every ye D, U,. What is important about this result is that a single choice of 4
and v determines a linear relationship between y and 7', and between x' and t, for
every be K and (¢, t')e S(b) such that y'=y and t'=y. The method of proof
borrows from Krantz et al’s (1971) proof of the IC additive representation.

LemMa 7. For any ae K and (y, 1) € S(a) there exist constants A>0 and v such
that if ceK, (x,tv)eS(c), ¥'=yx and "=y, then t'(x)=Ay(x)+v for every
xeU,nD,, and 1(y)=Ax'(y)+v for every ye D,nU..

Proof. 1 will first show that there exist 4 and v that satisfy the lemma with
respect to every ce Kn U,. I will then show that there exist constants A’ and v’ that
satisfy the lemma with respect to every ce KnD,, and finally T will show that
A=21, and v=""

Choose any ae K and (x, t)€ S(a). To derive values for A and v, choose any
be Kn U, such that da +,aa for some de U, D;. The clement b must exist
because ae K. By Lemma 4 we can choose (', t') € S(b) such that y’ @y and 7' = 1.
Furthermore x(U,) nt'(D,) must be dense in an interval of reals, because x(U,)
and 7'(D,) are both dense in intervals (by Lemma 6) and their intersection is non-
empty. Now choose any y,zeU,nD, such that y(y)>x(a), x(z)> x(a), and
x(z) # x(»). 1 want to develop expressions for

x(y)—x(a) r(y)—x'(a)
1@ ™M Yo-r@

For any &> 0, there exist 7, s€ D, such that ¢ > 7(r) — 1(s) > 0. Let 0 =1(r) —1(s).
By Lemma 6, we can choose r and s to make w arbitrarily small. Using r and s, we
can construct a sequence e, ej,.., e, of elements of U, such that eq=a, the
sequence x(eo), x(e1), -, x(e,) is strictly monotonic increasing, @ = x(e;,)—x(e;)
for every i (1=i>n), and @ > x(y)—x(e,) =0. The method for constructing the
sequence is the basic method for constructing standard sequences in an additive
conjoint structure (Krantz et al, 1971, Chap. 6), so it will not be described here.

Note that y(y)=yx(e;)) for every i Therefore y(¥)+ t(a) = x(e;) +(a) and
yazgea and yy 2 e;e; for every i. But ye D,, so bb>, yy Hence bb>,e.e; and
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e;e D, for every i. The fact that e,e D, will be used later when I show that the
sequence t'(e,), T'(e,), .., T'(e,) is also equally spaced.

Since the number 7 of elements in the standard sequence is a function of the size
w of the spacing between adjacent elements, it will be convenient to denote
n=n(w). Let §(w)=x(y) — x(€nw)), and recall that w = yx(e;, ) —x(e;) for every i
(1<i<n). In this notation, we have x(y)— x(a)=n(w)w + d(w). Construct a
second sequence fy, f}, .., f,, of elements of U, such that fy=a, the sequence
2/o), 2(/1), -, X(f,n) is strictly monotonic increasing, w = x(f;,. ) — x(f;) for every i
(1<i<m), and o> x(z) — x(f,,) = 0. Since m is also a function of w, let m =m(w).
Let 8(w)=x(z)— x(f,n)- We have w>8(w)>0, and x(z)— x(a)=m(w)w + Hw).
Therefore,

x(y)—x(a) _n(o)o+é(w)
wz)—xla) m(w)o+06(w)

_n(w)+dé(w)/w
T m(w) + 8(w)/w’

Note that as w approaches 0, n(w) and m(w) approach infinitely while é(w)/w and
6(w)/w are bounded by 0 and 1. The proofs of the additive conjoint representation
theorem and Holder’s theorem (Krantz et al., 1971) show that the following limits
exist and satisfy the relations,

x(y)—xa) . n(w)+d(w)w
1) —1(@) o m(@) + @) (%9)
~Lim @) (60)
-0 m(w)

Now we must derive an analogous expression for (7'( y)—1t'(a))/(z'(z) —1'(a)).
To do this, we must show that the sequence t'(e,), 7'(e,), ..., 7'(enw)) determines a
sequence of equal intervals. Hence, we need to find r,s'eU, such that
r'e;, 1~y s'e; for every i (1<i<n(w)—1). The method for finding r and s’ is
slightly indirect. The sequence y(e,), x(e,), x(€2), ..., x(en) is strictly monotonic
increasing by hypothesis. Hence ya>, e, +1a>,e,a for every i. By Axiom4, by
>gbe,, 1>, be; for every i. Thus, the sequence of t'(e;) is strictly monotonic
increasing, bounded by t'(ey) and t'(y), and n(w)—» o as w—0. Choose any
w,ve U, such that wb>_ vb. Let e=y'(w)— x'(v)>0. If n(w) is sufficiently large,
there must be some ¢, and e, in the sequence such that (e ) —T'(er) <e
Hence

X (W)= x'(0)>7"(exs 1) —'(€) > X' (v) = x'(v) =0.

Therefore x'(w)+1'(e;) > x'(v)+ 7' (€4 1) > x'(v) +7'(e;). Thus, we, >, Ve, 1>, Ve,
By Axiom 6, there exists s'e 4 such that s'e, ~. ve, .. Note that s'e U, because
veU, and s'e, >, ve, >, be,. Let r' =v. Then r'e, ~g8'e.
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By Axiom 10, we must have r'e,, , ~, se; for every i such that 1 <i<n(w)—1.
Let o(w)=1(e;1)—1(e;)>0 for any i Then we must have
o(w)>1'(y)—1'(enw)) =0, for otherwise we could use restricted solvability
(Axiom 6) to find e, such that t'(e,,).) is between 7'(y) and 7'(e,(,)) and
06(®)=17"(epw)+1)—T'(€nw))- But then Axioms4 and 10 would imply that
X(en(w)+ 1) iS between X (y) and x,(en(w)) and o= X/(en(w)+ l) - X’(en((o))’ Contrary to
the definition of e,

A similar argument shows that Sos f1» s fmw) 18 @ standard sequence on D, such
that 7'(f;, 1) —t'(f;}) = o(w), and (@) > 1'(2) — T'(fie)) = 0.

Let (@) =1'(y) — T'(€nwy)- Let 1(@) =1"(z) = 7'(finwr))- Now the same argument
used to derive (59) and (60) can be used to show that

£(0) = (@) _ n(@)o() + () .
t'(z)—1'(a) m(w)o(w)+ n(w)

_ n(w)+y(w)/s(w)

= (@) + 1(@)o(@)’ (62)

A previously noted, n(w) and m(w) approach infinity as w approaches zero, while
y(w)/o(w) and n(w)/o(w) are bounded by 0 and 1. Therefore,

T(y)—1'(a) . n(w)+y(w)d(w)
T@)—7(@) oo m(@)+r(@)/o(®) (63)
_ n(w)
w—-0 m(w)’ (64)

where the limits exist by the additive conjoint representation theorem and Holder’s
theorem. Since the limits in (60) and (64) are the same, we must have

x(y)—xla) _t(y)—7'(a)
1(z)—x(a@) T(z)—-1'(a) (65)

Define constants 4,, and v,, by
_1'(z2)="(a)
7 x(z)—x(a)
and
vy, = — A x(a)+7'(a).

Note that 1,,>0 by Axiom 4. The values of 4,, and v,, depend possibly on the
choice of b and z (and on the original choice of a), but not on the value of y. But
then (65) implies that

T(¥)=Ap: X(¥) + Vs (66)
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for any choice of ye U, D, such that x(y)> x(a). It is routine to verify that if
x(¥) = x(a), then t'(y)=1'(a) and thus Eq. (65) holds when x(y)= x(a). Therefore
(66) holds for every ye U,n D,.

Let A=4,, and v=v,,. Next we must show that for any xe U,n K and any
scales (", 7") e S(x), if " =y and 7" =, then

(y)=A(y)+v (67)

for every ye U, n D,. To prove this, choose any xe U, N K and (y”, t”) € S(x) such
that y" =~y and 1" ~1.

I note first that "=y’ and t” =1’ (Recall that (y’,t')e S(b).) To see this,
choose (x, p)e S(x) such that x= x and p=t'. Since also (x”,1")e S(x), there
must exist >0, B,, and B, such that y” =ax + §, and " =ap + ,. We must have

x"(z)=k(z) for every zeU,nU, because x"=y, x=y, and x'=x and
U,nU,cU,nU,nU,. Furthermore there must exist z, z'e Uyn U, such that
1"(z)#x"(z') because U,cU,nU, or U,cU,nU,, and b,xeK Since
ar(z)+ B, =y"(z)=x(z) for all zeU,nU,, we must have a=1 and B,=0.
Similarly, we must have t”(w)= p(w) for every we D, because 1" =1, 11, and
v'2pand D, D, D,. Since a =1, we have p(w)= r”(w) p(w)+ B,, so B,=0.
Therefore 3" =k, 1" = p, and we have "2~ y’ and 7" =1’ by the choice of x and p.

To show that (67) holds, there are two cases to consider. Case 1: if bb >, xx, then
U,nD,cU,nD,. Since t"=1, we have t"(y)=1'(y)=4x(y)+v for every
yeU,nD,. Case2: now suppose that xx>,bb. By hypothesis, there exists
de U,n D, such that da #,aa. So de U,n D,. We can therefore repeat the con-
struction of A,, and v,, to find constants 4., and v,,, which depend possibly on a
choice of ¢, ve U,n D,, such that t"(y)= A, x(y)+v,, for every ye U,n D,. But
then 4., x(») + v, =1"(y)=1(y)=Ax(y) +v for every ye U,n D,, because t” x1".
Therefore 4., = A and v,, = v, and t"(y) = Ax(y) + v for every ye U, n D,.. Thus (67)
is established. We may note in passing that we have also shown that the constants
4, and v,, in Eq. (66) do not actually depend on the choice of b and z.

Next we need the analogous result for elements ce KN D,. An argument that is
entirely parallel to the preceding argument shows that there exist constants 1" and
v” such that if ceKnD,, and if (1",t")eS(c), x"=yx and 7”7, then
1(y)=A"x"(y) +v" for every ye U.n D,. The proof will be omitted here.

Finally, we need to show that A=A1" and v=0". Choose be KnU, such
that ba #,aa. Choose ceKnD, such that ac +,aa. Choose (x', t’)eS(b)
and (y",7 )eS(b) and (x", T”)GS(C) such that x’:x x" and t'xt=1". We
have already established that t'(y)=Ax(y)+v for every yeU,nD,, and
1(z)=A"x"(z) +v" for every ze U,n D,. We also have y' =" and 1’ = 1" because
U,c U, and D,< D,. Therefore if we repeat the preceding argument with b and ¢
playing the roles previously played by b and a, we can show that there exist
constants p and y such that t'(y)=py"(y)+y for every yeU.nD,. But
px" (M +y=1(y)=1(y)=A"Y"(y) +v" for every ye U.n D, because 1’ =1. Since
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ac +,aa, we must have p=41" and y=v". Thus t'(y)=4"¢"(y)+0v" for every
yelU.nD,.

But now A"(x"(b)—yx"(a))=1'(b)—1'(a)=A(x(b)—x(a)). We have x"(b)—
x"(a)#0 by the choice of b. Also x"(b)—x"(a)=yx(b)—x(a) because x"=7y.
Therefore A" = A. Also, A"x"(b) +v" =1'(b) = Ax(b) + v, so v” =v. Therefore 1 and v
satisfy the assertion of the lemma. ||

The next lemma is a minor strengthening of Lemma 6. It shows that the scales
(x, ) € S(a) can be chosen such that v =0 for the constant v of Lemma 6.

LEMMA 8. For any ac K, there exist (3, 1) € S(a) and a real constant 1>0 such
that if ceK, and if (x',7')eS(c), x' =y, and t'=1, then t'(y)=2Ax(y) for every
yeU,nD,, and 1(z) = Ay'(z) for every ze U,nD,,.

Proof. Choose any (x”,t")e S(a), and let A and v be the constants that satisfy
Lemma 7 with respect to x” and t”. Define : U, — Re and 7: D, - Re by y = x" and
1=1"—0. Then (x, 7)€ S(a) by the uniqueness theorem for the additive conjoint
representation. To show that (y, t) satisfies the lemma, choose any ce K, and
(x',7)eS(c), such that y'=~y and t'~t. Note that y'=y=y” and 7' +o=
1+ 01" by definition of y and 7. If ye U,n D, then t'(y)+v=4x"(y)+v, and
thus, ©(y)=4Ax(y). If zeU.nD,, then t(z)+v=1"(z)=4y(z)+v. Therefore
1(z) = Ax'(z). Hence (y, t) satisfies the lemma. |I

Lemma 8 lets us construct a function that satisfies the LTA representation. The
next lemma shows how to define this function, and relates the function to the
additive scales of substructures of the form (U, x D, =;;).

LemMma 9. Let aeK be chosen arbitrarily. Choose (y,t)€ S(a) such that
Lemma 8 is satisfied with respect to the constant 2> 0. Define a functions ¢: A — Re

by

x(x) if xx>,aa ’
T(x)/A if aa>,xx.

#0)={

The function ¢ has the following property: For any ce K, if (x', ') € S(c), x' =1, and
t' 1, then y'(x) = ¢(x) for every xe U, and ©'(y) = A$(y) for every yeD,.

Proof. Choose any ce K. If xe U,n U, then x'(x) = x(x) = ¢(x) because y' =y
and the definition of ¢. If xe U.A D,, then y'(x)=1(x)/A=¢(x) by Lemma 8 and
the definition of ¢. If ye U,n D,, then t'(y)=Ax(y) = A¢(y) by Lemma 8 and the
definition of ¢. If ye D,n D,, then t'(y)=1(y)=Ag(y) because 1’7, and the
definition of ¢. Thus the lemma holds for every choice of ye 4. |

We are now in a position to prove Theorem 1. The main tools for the proof are
Lemmas 7, 8, and 9.



GENERIC UTILITY THEORY 401

Proof of Theorem1. Choose any aeK, and let (x, t)e S(a) satisfy Lemma 8
with respect to the constant 1> 0. Define ¢: 4 — Re as in Lemma 9. I claim that

wxz,yz il (w)+ Ad(x) = d(y) + Ad(z) (68)

for any w,x, y,zeA such that wx, yze P. To establish (68), suppose that
wx, yz€ P. Then ww >, xx and yy >, zz by definition of P. Cases 1-6 below are the
only orderings of ww, xx, yy, and zz that are compatible with these orderings.
(Cases 1-6 are not mutually exclusive, but that will not impair the argument.)

Casel: ww>, xx>, yy>,2z Cased: yy>,ww>, xx2,zz
Case2: ww>,yy>, xx>,z2z Case5: yyz,ww>,zz2, xx
Case3: ww>, yy>, 222, xx Case6: yy>2,zz2, ww>, xx.

Condition (68) holds iff it holds for these six cases. Fortunately, these cases do not
all require separate proofs.

First note that for any b, ce 4, bb >, cc, iff $(b) > ¢(c). To see this, let w=c if
bb >, cc, and w=b if cc >, bb. Choose (x, t') € S(w) such that y'~ y and ¢’ =1. By
Lemma 9, y'(y)=4¢(y) for any ye U,. But now we have bb =, cc iff bw >, cw iff
X' (B)+7' (W)= x'(c) +7'(w) iff $(b) > 4(c).

Now I will prove that (68) holds in Cases 1 and 6. In Case 1, we must have
#(w) > d(x) > $(y) > ¢(z) by what we have just proved. Hence ¢(w)+ Ad(x)>
¢(y) + Ad(z). Furthermore wx>,wz>,yz by Lemma?2. Therefore the only
possibility that is consistent with Case 1 is that wx 2, yz, and $(w)+ Ad(x) =
#(y) + A4(z). Hence (68) holds in Case 1. In Case 6, we must have ¢(y)> ¢(z) >
#(w)>4(x). Hence ¢(y)+ Ad(z) = ¢(w) + Ad(x). Furthermore yz 2, yx=,wx by
Lemma 2. Therefore the only possibility that is consistent with Case 6 is that
yz2,wx, and @¢(y)+ Ad(z) = ¢(w) + Ad(x). Hence (68) holds in Case 6.

Cases 2-5 can be treated together, so suppose that any of these cases holds. It is
clear from inspection of Cases 25 that there must exist b€ A4 such that both

yy=2,bb>, xx and ww>=, bb>, zz. (69)

It may or may not be the case that there exists be K that satisfies (69).

If there exists b € K that satisfies (69), then choose (x', t') € S(b) such that y' =y
and t'=r7. (Recall that ¢ was defined in terms of (x,1)eS(a)). By (69),
wx, yze U, x D,. Hence .

WX =, yz iff wx>=,, yz
iff Yw)+vx) 21 (y)+7(2)
iff  g(w)+ 1(x) > ¢(y) + Ag(2),

where the second line follows by Lemma 3, and the third line follows by Lemma 9.
Therefore (68) holds when there exists b e K that satisfies (69).
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Finally suppose that no such be K exists. Choose any be A4 that satisfies (69).
Since not be K, either cb~,db for every c,deU,, or else bc~,bd for every
c,deD,. Since w, ye U, and x, ze D,, we must have wb~, yb, or bx~_ bz. By
Lemma 2, either ww ~, yy, or xx ~, zz, or both. Hence ¢(w) = #(y) or ¢(x) = ¢(z).
Suppose that ww ~, yy and ¢(w)=¢(y). Then

wxz,yz iff wxz,wz iff xxz,zz iff ¢(x)>¢(z2)
iff  g(w)+Ag(x) = ¢(y) + A¢(2).
Alternatively, suppose that xx ~, zz and ¢(x) = ¢(z). Then

WX >, yz iff wz>, yz iff ww>z, yy iff g(w)=o(y)
iff g(w)+Ag(x) = ¢(y) + 14(2).

Therefore (68) holds in Cases 2-5 whether or not there exist b€ K such that (69)
holds.

This proves the existence of an LTA representation. Finally, to establish the
uniqueness of ¢ and A, suppose that ¢’ and A’ are any other function and constant
that satisfy the representation (17) (restated in (68)). Recall that ¢ and 1 were
defined in terms of an ae K, and (x, t)e S(a). Choose any b, ce K such that
bb>, cc>, aa. Choose scales (x;,1,)€ S(b) and (x., 1.)€ S(c) such that y, =y,
T, 271, .=y and 1.~ 1. Let ¢| U, and 1¢| D, denote the restrictions of ¢ and A¢ to
U, and D,, respectively, and define ¢|U,, A¢|D,, ¢'|U,, A'¢'|D,, ¢'|U,, and
A'¢'| D, similarly. By hypothesis, ¢ and ¢’ satisfy (¢|U,, A¢|D,)e S(b),
(¢'| U, 9’| D)€ S(b), (| U., A¢|D.)e S(c), and (¢'|U,, A'¢'| D )€ S(c). By the
uniqueness of the additive conjoint representation, there exist constants
a, B, v, o, B, and ' such that

¢'|Us=0ag|Us+ B, A'¢'|Dy=0ip| Dy +, (70)
$lU=a'd|U.+p, A¢'|D =0o'Ap|D +Y" (71)

But bb>, cc, so U,< U,.. Hence a=a’, and f=p'. Similarly, D, D,, so y=7'".

Since bb>, cc, we must have that #(U.n D,) and ¢'(U.n D,) are both dense
subsets of real intervals. Choose any xe U,n D,. Then ¢'(x)=ad(x)+ B by (67),
and 1'¢’'(x)=ald(x)+7y by (71). Hence

' (x)=ald(x) +AB—AB +y=Alad(x)+ B)— B+
=A'(x)—AB+7. (72)

Since (72) holds for every xe U,n D,, we must have ’=1 and y=Af. But then
from (67), we have 1¢'(x) = A(ag(x) + B) for every xe D,, and from (71), we have
#'(y)=oad(y)+ B for every ye U,. But A=U_ U Dy, so ¢'(x)=ad(x)+ p for every
xe€ A. This proves that ¢'=ag+ B and that A’=A. This completes the proof of
Theorem 1. |}
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