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Abstract 
 
Although the methodology of utility assessment under expected utility 
assumptions is well understood, empirical research has demonstrated that 
expected utility theory is not descriptively valid.  Accordingly, new 
methods of utility assessment must be found that are consistent with the 
human preference behavior.  This chapter presents methods of utility 
assessment under assumptions of rank dependent utility theory.  Rank 
dependent utility theory models the nonlinear perception of probabilities, 
which is a major source of violations of expected utility theory.  It is shown 
that the standard gamble method, the time tradeoff method, and the 
method of certainty equivalents can all be interpreted from the standpoint 
of rank dependent utility theory.  Furthermore, it is shown that utility 
assessments under rank dependent utility assumptions differ systematically 
from utility assessments under expected utility assumptions.  In particular, 
measures of risk aversion and of health state utilities are systematically 
affected by the nonlinear perception of probability.   
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Utilities have become a standard measure of value in the analysis 
of health decisions (Drummond, O'Brien, Stoddart, & Torrance, 1997; 
Gold, Siegel, Russell, & Weinstein, 1996).  For purposes of decision 
analysis, utilities have a number of highly desirable properties:  They are 
grounded in a normative theory of preference whose mathematical and 
theoretical foundations are well understood (Fishburn, 1982, 1989; 
Edwards, 1992; von Neumann & Morgenstern, 1944); they allow the 
construction of preference models that are adapted to the structure of 
specific decisions and outcome domains (Keeney & Raiffa, 1976; Sox, 
Blatt, Higgins, & Marton, 1988; von Winterfeldt, & Edwards, 1986); and 
they possess a well developed methodology for measuring the utilities of 
health outcomes as perceived by relevant populations of individuals 
(Keeney & Raiffa, 1976; Weinstein et al., 1980).  It would seem that the 
stage is set for the unfettered application of utility theory to the task of 
assessing the value of health.  There is, however, a serious obstacle to 
proceeding down this path.  Extensive empirical research has demonstrated 
a variety of ways in which preferences are inconsistent with the 
assumptions of expected utility theory (Kahneman & Tversky, 1979, 1984; 
Slovic, Lichtenstein, & Fischhoff, 1988).  If the methodology of utility 
assessment is largely based on expected utility theory, a theory that can be 
rejected as a descriptive theory of preference, how are utilities to be 
measured?   

This is a big question, and its answer is still very much under 
development.  What I hope to do here is present one line of attack on the 
assessment of utilities that is based on rank dependent utility theory.  Rank 
dependent utility theory postulates that the probabilities as stated in 
lotteries do not directly determine the utility of lotteries.  Rather the 
probabilities are first transformed nonlinearly to decision weights, which 
are then combined with outcome utilities to determine the utility of 
lotteries (Quiggin, 1982; Karni & Safra. 1990).  The nonlinear 
transformation of probabilities introduces fundamental changes in the 
methodology of utility assessment (Wakker & Stiggelbout, 1995).  This 
chapter presents the Wakker/Stiggelbout analysis of the standard gamble 
method under rank dependent utility assumptions, and extends their 
analysis to problems in QALY measurement and the characterization of 
risk posture.  The chapter also describes the implications of nonlinear 
probability perception for the interpretation of certainty equivalents and 
time tradeoffs.  Many utility assessment procedures that are standard in 

medical decision making assume the validity of expected utility theory, and 
hence, they assume that the perception of probability is linear.  What I 
hope to do is to describe how the nonlinear perception of probability 
distorts utilities that are assessed by standard methods, and to describe 
methods for removing the effects of these distortions.   

Before undertaking this discussion, I should try to be clear about 
the perspective on utility analysis taken in this chapter.  The focus of this 
chapter is on the theory that underlies utility assessment procedures, in 
other words, procedures by which numbers representing values are 
assigned to health outcomes.  Of course, I do not have in mind just any 
procedures, but rather those that can be justified from the standpoint of a 
theory of preference under risk.  I assume the normative validity of 
expected utility theory (henceforth, EU theory), and assume that the goal of 
utility assessment is to provide a quantitative measure of preference that 
can be combined with probabilities in a utility analysis of health decisions 
or policies (Gold et al., 1996; Weinstein et al., 1980).  Because the 
descriptive validity of EU theory is no longer tenable, a need has arisen for 
utility assessment procedures that take violations of EU theory into 
account.   

There are four major findings in the psychology of preference that 
must be taken into account in the theory of utility assessment.  The first has 
already been mentioned, namely, the nonlinear perception of probability.  
Second, it has been argued that people represent outcomes as gains or 
losses relative to a neutral reference level, rather than as absolute states of 
wealth (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).  The 
categorization of outcomes as gains or losses has predictable effects on risk 
posture and the rate at which utility changes as a function of objective 
changes (so-called loss aversion).  Third, preferences are affected by the 
way in which choices are framed (Kahneman & Tversky, 1984).  Finally, 
preferences as inferred from choices are not identical to preferences as 
inferred from matching tasks like judgments of selling prices or certainty 
equivalents (Slovic, & Lichtenstein, 1968; Tversky, Sattath, & Slovic, 
1988; Fischer, G. W., & Hawkins, S. A., 1983; Bostic, Herrnstein, & Luce, 
1990).  This essay is primarily an attempt to incorporate nonlinear 
probability perception into the methodology of utility assessment.  The 
other issues will not be addressed in this essay.   

For simplicity, this chapter will focus on the problem of assessing 
the utility of health states that are better than death.  A better-than-death 
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health state is a state in which longer survival is preferred to shorter 
survival.  Not all health states are better than death.  Some health states are 
worse than death (shorter survival in these states is preferred to longer 
survival), and some health states are regarded as having a maximum 
endurable survival (longer survival is preferred to shorter survival up to the 
point of maximum endurable survival, and then shorter survival is 
preferred to longer survival beyond this point).  Such health states give rise 
to important and interesting assessment issues, but these issues would 
digress from the central questions of this chapter.  Patrick, Starks, Cain, 
Uhlmann, and Pearlman (1994) and Drummond et al. (1996) discuss the 
problem of assessing worse than death health states.  Sutherland, H. J., 
Llewelynn-Thomas, Boyd, and Till (1982) pointed out the occurrence of 
maximum endurable survivals, and Stalmeier, Bezembinder, and Unic 
(1996) noticed some problematic inconsistencies in judgments involving 
maximum endurable survivals.   

This chapter has the following organization.  The first section of 
the paper describes four basic problems in utility assessment.  These 
problems are the assessment of holistic outcomes, the assessment of a 
utility function for survival duration, the assessment of a linear QALY 
model, and the assessment of a power QALY model.  The second section 
reviews how EU theory solves these assessment problems by means of 
standard gambles, certainty equivalents, and time tradeoffs.  Although this 
material is well known, the discussion will emphasize those features of 
assessment procedures that must be revised when nonlinear probability 
weighting is taken into account.  The third section presents solutions to the 
utility assessment problems under the assumptions of rank dependent 
utility theory.  The goal of this section is to show how standard utility 
assessments must be reinterpreted in a framework that allows for the 
nonlinear weighting of probability.  The fourth section presents some 
preference data, and compares an analysis from the EU  standpoint to an 
analysis from the rank dependent utility standpoint.  The section shows 
concretely how nonlinear probability weighting affects the interpretation of 
health preference data.  The results presented in the third and fourth 
sections are the main contribution of this chapter.  A final section reviews 
the problem of utility assessment from a perspective that takes violations of 
EU theory into account.   
 

Four Problems in Utility Assessment 

Before discussing the theory of utility assessment, we should list 
the types of assessment problems that this theory is intended to solve.  As I 
describe these assessment problems, I will assume that we are trying to 
determine the utilities of a specific person, who I will refer to as "the 
client."  Depending on the research problem, the client may be a patient, a 
health professional, or a person drawn from the general public.   

The conceptually simplest problem is one in which one has a short 
list of distinct health outcomes whose utility is to be assessed.  For 
example, Sox et al. (1988) discuss a decision between surgical and medical 
treatment of a herniated intervertebral disc that is causing severe back 
pain.  The potential outcomes in this decision are complete recovery, 
residual back pain, perioperative death, and residual back pain with 
footdrop.  In this case, the utility assessment problem is to determine 
utilities that represent the relative worth for the client of each of these 
outcomes. 
 

Utility Analysis (UA) Problem 1.  Given a finite list of health outcomes, A, 
B, C, ...., determine utilities, U(A), U(B), U(C), ..., for the outcomes on this 
list. 
 

This type of utility assessment problem is sometimes called an assessment 
of holistic outcomes because the analysis does not attempt to decompose 
the outcomes into attributes whose separate utilities are assessed and then 
combined by a composition rule.   

Consider, next, the case where duration of survival is a component 
of the possible health outcomes.  In this case, one usually attempts to 
represent the utility of survival duration by means of a smooth curve that 
represents the increase in utility as a function of duration.  
 

UA Problem 2.  Given that health outcomes lie on a continuum like 
survival duration, construct a curve that approximates the growth in utility 
along this continuum for a particular client.   
 

Before proceeding to other assessment problems, it is worthwhile 
to digress briefly on the issue of risk posture.  Risk posture or risk attitude 
refers to the curvature of a utility function over a continuum like survival 
duration or money.  Technically, when talking about risk posture, one must  
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specify the continuum in question, for it is perfectly reasonable (logically 
consistent) to have different risk postures with respect to survival duration, 
money, number of lives saved, etc.   Figure 1 displays utility functions for 
survival duration that exhibit different risk postures with respect to 
survival duration.  A utility function is risk averse if it is concave 
downward over the continuum in question.  It is risk seeking if it is 
concave upwards over the continuum, and it is risk neutral if it is linear 
over the continuum.  Risk posture is important in medical decision making 
because therapies can differ in their tradeoffs between short and long term 
survival (McNeil, Weichselbaum, & Pauker, 1978; McNeil & Pauker, 
1982; Cher, Miyamoto, & Lenert, 1997).  In general, risk averse utility 
functions are more favorable towards therapies that confer greater chances 
for short term survival because such therapies provide higher probabilities 
of survival during the period in which risk averse utilities increase most 
rapidly.  One of the primary reasons why UA Problem 2 is important is 
that a solution to this problem yields a characterization of the risk posture 
of the client with respect to the continuum in question.   

Next we will consider assessment problems that arise when utility 
is based on a quality adjusted life years (QALY) model.  The linear QALY 
model assumes that the utility of survival in any fixed health state is risk 
neutral.  Furthermore, it represents the utility of alternative health states as 
factors that multiply the duration of survival.  In other words, let a pair, 
(b, x), represent a survival of x years in health state b.  The linear QALY 
model asserts that 

 U(b, x) = k�H(b)�x. (1) 

The left panel of Figure 2 shows the linear QALY model with three health 
states, a, b, and c.  The function H maps health states to health state 
utilities.  It is standard practice to assign the value, H(full health) = 1.  
Thus, state a represents full health in Figure 2.  All other better-than-death 
health states are assigned utilities between 1 and 0.  The constant k is an 
arbitrary constant chosen so that the utilities range over a convenient 
interval of numbers.  For example, if the longest survival to be considered 
in the decision analysis is 25 years, one can set k = 4.  Under this choice, 
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Figure  1.  Risk averse, risk neutral, and risk seeking utilities functions for 
survival duration.   
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Figure 2.  Left panel: The (linear) QALY model with three health states.  
Right panel: Power QALY model with three health states (power 
parameter r = .5). 
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U(full health, 25 years) = 4�H(full health)�25 = 100.  Since the utility of 0 
years is 0, this choice of k yields utilities that range between 0 and 100.   

Equation (1) describes the utility of a survival of x years in a 
constant (chronic) health state b.  To apply the linear QALY model to a 
sequence of health states that change over time, one assumes that different 
time periods contribute additively to the overall utility .  In other words, let 
(b1, x1; ....; bn, xn) stand for a health sequence where health state b1 lasts 

for x1 years, ...., and health state bn lasts for xn  years, followed by death 

(any of the durations xi can be a fraction of a year, if necessary).  The 

linear QALY model applied to this health sequence asserts that 

 U(b1, x1; ....; bn, xn) = � k�H(bi)�xi. (2) 
 

To illustrate this equation, suppose that we wish to calculate the utility of a 
sequence (b3, 3 years; b1, 12 years; b2, 5 years; b3, 5 years).  Equation 

(2) states that  

U(b3, 3 years; b1, 12 years; b2, 5 years; b3, 5 years) 

  = k�H(b3)�3 + k�H(b1)�12 + k�H(b2)�5 + k�H(b3)�5. (3)

  

The left panel of Figure 3 shows the implications of the additivity 
assumption (2) for the hypothetical case (3).  The bottom left graph shows 
linear utility functions for survival in health states b1, b2, and b3, 

assuming these health states to be constant.  The upper left graph shows 
how the segments of the constant health state utility functions are 
combined according to Equation (2) to yield the utility of the sequence.  
The total utility of the sequence is indicated by the height of the point 
marked U.   

The key assessment problem for the linear QALY model is the 
determination of the health state utilities, H(a), H(b), H(c), ....   
 

UA Problem 3.  Assuming the validity of the linear QALY model (1), 
determine the health state utilities, H(b), for the various health states b in 
the decision analysis.   

 

Given the health state utilities of a client, Equation (1) can be used to 
calculate utilities for chronic health states, and Equation (2) can be used to 
calculate utilities for sequences of health states.  Most discussions of health 
utility analysis refer to the linear QALY model as simply the QALY model.  
In other words, when publications refer to the QALY model, it is assumed 
that Equation (1) and (2) describe the calculation of utility.  This chapter 
uses the nonstandard term, "linear QALY model," because an alternative, 
power QALY model will also be discussed.   
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Figure 3.  Left panel: Additivity across time periods in a linear QALY 
model.  Right panel: Additivity across time periods in a power QALY 
model.   
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One limitation of the linear QALY model is that it assumes that 
individuals are risk neutral with respect to survival duration.  The 
following power QALY model1 allows for risk aversion or risk seeking. 

 U(b, x) = k�H(b)�xr. (4) 

The power QALY model implies that a utility function for survival 
duration is risk averse if r < 1, it is risk neutral if r = 1, and it is risk 
seeking if r > 1.  The three utility functions shown in Figure 1 are power 
utility functions with r set at .5, 1, and 2, respectively.  The right panel of 
Figure 2 shows the power QALY model with three health states, a, b, and 
c, for the specific power r = .5.  As before, k is an arbitrary constant.  If 
H(full health) is set equal to 1 and if 25 years is the longest duration in the 

decision analysis, then choosing k = 100/25r causes the utilities to range 
between 0 and 100.   

The power QALY model (4) describes the utility of a survival of x 
years in a constant health state b.  To calculate the utility of a sequence of 
health states, one assumes that different time periods contribute additively 
to the overall utility.  For any sequence, (b1, x1;....; bn, xn), let  x0 = 0.  

Then,   
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Although Equation (5) may look complicated, the intuition behind it is 
identical to the additivity assumption for the linear QALY model.  The 
lower right panel of Figure 3 shows power utility functions for survival 
duration in constant health states b1, b2, and b3.  To compute the utility of 

the sequence, (b3, 3 years; b1, 12 years; b2, 5 years; b3, 5 years), one 

takes the corresponding segments from the lower right panel, and pieces 
them together to form the utility function in the upper right panel.  The 
total utility of the sequence is indicated by the height of the point marked 
U.  Equation (5) is simply an algebraic description of this construction.   

                                                        
1  More precisely, one might call Model (4) the multiplicative power 

model.  Miyamoto (in press) discusses more general versions of the 
power model.   

The main assessment problem for the power QALY model is the 
assessment of r and the values of H. 
 

UA Problem 4.  Assuming the validity of the power QALY model (4), 
determine the value of the power parameter r, and the health state utilities, 
H(b), for the various health states b in the decision analysis 
 

Given estimates of r and the values of H for a particular client, one can use 
Equation (4) to model utility in constant or chronic health states, and 
Equation (5) to model the utility of sequences of health states2.    

A brief word on the history of these models.  The linear QALY 
model has a lengthy history that is recounted in Fryback (in press) and 
Drummond et al. (1997). Axiomatic work on QALY models began with 
Pliskin, Shepard, and Weinstein (1980).  They published a set of axioms 
for the linear QALY model (1), and the more general, power QALY model 
(4) under EU assumptions.  They showed that the linear QALY model is 
valid if preferences satisfy four properties:  (i) survival duration is utility 
independent from health quality; (ii) health quality is utility independent 
from survival duration; (iii) proportional time tradeoffs are constant; and 
(iv) preferences for lotteries over survival duration are risk neutral.  They 
further showed that the power QALY model is valid if assumptions (i), (ii), 
and (iii) are satisfied, , (iv)and assumption (iv) is replaced with the 
assumption that marginality is violated.  Bleichrodt, Wakker, & 
Johannesson (1997) pointed out that the axioms for the linear QALY 
model could be substantially simplified if one assumes that different health 
states are equally preferred when the survival duration is zero.  This 
assumption was called the zero condition by Miyamoto, Wakker, 
Bleichrodt, and Peters (in press), who review its history and derive further 
implications from it.  Bleichrodt, Wakker and Johannesson showed that the 
zero condition and risk neutrality are jointly sufficient for the linear QALY 
model (1).  Miyamoto (in preparation) showed that the zero condition and 
constant proportional risk posture are jointly sufficient for the power 

                                                        
2  Cher, Miyamoto, and Lenert (1997) explain an alternative way to 

compute the utility of a health sequence for a power QALY model.  
Their method uses derivatives of the utility function, and yields an 
approximation to the utility of the sequence.  Equation (5) yields an 
exact value, assuming the validity of a power QALY model. 



Date =  March 19, 2002,     File =  e:\qalygc\cmb_2col.doc 7 

QALY model (4).  Both results are special cases of a general theorem in 
Miyamoto (1992) that showed that the zero condition and the utility 
independence of survival duration are jointly sufficient for a model in 
which the utility of duration and health quality combine multiplicatively 
and converge at zero duration.  Miyamoto and Eraker (1988) investigated 
the empirical validity of the utility independence of survival duration, and 
Miyamoto and Eraker (1989) investigated the empirical validity of risk 
neutrality and constant proportional risk posture (a necessary condition for 
a power QALY model).   
 

Utility Assessment Under Expected Utility (EU) Assumptions 
 

Basic Notation 

To discuss utility assessments, we will need some notations for 
lotteries and preferences.   

Notation What it stands for: 

A, B, C, .... Health outcomes. 

(A, p; B, 1-p) A lottery in which one has a p-chance of 
receiving health outcome A and a 1-p 
chance of receiving health outcome B. 

(A, p; B, 1-p) % (C, q; D, 1-q) (A, p; B, 1-p) is preferred to (C, q; D, 1-
q) 

(A, p; B, 1-p) � (C, q; D, 1-q) (A, p; B, 1-p) and (C, q; D, 1-q) are 
equally preferred. 

(A, p; B, 1-p) � (C, q; D, 1-q) (A, p; B, 1-p) is equally or more 
preferred than (C, q; D, 1-q) 

 

For example, if A represents "full health" and B represents a specific 
inferior health state, then (A, .75; B, .25) represents a lottery in which one 
has a 75% chance of full health and a 25% chance of the inferior health 
state.   
 

Basic EU Theory 

EU theory is a theory of preference under risk.  When applied in a 
health domain, the basic objects of EU theory are lotteries for health 
outcomes and the fundamental empirical relation is the preference relation 
among such lotteries.  Although health outcomes can be complex 
sequences of health states unfolding over time, and lotteries can also be 
complex, the outcomes and lotteries that are used in utility assessment are 
only the most elementary types.  The only options required for utility 
assessment are simple outcomes (riskless outcomes) and binary lotteries 
(lotteries with two outcomes).  The basic claim of EU theory is that the 
preference ordering among lotteries is the same as the ordering of the 
lotteries by their expected utilities.  This claim can be stated in terms of 
binary lotteries as follows: 

 (A, p; B, 1-p) % (C, q; D, 1-q) 

 iff 

 pU(A) + (1-p)U(b) > qU(C) + (1-q)U(D) (6) 

and 

 (A, p; B, 1-p) � (C, q; D, 1-q) 

 iff  

 pU(A) + (1-p)U(b) = qU(C) + (1-q)U(D). (7) 

(The expression "iff" is an abbreviation for "if and only if.")  Condition (6) 
states that one gamble is preferred to another if and only if its expected 
utility is greater.  Condition (7) states that equivalence in preference maps 
onto equality of expected utility.  Conditions (6) and (7) represent the 
hypothesis of EU maximization for the special case of binary lotteries.  For 
lotteries with more than two outcomes, one postulates that the EU of a 
lottery equals � piU(xi) where pi represents the probability of receiving 

outcome xi.  Such more complicated notations will not be required in this 

chapter.   

One special case of Condition (7) is especially useful in utility 
assessments, namely, the case where one observes an equivalence between 
a certain outcome C and a gamble (A, p; B, 1-p).  From Condition (7), we 
may infer that  
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 C � (A, p; B, 1-p) iff U(C) = pU(A) + (1-p)U(b). (8) 

Many utility assessment procedures require that one observe equivalences 
like the left side of (8) and then utilities are inferred from numerical 
relationships that are implied by the right side of (8).   

For purposes of utility assessment, it is also important that if a 
utility function U satisfies the EU assumptions, then U is a cardinal utility 
or equivalently, U is an interval scale.  A precise definition of these terms 
requires the use of set theory (see Krantz, Luce, Suppes, & Tversky, 1971, 
or Roberts, 1979), but the essential idea is that in measuring a utility 
function, one is allowed two arbitrary assignments of utility.  To give an 
analogy, if one were asked to assign coordinates to the points on an infinite 
straight line (infinite in both directions), one could pick any point and call 
it zero, and pick any other point and call it a unit distance from zero.  After 
these two arbitrary choices, the coordinates of all other points would have 
definite values.  In the context of utility assessment, researchers usually 
choose to assign 0 to the utility of death, and 100 to the utility of full 
health.  The logic of utility assessment and the empirically determined 
preferences of an individual then force all other outcomes to be assigned 
specific numerical utilities.   

Conditions (6) - (8) exhibit a key property of EU theory.  
According to EU theory, utility is linear in probability.  In other words, the 
probabilities by which the lotteries are defined, e.g., p and q on the left side 
of (6) or (7), are used directly in the calculation of the expected utility, e.g., 
p and q also appear on the right side of (6) or (7).  Contrast this with the 
hypothesis that the probabilities are transformed nonlinearly in the 
cognitive process by which a risky option is evaluated.  For example, 
suppose that in place of Condition (6), we had the condition: 

 (A, p; B, 1-p) % (C, q; D, 1-q) 

 iff 

 w(p)U(A) + 1 − w p1 62 7U(b) > w(q)U(C) + 1 − w q1 62 7U(D) (9) 

In Condition (9), a nonlinear function w transforms the probabilities, p and 
q, to decision weights (psychological weights).  In later sections, we will 
explore the implications of nonlinear probability weighting for the 
methodology of utility assessment.  For now, I want to draw attention to 

the fact that EU theory implies that utility is linear in probability.  This 
assumption plays a central role in the EU theory of utility assessment.   

Conditions (6) - (8) express all of the formal part of EU theory 
that is needed to discuss utility assessment procedures, but there is, of 
course, a great deal more that is relevant to the validity of utility 
assessments.  Underlying EU theory is a set of preference assumptions, 
known as EU axioms, from which Conditions (6) - (8) and other related 
conditions can be derived.  It should be noted that calling an assumption an 
"axiom" does not imply the empirical validity of the assumption.  An 
axiom is simply one of a set of assumptions that are jointly sufficient to 
imply the validity of a theory, in this case, EU theory.  The assumption that 
preferences are transitive, or the betweenness assumption (if A % B and 1 > 
p > 0, then A % (A, p; B, 1-p) % B), are examples of EU axioms.  It can 
then be proved that if preferences are consistent with the EU axioms3, then 
there exists a utility function U that satisfies Conditions (6) - (8) and other 
related conditions.  In this chapter, I will use the expression, "EU 
assumptions," to refer to preference assumptions that are either EU axioms 
or are implied by the EU axioms.  To assert that EU theory is descriptively 
valid is to assert that all EU assumptions are empirically valid properties of 
preference behavior.  Conversely, when researchers claim that EU theory is 
descriptively invalid, they mean that at least some of the EU assumptions 
are violated by actual preference data.  In fact, there is a great deal of 
evidence that preferences are inconsistent with the assumptions of EU 
theory.  I will not attempt to review empirical tests of EU assumptions (see 
Kahneman & Tversky, 1979, 1984; Slovic et al., 1988; Camerer, 1989; 
Luce, 1992), and will assume that the evidence against the descriptive 
validity of EU assumptions is quite strong.   
 

The EU Theory of Assessment Procedures 

Most of the methods presented in this section are all well known, 
but they are reviewed here in order to have an explicit point of comparison  
                                                        
3  To be precise, there is not one unique set of EU axioms.  Rather, 

theoretical analyses have uncovered a variety of alternative sets of 
assumptions any one of which is sufficient to imply the validity of EU 
theory.  Any of these sets of assumptions can be called a set of axioms 
for EU theory.  Fishburn (1982) reviews alternative EU 
axiomatizations.   
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Table 1 

 EU Assessments RDU Assessments 

Duration p* (23.8)X.446 w(p*) (13.67)X.618 

0 0.00 0.0 0.000 0.0 

5 0.45 48.8 0.395 37.0 

10 0.65 66.5 0.503 56.8 

15 0.85 79.6 0.654 72.9 

20 0.99 90.5 0.912 87.1 

25 1.00 100.0 1.000 100.0 
 
 

with the non-EU approach in the next section.  More thorough descriptions 
of these methods are available in Sox et al. (1988),  Froberg and Kaplan 
(1989b), and Drummond et al. (1997).  The emphasis here will be on the 
logic by which utilities are inferred from preferences, and the role of 
linearity in drawing these inferences.  For the sake of brevity, I will not 
address statistical issues that arise in utility assessment beyond what is 
necessary to explain the specific examples in this chapter.  The utility 
assessment methods described in this section all assume the descriptive 
validity of EU theory.  This assumption will be dropped in the subsequent 
section on utility assessment under rank-dependent utility assumptions.   

In the standard gamble method, a best and worst outcome are 
identified for the given health domain.  Let A designate the best outcome, 
and let Z designate the worst outcome.  As noted above, we are free to 
assign the utilities U(A) = 100 and U(Z) = 0.  To assess the utility of any 
other outcome, B, the client is asked to judge the probability p* that 
satisfies the relation: 

 B � (A, p*; Z, 1-p*). (10) 
 

If p* is the probability that creates the equivalence (10), then p* will be 
called the probability equivalent of B with respect to the endpoints A and 
Z4.  By Condition (8), we infer that  

 U(B) = p*U(A) + (1-p*)U(Z) = p*(100). (11) 

For example, if the client says that a .8 chance of A and a .2 chance of Z is 
equal in preference to B, then U(B) = 80.  Clearly, the standard gamble 
zmethod provides a straightforward solution to UA Problem 1.   

The standard gamble method also provides solutions to the 
remaining three assessment problems.  To solve UA Problem 2, let Z 
denote 0 years and let A denote the longest survival duration in the 
assessment problem.  Assume that health state is fixed at some better-than-
death health state.  One then applies (10) and (11) to determine the utilities 
of a series of intermediate points, X1, ..., Xn.  Linear interpolation between 

these points provides a piecewise linear utility function that approximates 
the utility function for survival duration.  To illustrate this procedure, 
column 2 of Table 1 shows hypothetical probability equivalents for the 
durations 5, 10, 15, and 20 years with respect to the endpoints 0 and 25 
years.  Multiplying these probability equivalents by 100 yields utilities for 
the durations scaled from 0 to 100.  The solid lines in the left panel of 
Figure 4 show the piecewise linear utility function for the data in Column 2 
of Table 1.   

As an alternative to the piecewise linear utility function, one could 
fit a parametric utility function like a power or exponential utility function 
to the pairs, X U X1 1, ( ) , ..., X U Xn n, ( ) ,  by means of a nonlinear 

regression procedure.  Such procedures are available, for example, in the 
S-Plus, SPSS, and SAS statistical packages.  To illustrate this approach, let 
X1, ..., Xn be a list of survival durations, and let Z = 0 and A denote the 

worst and the best survival durations.  Let p1
*
, ..., pn

*  denote the probability 
equivalents of X1, ..., Xn with respect to the endpoints, Z and A, and let 

U(X1), ..., U(Xn), be the corresponding utilities inferred by means of the 

standard gamble method.  According to the power QALY model, U(Xi) = 

                                                        
4  Some authors refer to p* as the indifference probability of B (cf., Sox et 

al., 1988).   
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k�Xi
r  for every i.  Because utilities were assigned under the specification 

U(A) = 100, we must have 100 = U(A) = k�Ar, or k = 100/Ar.  By 

Equation (11), U(Xi) = pi
*
(100), where pi

* is the i-th probability 

equivalent.  Therefore pi
*
(100) = U(Xi) = (100/Ar)�Xi

r , i.e.,   

 pi
*
 = X Ai

r r   =  X Ai
r1 6  (12) 

To fit a power function to utility data that were assessed by means of 

standard gambles, one lets the values of pi
* serve as the dependent variable, 

and the values of X Ai1 6 serve as the predictor variable in a nonlinear 

regression5 that solves for the value of r.  Applying the nls procedure of S-
Plus to the data6 in columns 1 and 2 of Table 1 yielded a fit of the power 

utility function, U(X) = (23.8)X.446.  The dotted line in the left panel of 
Figure 4 shows the fitted power model.   

If one assumes that EU theory is descriptively valid and that the 
responses to the standard gamble questions are free from random variation, 
then the standard gamble method yields exact values of the utility function.  
In a sense, then, to approximate the standard gamble utilities by means of a 
power function (or any other function) is a step away from accurate 
measurement because the data themselves are precisely correct utility 
measurements.  Nevertheless, there are two reasons for taking an interest 
in a parametric utility representation like a power utility function.  First, 
human judgment almost always exhibits random variation in the sense that 
asking the identical assessment question to the same client will produce 
somewhat different responses at different times.  Even if EU theory were 
descriptively valid, utilities assessed by the standard gamble method, or 
any other method, for that matter, would not be precisely accurate because 
they are affected by random variation in judgment.  Fitting a parametric 
utility function to a set of data is one way to reduce the influence of random 
variation by aggregating across responses.  From this perspective, the fitted 
curve in Figure 4 (left panel) is a more accurate representation of 
preference than are the individual data points, because the individual 
points are subject to greater random variation than a summary constructed 
from the data.   

Second, even if the assessed standard gamble utilities represent 
true preferences, i.e., even if they were not affected in part by random 
variation in judgment, the fitting of a power parameter facilitates 
comparisons of risk posture across individuals, across populations, and 
across decision analyses.  For example, Miyamoto and Eraker (1985) fitted 
                                                        
5  A power utility function can also be fit by means of linear regression, 

i.e., if p* = (X/A)r, a logarithmic transformation yields log p* = 
r�log(X/A).  Therefore one can use linear regression through the origin 
to solve for r.  Miyamoto and Eraker (1985) used a method similar to 
this to estimate r for individual patients.   

6  It was necessary to omit the initial point, (0, 0), from the data because 
the utility function is discontinuous at this point.   
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Figure 4.  Left panel: Utilities assessed by the method of standard gambles 
under EU assumptions.  The solid line is the piecewise linear 
approximation to the utility function; the dotted line is the power function 
approximation.  Right panel: Utilities assessed by transforming probability 
equivalences to probability weights under RDU assumptions.  The solid 
line is the piecewise linear approximation to the utility function; the dotted 
line is the power function approximation.   
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the power utility model to the certainty equivalents data of individual 
patients.  They found that estimates of r were about equally divided 
between values greater than and less than 1.  In other words, risk aversion 
and risk seeking were found about equally often in their data.  The power 
parameter allows us to state this finding even if the power utility model is 
not a precisely accurate description of the utilities.  To give another 
example, in the next section we will reinterpret the data in Table 1 from 
the standpoint of rank-dependent (RDU) utility theory.  The analysis will 
show that under RDU assumptions, the estimated power parameter is .618 
rather than .446 as found under EU assumptions.  This shows that the 
RDU analysis yields a utility function that is less risk averse than the EU 
analysis.  The fitting of a power parameter allows one to state concisely an 
interesting relationship between different utility functions.  This issue will 
be discussed further below.   

To solve UA Problem 3, assume the descriptive validity of EU 
theory and the linear QALY model.  Let a represent full health, and set 
H(a) = 1.  Suppose we want to determine H(b) for a better-than-death 
health state b.  Choose any survival duration y and use the standard gamble 
method to find the probability p* that the client judges to satisfy the 
equivalence, 

 (b, y) � a y p a p, , *; , , *1 6 0 50 1 − . (13) 

By Equation (8) and the linear QALY model (1), we have 

  k� H(b)�y = p*�k�H(a)�y  +  (1-p*)�k�H(a)�0 (14) 

Thus, H(b) = p*, (15) 

because H(a) = 1.  Evidently, one can use this procedure repeatedly to find 
the values of H(b) for any finite list of better-than-death health states.  
Thus, the standard gamble method solves UA Problem 3 under EU 
assumptions.   

To solve UA Problem 4, note first that the assessment of H(b) by 
means of standard gambles is the same for a power QALY model as for a 
linear QALY model.  To see this, suppose that p* satisfies (13).  By 
Equation (8) and the power QALY model (4), 

  k� H(b)�yr = p*�k�H(a)�yr  +  (1-p*)�k�H(a)�0r (16) 

Thus, H(b) = p*. (17) 

Therefore the empirical relation, (13), determines the health state utility by 
means of the identical Equations (15) or (17) for either the linear or the 
power QALY models.  To complete the assessment of the power QALY 
model, one needs to assess r.  The solution to this assessment problem was 
sketched above.  Choose any fixed better-than-death health state b.  Often, 
one would choose b equal to either current symptoms or to the best health 
state in the decision analysis, but from the standpoint of logic, any choice 
of b is permissible.  Let 0 and A be the shortest and longest survival 
durations, respectively.  Let (b, X1), ...., (b, Xn) be a list of intermediate 

outcomes, and let p1
*, ..., pn

*  be the corresponding probability equivalents 
with respect to the endpoints, (b, 0) and (b, A). According to Equations (4), 

 k�H(b)�Xi
r
 = pi

*
�k�H(b)�Ar + (1−pi

*
)�k�H(b)�0r (18) 

where (18) follows from (4) and (11).  Therefore 

 pi
*
 = X Ai

r1 6  (19) 

exactly as was found before.  An estimate of r can then be determined by 

nonlinear regression with p1
*, ..., pn

*  as the values of the dependent 
variable and X1/A, ...., Xn/A as the values of the predictor variable.  Thus, 

the standard gamble method yields a solution to UA Problem 4 if one 
assumes EU theory and the power QALY model.   

Notice that in all of the applications of the standard gamble 
method, the validity of the assessment is heavily dependent on the 
assumption that utility is linear in probability.  For each utility that is to be 
assessed, the client must produce a p* that satisfies an equivalence of the 
form of (10) or (13), and the calculation of the utility requires that p* and 
1−p* constitute the appropriate weights for the superior and inferior 
utilities, respectively, on the right side of Equation (11).  If the perception 
of probability is systematically distorted, the standard gamble method 
transfers the distortions into the utility scale by means of Equation (11).   

This completes our discussion of the standard gamble method 
under EU assumptions.  Next we will consider the time tradeoff procedure, 
and finally, the method of certainty equivalents.   

The time tradeoff method was introduced by Torrance, Thomas, 
and Sackett (1972) as a measure of health status.  Let a denote full health 
or whatever is the best health state in the utility assessment problem, and 
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let b be any other better-than-death health state.  Let x > 0 be any survival 
duration.  Then the time tradeoff between a and b with respect to the 
duration x is the duration y* such that  

 (a, y*) � (b, x). (20) 

If y* satisfies (20), then the proportional time tradeoff between a and b 
with respect to duration x is the ratio y*/x.  For brevity, I will refer to time 
tradeoffs as TTOs and proportional time tradeoffs as PTTOs.  The relation 
between TTOs and health state utilities depends on the utility assumptions 
that one adopts.  If one assumes only the validity of EU theory, but not the 
validity of the linear or power QALY models, then (20) implies only that 
U(a, y*) = U(b, x), and nothing more.   

If one assumes the validity of EU theory and the linear QALY 
model (1), then the TTO method provides a solution to UA Problem 3.  Let 
a be the best health state, and assign H(a) = 1.  For any better-than-death 
health state b, determine the y* that satisfies (20).  Then (20) implies that  

 k�H(a)�y* = k�H(b)�x, (21) 

hence, H(b) = y*/x. (22) 

because H(a) = 1.  Therefore, assuming EU theory and the linear QALY 
model, TTOs with respect to the best health state provide a solution to UA 
Problem 3.  TTOs also contribute to the solution of UA Problem 4, but to 
explain this, one must first explain the use of certainty equivalents to 
assess a power parameter.   

The method of certainty equivalents is used primarily to solve UA 
Problems 2 and 4.  Let (b, x) and (b, z) denote any two survival durations in 
a constant health state b.  Then, we say that (b, y*) is the certainty 
equivalent of the lottery, b x p b z p, , ; , ,0 5 0 5 1 − , if and only if 

 (b, y*) �  b x p b z p, , ; , ,0 5 0 5 1 − . (23) 

In this chapter, we will only be concerned with certainty equivalents of 
even-chance gambles, i.e., lotteries of the form b x b z, , . ; , , .0 5 0 50 5 0 5 .  

Even-chance gambles are especially useful in utility assessment because the 
concept of a flip of a fair coin is widely understood by the general public.  
Suppose that (b, y*) is the certainty equivalent of the even-chance gamble, 

b x b z, , . ; , , .0 5 0 50 5 0 5 , i.e.,  

 (b, y*) �  b x b z, , . ; , , .0 5 0 50 5 0 5 . (24) 

 
Under EU assumptions:    

� *y   =  . .. . .
5 574 74 1 74

⋅ + ⋅x z  

Under RDU Assumptions 

 � *y = .44 ..90 .90 .90
⋅ + ⋅x z56

1
 

Equation (8) and the power QALY model imply that  

 k�H(b)�(y*)r = .5�k�H(b)�xr  +  .5�k�H(b)�zr (25) 

Therefore (y*)r = .5�xr  +  .5�zr (26) 

and y* = . .5 5
1

⋅ + ⋅x zr r r
. (27) 

Once again we have a problem in nonlinear estimation.  To estimate r, 
collect data for certainty equivalents with varying values of x and z.  Let 
the certainty equivalents serve as the dependent variable, and the values of 
x and z serve as the predictor variables in a nonlinear regression that solves 
for the value of r.  To illustrate this idea, Table 2 contains hypothetical 
certainty equivalents data for five even-chance gambles.  The data appear 
to be slightly risk averse, and the fit of Equation (27) to these data yields 
an estimate of r = .74 which is slightly less than 1.  Of course, in actual 

 Table 2 
 Hypothetical Certainty Equivalents 
 y* � (x, .5; z, .5) 

y* x z 
4 10 0 
6 12 2 

10 25 0 
12 24 2 
12 24 4 
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research, one would prefer to have more data.  This solves UA Problem 2 
by means of certainty equivalents.   

To solve UA Problem 4 by means of certainty equivalents, we also 
need to consider TTOs.  Let a be the best health state so that H(a) = 1.  
Assuming the validity of EU theory and the power QALY model (4), the 
TTO shown in (20) implies that 

 k�H(a)�(y*)r = k�H(b)�xr, (28) 

hence H(b) = 
y

x

r*�
�

�
� . (29) 

Notice that EU theory and the linear QALY model imply that (22) gives 
the value of H(b), whereas EU theory and the power QALY model imply  

that (29) gives the value of H(b).  Because the parameter r represents risk 
posture in the power QALY model, Equation (29) is sometimes said to 
define a risk-adjusted PTTO.  I will refer to an estimate calculated by 
means of (29) as an RA-PTTO.   

To gain some intuition for the role of r in Equation (29), consider 
Figure 5. If the client judges that the equivalence (20) holds, U(a, y*) = 
U(b, x).  The linear QALY model and the power QALY model both imply 
that  

 
U b x

U a x

,

( , )

0 5
 = 

H b

H a

( )

( )
   =   H(b). (30) 

The ratio,  U b x U a x( , ) ( , ) , is not directly observable; rather, what one can 
observe is the ratio, y*/x.  If the utility functions for survival duration are 
straight lines radiating from the origin as shown in the left panel of Figure 
5, then H(b) = U(b, x)/U(a, x) = y*/x.  As shown in the right panel of 
Figure 5, the curvature of a risk averse utility function causes the ratio y*/x 
to exaggerate the difference between health states a and b.  Thus,  H(b) = 
U(b, x)/U(a, x) > y*/x.  It is not hard to see that if the utility function is risk 
seeking, U(b, x)/U(a, x) is less than y*/x.  Therefore, raising the PTTO to 
the power r, as shown in Equation (24) is a correction for the curvature of 
the utility functions.  It removes a distortion in the assessment of H(b) = 
U(b, x)/U(a, x) that is introduced by the risk posture of the utility function.  
The PTTO, y*/x, overstates the reduction in utility if the utility of survival 
duration is risk averse, and it understates the reduction if the utility of 
survival duration is risk seeking.   

Certainty equivalents and TTOs provide another solution to UA 
Problem 4.  Certainty equivalents and Equation (27) allow one to estimate 
the power parameter r.  Then, TTOs with respect to the best health state 
and Equation (29) allow one to estimate H(b) for all other health states.   

The standard gamble method was introduced by the creators of 
EU theory, von Neumann and Morgenstern (1944). Torrance et al. (1972) 
described the measurement of health state utilities by means of a variant of 
the standard gamble procedure and introduced the TTO method as an 
alternative method for determining health state utilities in a linear QALY 
model.  Torrance (1986) presented a thorough review of the theoretical 
foundations of health utility assessment under EU assumptions (for more 
recent reviews, see Froberg & Kaplan, 1989a, 1989b, 1989c, 1989d; and 
Drummond et al., 1997).  Miyamoto and Eraker (1985) presented a method 
for assessing the power parameter of the power QALY model (4) from 
certainty equivalents data.  The method presented in this chapter is an 
improvement over this method. They also emphasized the need to adjust 
TTOs for risk posture when assessing health state utilities for a power 
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Figure 5.  Left panel: In the linear QALY model, U(b, x)/U(a, x)  =  y*/x.  
Right panel: In a power QALY with a risk averse utility function, 

U(b, x)/U(a, x)  >  y*/x. 
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QALY model.  Cher, Miyamoto, and Lenert (1997) pointed out that 
Markov process models of clinical decisions can be sensitive to the 
distinction between TTO and RA-TTO measures of health state utilities.   
 

Summary of EU Assessment Methods 

I will summarize the assessment procedures that are sufficient to 
solve UA Problems 1 - 4 under EU assumptions.   

UA Problem 1.  Assess the utilities of holistic outcomes. 
• The standard gamble method provides the only solution when no 

attribute structure is specified for the outcomes.   

UA Problem 2.  Assess the utility of survival duration in some fixed health 
state. 

• The standard gamble method can be used to provide a piecewise 
linear approximation to a utility function for survival duration.  One 
can also fit a power function to the assessed utilities by means of a 
nonlinear regression procedure. 

• Alternatively, certainty equivalents can be collected, and a power 
function can be fit to these equivalents by means of a nonlinear 
regression procedure.   

UA Problem 3.  Assess the values of H(b), assuming the validity of the 
linear QALY model. 

• The standard gamble method yields values of H(b) for each health 
state b. 

• Alternatively, PTTOs also yield values of H(b) for each health state b. 

UA Problem 4.  Assess the values of r and H(b), assuming the validity of 
the power QALY model (4): 

• The standard gamble method yields utilities for individual survival 
durations.  A power function can be fit to the assessed utilities as in 
UA Problem 2.  The standard gamble method also yields values of 
H(b) for each health state b.   

• Alternatively, certainty equivalents can be collected, and a power 
function fit to these certainty equivalents as in UA Problem 2.  
PTTOs must be adjusted for risk posture as in Equation (29) to yield 
values of H(b) for each health state b.   

The next section presents solutions to these same assessment problems 
under rank dependent utility theory.   
  

Rank-Dependent Utility (RDU) Theory 

Rank-dependent utility (RDU) theory is a major attempt to explain 
the violations of EU theory by means of a postulated nonlinear 
transformation of probabilities.  A full discussion of RDU theory requires a 
description of the representation of lotteries as cumulative probability 
distributions over outcomes, and of the process by which a nonlinear 
transformation of cumulative probabilities is converted to decision weights 
(Quiggin, 1982, 1993; Quiggin & Wakker, 1994).  Fortunately, the only 
lotteries required for the utility assessments of this chapter are binary 
lotteries.  Therefore to explain how these assessments are interpreted under 
RDU assumptions, it will suffice to describe the RDU representation of 
binary lotteries and simple outcomes.   

For the special case of binary lotteries, RDU theory asserts that the 
utility of a lottery is determined by the following formula: 

 

where w is a nonlinear function from probabilities to the unit interval, i.e., 
1 � w(p) � 0 for every probability p.  It can be shown that under the 
assumptions of RDU theory the utility function is an interval scale 
(Wakker, 1989).  The utility of a lottery is calculated by Equation (1) when 
A � B, and by Equation (2) when B � A.  When A � B, U(A) = U(B), so 
either (1) or (2) produces the same result.  In all analyses discussed here, 
the lotteries that serve as stimuli have the form (A, p; B, 1-p) where A is 
preferred to B.  Therefore only Equation (1) will be required in the present 
discussion.  Obviously, minor modifications allow one to reformulate the 
methods with respect to Equation (2) if lotteries are used in which B is 
preferred to A.   
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The exact form of the probability weighting function w is 
presently the subject of intense investigation (Tversky & Kahneman, 1992; 
Wu & Gonzalez, 1996; Gonzalez, 1993).  For purposes of illustration, I 
will discuss a weighting function suggested by Tversky and Kahneman 
(1992).  Tversky and Kahneman proposed that probability weighting can 
be represented by the class of transformations:   

 w(p) = 
p

p p

γ

γ γ γ
+ −1

1
1 64 9

 (33) 

For the case of binary lotteries, one can interpret w(p) as the weight 
attached to the utility of the superior outcome7.  The value of the γ 
parameter can vary from one individual to the next, corresponding to 
individual differences in the weight attached to the superior outcome.  
Figure 6 shows the probability weight w(p) when γ equals .61.  This value 
of γ was the median estimate in a sample of 25 Berkeley and Stanford 
graduate students (Tversky & Kahneman, 1992).  The subjects judged 
certainty equivalents of monetary gambles for gains.  In the following 
discussion, I will assume in some analyses that w has the form (33) with 
γ = .61.  This assumption is made for the sake of illustrating the 
implications of a specific w for utility assessment.  More empirical research 
will be required to determine what are common values of γ to be found in 
patient populations.   

The hypothesis of nonlinear probability weighting alters the 
theoretical analysis of risk posture.  As a concrete example, let us consider 
the interpretation of the following certainty equivalent under EU and RDU 
assumptions. 

 5 years for sure � (20 years, .5; 0 years, .5) (34) 

Panel A of Figure 7 shows the implications of this equivalence 
under EU assumptions.  The utility of 5 years is indicated by an open 
circle.  The height of this circle is halfway between the utility of 0 years 

                                                        
7  In a full development of RDU theory or CPT, one interprets w as a 

transformation that applies to the cumulative or decumulative 
probability distribution of a lottery.  Discussion of cumulative or 
decumulative probabilities is unnecessary when one restricts attention 
to binary lotteries and simple outcomes.   

and the utility of 20 years, as indicated by the dashed lines, because EU 
theory implies that the utilities of 20 years and 0 years are weighted by the 
probability, .5.  The solid utility curve is a power utility function fit to the 
datum, U(5 years) = .5U(20 years).  The inferred power parameter 
happens to be .5, i.e., a square root transformation.  Panel B depicts an 
RDU interpretation of the same datum, (34), under the assumption that 
w(.5) = .4.  By Equation (1), U(5 years) = .4U(20 years).  The open circle 
in Panel B is 40% of the height of the utility of 20 years, as shown by the 
dashed lines on the right of Panel B.  Because U(5 years) is lower in Panel 
B than in Panel A, the power utility function is less risk averse--the 
inferred power, r = .66, is closer to linearity (r = 1.0) than the r of .50 that 
was inferred under EU assumptions.  Conversely, Panel C shows the 
implication of the certainty equivalent under the assumption that w(.5) = 
.6.  In this case, U(5 years) = .6U(20 years), and the utility function must 
be more risk averse than the utility function inferred under EU 
assumptions.  Panels D, E, and F show the analogous relations for a risk 
seeking utility function.  If the client judges 15 years for sure � (20 years, 
.5; 0 years, .5), the EU interpretation is that the client is rather risk seeking 
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Figure 6.  The probability weighting function for gains based on estimates 
in Tversky and Kahneman (1992).   
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(Panel D).  If w(.5) < .5, then the RDU interpretation is that the utility 
function is even more risk seeking (Panel E), and if w(.5) > .5, the RDU 
interpretation is that the utility function is less risk seeking (Panel F).   

Let us say that a probability weighting function w is optimistic with respect 
to p if w(p) > p, and it is pessimistic with respect to p if w(p) < p.  Because 
w(p) is the probability weight for the superior option (see Equation (1)), an 
optimistic weight places greater weight on the superior option than p, and 
a pessimistic weight places greater weight on the inferior option than 1−p.  
The probability weighting function shown in Figure 6 implies that weights 
will be optimistic for for p < .33, and pessimistic for p > .33, where p is 
the probability of the superior option in a binary lottery.  As argued by 
Wakker and Stiggelbout (1995), the preference behavior that is attributed 
to risk aversion or risk seeking under EU assumptions may be due in part 
to nonlinear probability weighting.  For example, Panel B of Figure 7 
depicts a situation in which a preference that appears to be quite risk 
averse under EU assumption is attributed under RDU assumptions to a 
utility function that is somewhat risk averse and a probability weight that is 
somewhat pessimistic.     

Suppose that U1 and U2 are two utility functions for survival 

duration.  Let us say that U1 is relatively more risk averse than U2 if 

certainty equivalents assuming U1 are always lower than corresponding 

certainty equivalents assuming U2.  Converse, let us say that U1 is 

relatively more risk seeking than U2 if certainty equivalents assuming U1 

are always greater than corresponding certainty equivalents assuming U2.  

In the power utility model, U1 is relatively more risk averse than U2 if the 

power parameter for U1 is less than the power parameter for U2 and it is 

relatively more risk seeking than U2 if the power parameter for U1 is 

greater than the power parameter for U2.  Notice that under this 

terminology, U1 can be relatively more risk averse than U2 even if neither 

function is risk averse in an absolute sense, i.e., in comparison to a risk 
neutral utility function.  For example, Panels C and F of Figure 7 display 
utility functions that are relatively more risk averse than Panels B and E, 
respectively, even though Panel F is not risk averse in an absolute sense.     

The essential point from the standpoint of utility assessment is 
that preference behavior that appears to be risk averse or risk seeking 

under EU assumptions is interpreted under RDU assumptions to be a 
consequence jointly of a nonlinear utility function and a nonlinear 
probability weighting function.  Furthermore, if we compare utility 
functions that are inferred under EU assumptions to utility functions that 
are inferred under RDU assumptions, the EU functions will be relatively 
more risk averse than the RDU functions if probability weighting is 
pessimistic with respect to the probabilities in the assessment, and the EU 
functions will be relatively more risk seeking than the RDU functions if 
probability weighting is optimistic with respect to the probabilities in the 
assessment.  The discussion of utility assessment under RDU assumptions 
will attempt to disentangle the contributions of nonlinear utility and 
nonlinear probability weighting to the observed preference behavior.   

Next I will describe solutions to UA Problems 1 - 4 under RDU 
assumptions.  Equation (1) will be the main analytical assumption.  In 
some assessment methods, it will also be necessary to assume that the 
weighting function satisfies Equation (33) with γ = .61.  These assumptions 
will be spelled out as the assesment methods are described.  Issues 
pertaining to risk posture will also be discussed. 
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Figure 7.  Possible interpretations of a certainty equivalent under EU and RDU assumptions.  "ce" indicates the location of the certainty equivalent.  Panels A 
and D assume linear probability weighting.  Panels B and E assume pessimistic probability weighting.  Panels C and F assume optimistic probability weighting.   
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Utility Assessment Under RDU Assumptions 

In the previous section, it was shown that the standard gamble 
method provides solutions to UA Problem 1 - 4.  The same holds true 
under RDU assumptions provided that one knows the values of w(p*) for 
the probability equivalents that are produced in the assessment.  Consider 
the following argument due to Wakker and Stiggelbout (1995):  Let A 
designate the best outcome, and Z the worst outcome in the health domain 
under investigation.  Let us assign U(A) = 100 and U(Z) = 0.  Let B be any 
other health outcome, and suppose that p* is the probability equivalent of B 
with respect to A and Z as shown in (10).  By Equation (1) of RDU theory,  

 U(B) = w(p*)U(A) + (1-w(p*))U(Z)   =   w(p*)�100. (35) 

Equation (35) can be used to determine the utility of B, provided one 
knows the value of w(p*). 

Evidently, the key to applying the standard gamble method under 
RDU assumptions is the development of a method for determining the form 
of w for individual clients.  Although some research articles have published 
estimates of the weighting function w for groups of subjects (Tversky & 
Kahneman, 1992; Camerer & Ho, 1994), I do not know of published 
accounts of estimates of w that are tailored to individuals.  I believe, 
however, that research conditions are ripe for the development of 
methodologies for assessing the weighting function at the level of 
individuals.  Gonzalez and Wu (unpublished manuscript) have completed 
an extensive study of alternative models of the probability weighting 
function, including assessments of model parameters at the level of 
individuals.  Their work is restricted to the study of preferences for 
monetary lotteries in stimulus designs that were chosen to investigate 
theoretical questions.  Abdellaoui (unpublished manuscript) and Bleichrodt 
and Pinto (unpublished manuscript) have independently undertaken studies 
of weighting functions at the individual subject level, the former in the 
domain of money and the latter in the domain of health.  These studies 
attempt to determine qualitative features of the shape of the probability 
weighting function without assuming a specific parametric model for 
probability weighting.  So far as I know, it is an open question whether an 
efficient methodology can be developed for assessing probability weighting 
functions of individual clients, followed by an RDU assessment of 
individual health utilities by means of standard gambles.  Because 

assessment of the probability weighting function w holds the key to 
generalizing the standard gamble method to RDU assumptions and also to 
cumulative prospect theory assumptions, this would appear to be a 
productive target for further investigation.   

Wakker and Stiggelbout (1995) and Bayoumi and Redelmeier 
(1996) have applied a group estimate of the probability weighting function 
to the problem of interpreting standard gamble utilities.  A potential 
deficiency of this approach is that it assumes that all individuals have the 
same probability weighting function, but it has the virtue of being 
straightforward to implement at a practical level, and is also heuristically 
informative.  To illustrate this idea, suppose that we wish to assess the 
utility of an outcome B under the assumption that w has the form of (33) 
with γ = .61 as shown in Figure 6.  Suppose, further, that the client 
produces the standard gamble judgment B � (A, .8; Z, .2).  Applying (33) 
with γ = .61, we find that w(.8) = .607.  By Equation (35), we have U(B) = 
60.7.  Evidently, this process can be repeated for each holistic outcome, 
thereby providing a solution to UA Problem 1.   

To solve UA Problem 2, let Z = 0 years, and let A denote the 
longest survival duration in the assessment problem.  Assume that health 

state is fixed at some better-than-death health state.  Let p1
*
, ..., pn

*  denote 
the probability equivalents of a series of intermediate durations, X1, ..., Xn.  

Assuming the validity of Equation (33) with γ = .61, we can find the 

utilities of the intermediate durations, 100 1⋅w p
*4 9 , ..., 100 ⋅w pn

*4 9.  For 

example, column 2 of Table 1 shows hypothetical probability equivalents 
(p*) for the durations, 5, 10, 15, and 20 years.  Column 4 of Table 1 shows 
the corresponding values of w(p*) which can be multiplied by 100 to yield 
utilities scaled from 0 to 100.  The right panel of Figure 4 (solid lines) 
shows a piecewise linear approximation to the utility function for survival 
duration.  The dotted line in the right panel shows a power utility function 
fitted to these data by means of nonlinear regression as described in the 
previous section.  Notice that the utility function is less risk averse in the 
RDU analysis--the power parameter r is .618 in the RDU analysis and .446 
in the EU.  This finding corresponds to the fact w(p*) < p* (pessimism) for 
every probability equivalent in column 2 of Table 1.  Whereas EU theory 
must attribute risk averse preferences entirely to curvature of the utility 
function, yielding a low r = .446, RDU theory can interpret the preferences 
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as a consequence of pessimistic probability weighting and a more moderate 
curvature of the utility function.   

To solve UA Problem 3 under RDU assumptions, assume the 
descriptive validity of the linear QALY model (1) and Equation (33) with γ 
= .61.  Let a represent full health, and set H(a) = 1.  To determine H(b), 
choose any survival duration y and have the client judge the p* that yields 
the equivalence: 

 (b, y) � a y p a p, , *; , , *1 6 0 50 1− . (36) 

According to the linear QALY model and Equation (35),  

 k�H(b)�y = w(p*)�k�H(a)�y  +  1 0− ⋅ ⋅ ⋅w p k H a* ( )1 62 7 . (37) 

Thus, H(b) = w(p*). (38) 

For example, if p* equals .75, then H(b) = .57 by Equation (33) with γ = 
.61. 

To solve UA Problem 4 under RDU assumptions, assume the 
descriptive validity of the power QALY model (4) and Equation (33) with γ 
= .61.  Once again, let a represent full health, and set H(a) = 1.  To 
determine H(b), have the client judge p* as in (36).  The power QALY 
model and Equation (35) imply that  

 k�H(b)�yr = w(p*)�k�H(a)�yr  +  1 0− ⋅ ⋅ ⋅w p k H a r* ( )1 62 7 . (39) 

Thus, H(b) = w(p*) (40) 

because H(a) = 1.  For example, if p* = .75, H(b) = .57, exactly as was 
found for the linear QALY model under RDU assumptions.  As can be 
seen from Equations (38) and (40), under RDU assumptions the standard 
gamble method yields the same estimate of H(b) for either the linear or 
power QALY model.   

To complete the assessment of the power QALY model under 
RDU assumptions, let 0 and A be the shortest and longest survival 
durations, respectively, let X1, ...., Xn be a list of intermediate durations, 

and let p1
*, ..., pn

*  be the probability equivalents of (b, X1), ...., (b, Xn), 

respectively, relative to the endpoints (b, A) and (b, 0).  Then, the power 
QALY model and Equation (35) imply that 

 k�H(b)�Xi
r  = w p k H b A w p k H bi

r
i

r* *( ) ( )4 9 4 9⋅ ⋅ ⋅ + −�
�

�
� ⋅ ⋅ ⋅1 0 . (41) 

Therefore w pi
*4 9 = X Ai

r1 6 . (42) 

Assuming Equation (33) with γ = .61, we can compute specific values for 

the w pi
*4 9.  An estimate of r can then be determined by nonlinear 

regression with w p1
*4 9 , ..., w pn

*4 9 as the the values of the dependent 

variable and X1/A, ..., Xn/A as the values of the predictor variable8.  

Combining this estimate of r with the previous assessment of H(b) for 
various b yields a solution to UA Problem 4 under RDU assumptions and 
the assumption of Equation (33) with γ = .61.   

The standard gamble method yields straightforward solutions to 
UA Problems 1 - 4 if one assumes a specific probability weighting function 
like Equation (33) with γ = .61.  Clearly, a major question with this 
procedure is whether individual differences in probability weighting are 
sufficiently large as to produce substantial deviations from the weighting 
function with γ = .61.  One should bear in mind that the use here of 
Equation (33) with γ = .61 is simply for purposes of illustration.  This 
value of γ was estimated from the preferences of 25 Stanford and Berkeley 
graduate students for monetary lotteries, and should not be taken too 
seriously in the context of health utility analysis.  What is required are 
estimates of probability weighting functions that are determined from 
preferences for health lotteries in populations that are relevant to health 
utility analysis, e.g., among patients or the general public.  Such data 
would permit one to evaluate whether a single choice of weighting function 
is a poor or good approximation to the weighting functions of individuals.   

The TTO procedure provides a solution to UA Problem 3 under 
RDU assumptions for precisely the same reasons as under EU assumptions.  

                                                        

8  As before, an alternative method of estimation is to treat log ( *)w p1 , ..., 

log ( * )w pn  as the values of the dependent variable and log ( / )X A
1

, ..., 

log ( / )X An  as the values of the predictor variable in a linear 

regression.   
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If (a, y*) � (b, x) as shown in (20), then (21) and (22) follow under RDU 
assumptions.  Therefore H(b) = y*/x, as shown in (22).   

The method of certainty equivalents provides alternative solutions 
to UA Problems 2 and 4.  Under RDU assumptions, however, the 
estimation of r requires that one also estimate w(.5).  Let b be any better-
than-death health state, and let (b, y*) be the certainty equivalent of 

b x p b z p, , ; , ,0 5 0 5 1 −  as shown in (23).  I assume that x > z.  The power 

QALY model (4) and Equation (35) imply that 

 k�H(b)�(y*)r = w(.5)�k�H(b)�xr  +  1 5− w(. )0 5�k�H(b)�zr. (43) 

Therefore (y*)r = w(.5)�xr  +  1 5− w(. )0 5�zr (44) 

and y* = w x w zr r r
(. ) (. )5 1 5

1
⋅ + − ⋅0 5  (45) 

To estimate r, collect data for certainty equivalents with varying values of x 
and z.  Let the certainty equivalents serve as the dependent variable, and 
the values of x and z serve as the predictor variables in a nonlinear 
regression that solves for estimates of w(.5) and r.  This solves UA Problem 
2 by means of certainty equivalents under RDU assumptions.  Although the 
estimate of w(.5) may have theoretical interest, it is not directly relevant to 
the utility assessment.  For purposes of utility assessment, the estimate of 
w(.5) is needed only to provide an accurate estimate of the risk parameter r.   

To illustrate this method, Table 2 contains hypothetical certainty 
equivalents data for five even-chance gambles.  As shown to the right of 
Table 2, the fit of Equation (45) to these data yields an estimate of r = .90 
and w(.5) = .44.  Notice that the RDU solution for these data is less risk 
averse than the EU solution for these same data.  This is due to the fact 
that the apparent risk aversion in the certainty equivalents has been 
absorbed into a slightly pessimistic value of w(.5), i.e., w(.5) < .5, as well 
as in the slightly risk averse value of r.   

To solve UA Problem 4 under RDU assumptions, we need to 
combine this method for estimating r with risk-adjustment of PTTOs.  One 
must first estimate r as explained in the previous paragraph.  To assess 
H(b) for a health state b, one must determines a TTO for b as shown in 
(20).  RDU theory and the power QALY model then imply (28) and (29), 
the latter equation being the risk adjustment needed to convert the PTTO to 

H(b).  One repeats this procedure for each health state b, thereby solving 
UA Problem 4 under RDU assumptions.   

Wakker and Deneffe (1996) have recently presented a method of 
utility assessment that is based on quite different principles from any of the 
methods described in this section.  Their method avoids distortions in 
utility that can be produced by nonlinear probability weighting, as do the 
methods described in this section.  It also has the advantage that it does not 
require that one assume that all individuals have the same probability 
weighting function, nor does it require that the utility function be drawn 
from a known class of parametric functions like the power functions.  I 
have omitted the method of Wakker and Deneffe (1996) from this chapter 
because the methods discussed here are essentially revisions of standard 
EU assessment methods, whereas Wakker and Deneffe's method is not a 
variant of a standard EU method.  Rather, Wakker and Deneffe's method 
harkens back to the basic process by which equally spaced points (so-called 
standard sequences) are constructed in fundamental measurement theory 
(Krantz et al., 1971).   
 

Summary of RDU Assessment Methods 

I will summarize the assessment procedures that are sufficient to 
solve UA Problems 1 - 4 under RDU assumptions.   

UA Problem 1.  Assess the utilities of holistic outcomes. 
• The standard gamble method provides the only solution when no 

attribute structure is specified for the outcomes.  Probability 
equivalents p* must be transformed to corresponding probability 
weights w(p*) in order to carry out the utility assessment.   

UA Problem 2.  Assess the utility of survival duration in some fixed health 
state. 

• The standard gamble method yields probability equivalents for a 
series of survival durations.  The probability equivalents must be 
transformed to probability weights which serve as utilities after 
multiplying by a scaling constant, e.g., 100.  A piecewise linear 
approximation to the utility function can be inferred from these 
utilities, or a power function can be fit by means of nonlinear 
regression.   



Date =  March 19, 2002,     File =  e:\qalygc\cmb_2col.doc 21 

• Alternatively, certainty equivalents can be collected, and a power 
function can be fit to these equivalents by means of a nonlinear 
regression procedure.  This approach yields estimates of w(.5) and r.   

UA Problem 3.  Assess the values of H(b), assuming the validity of the 
linear QALY model (1): 

• The standard gamble method yields probability equivalents p* for 
each health state b.  These probability equivalents must be 
transformed to corresponding probability weights w(p*) = H(b).   

• Alternatively, proportional time tradeoffs (PTTOs) also yield values 
of H(b) for each health state b.   

UA Problem 4.  Assess the values of r and H(b), assuming the validity of 
the power QALY model (4): 

• The standard gamble method yields probability equivalents p* for 
individual survival durations.  The probability equivalents must be 
transformed to probability weights which serve as utilities after 
multiplying by a scaling constant.  A power function can be fit to 
these utilities by means of nonlinear regression, thereby providing an 
estimate of r.  To assess values of H(b), one finds probability 
equivalents p* for each health state b.  These probability equivalents 
must be transformed to corresponding probability weights w(p*) = 
H(b).   

• Alternatively, certainty equivalents can be collected, and a power 
function fit to these certainty equivalents as in UA Problem 2.  
PTTOs must be adjusted for risk posture as in Equation (29) to yield 
values of H(b) for each health state b.   

Note that all of the assessments that involve standard gambles require that 
one can determine w(p*) for each probability equivalent p*.  The 
assessments that involve certainty equivalents do not require that the 
probability weighting function w be known, but they assume that the utility 
of survival duration is a power function.  One can replace this assumption 
by a different parametric class of functions, e.g., one can assume instead 
that the utility of survival duration is an exponential function.   
 

 Table 3 
 High and low outcomes  
 for 6 even chance gambles. 

 Stimulus 
Gamble 

High 
Outcome 

Low 
Outcome 

 1 12 years 0 years 

 2 12 years 1 year 

 3 12 years 4 years 

 4 24 years 0 years 

 5 24 years 2 years 

 6 24 years 8 years 
 

An Empirical Example of RDU QALY Assessment9 

To illustrate the implications of RDU utility assessment on QALY 
assessment, it is informative to consider some empirical results.  Data from 
Miyamoto and Eraker (1988) will be used to estimate the parameters of the 
power QALY model (4) under EU and RDU assumptions.  We will 
examine the parameter estimates to see how EU and RDU theory differ in 
their interpretation of the same data.   

Miyamoto and Eraker (1988) reported an experiment in which a 
sample of medical patients judged certainty equivalents of even-chance 
gambles for survival duration.  Table 3 lists the high and low outcomes for 
six even-chance gambles that were presented as stimuli in the “power” 
condition of the experiment.  Subjects in this condition were asked to judge 
the certainty equivalents of these gambles assuming full health, and a 
second time, assuming life with their current symptoms.  Each subject also 
made 8 TTO judgments as in Equation (20).  The time tradeoffs were 
judged with respect to 15, 16, 20, and 24 years with current symptoms.  

                                                        
9  The work in this section is part of a larger project on non-EU utility 

assessment that is being developed jointly with Richard Gonzalez and 
Jon Treadwell.   
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Table 4 
Certainty Equivalents Data for 4 Subjects 

   Subject 1 Subject 2 Subject 7 Subject 23 

 Health  Stimulus Trial Trial Trial Trial 

 State Gamble 1 2 1 2 1 2 1 2 

 Full 1 6.00 6.00 6.00 5.50 10.00 10.00 6.50 7.00 

 Full 2 7.00 6.00 7.00 7.00 9.50 10.50 4.50 8.50 

 Full 3 9.00 8.00 9.00 9.00 10.50 10.75 7.50 8.50 

 Full 4 11.00 12.00 10.00 12.00 20.50 21.00 5.50 9.50 

 Full 5 11.00 12.00 13.00 13.00 20.50 21.50 7.50 12.50 

 Full 6 11.00 12.00 17.00 18.00 21.00 21.00 13.50 13.50 

 Current 1 6.00 7.00 5.50 6.00 10.00 10.50 6.50 6.00 

 Current 2 7.00 6.00 5.50 6.50 10.50 10.50 6.50 6.50 

 Current 3 8.00 8.00 9.50 9.00 11.00 10.75 7.50 8.50 

 Current 4 12.00 12.00 7.50 12.00 21.00 21.00 8.50 12.50 

 Current 5 12.00 9.00 11.00 13.00 21.50 21.50 9.50 9.50 

 Current 6 16.00 16.00 14.00 17.00 20.00 22.00 13.50 15.50 

 
  

Every certainty equivalence judgment and TTO judgment was replicated 
twice.  A more complete description of the subjects and experimental 
procedure is given in Miyamoto and Eraker (1988).   

Table 4 displays the certainty equivalence data for Subjects 1, 2, 7, 
and 23.  The gambles that elicited these certainty equivalents are the six 
gambles shown in Table 3.  Subjects were instructed to assume that 
survival would be accompanied by full health for the gambles in the upper 
half of Table 4, and by current symptoms for the gambles in the lower half 
of the table.  The complete data is given for these subjects in order that the 
interested reader can reproduce the utility analysis as it is presented here.  
For the sake of brevity, the TTO data are not presented, but the mean 
PTTOs are listed in Table 5, column 5.   

Let �rEU  stand for an estimate of the risk parameter of the power 
QALY model (4) computed under the assumption that EU theory is valid.  
To determine �rEU  for each subject, let Equation (27) define the model to be 
estimated in a nonlinear regression.  The certainty equivalents in Table 4 
serve as the dependent variable, and the high and low outcomes in Table 3  
serve as the predictor variables.  The starting value of r = 1 was employed 
in a nonlinear, least squares regression.  Column 2 of Table 5 displays the 
estimates of r calculated under EU assumptions.  

Let �rRDU  stand for an estimate of r that is computed under the 
assumption that RDU is valid.  To determine �rRDU  for each subject, let 
Equation (45) define the model to be estimated in a nonlinear regression.  
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The certainty equivalents in Table 4 serve as the dependent variable, and 
the high and low outcomes in Table 3 serve as the predictor variables.  The 
risk parameter r and the probability weight w(.5) are the parameters to be 
estimated in the regression.  The starting values of r = 1 and w(.5) = .5 
were employed in a nonlinear, least squares regression.  Columns 3 and 4 
of Table 5 display the estimates of r and w(.5) calculated under RDU 
assumptions.   

Let a = full health and b = current symptoms.  Let H(a) = 1.  
Assuming the linear QALY model (1), the PTTO equals H(b) as shown in 
Equation (22).  Column 5 of Table 5 shows the mean PTTO for each 
subject averaged over 8 PTTO judgments.  Note that the means shown in 
Column 5 of Table 5 are estimates of H(b) for the linear QALY model 
under either EU or RDU assumptions because Equation (22) is implied by 
the linear QALY model under either EU or RDU assumptions.   

Suppose, now, that we drop the assumption of linearity and 
assume instead that a power QALY model (4) holds.  EU theory and RDU 
theory both imply that the calculation of H(b) must adjust the PTTO for the 
risk parameter r as shown in Equation (29), but the RA-PTTOs will differ 
because EU and RDU theory yield different estimates of r.  Columns 6 and 
7 of Table 5 show the RA-PTTOs for EU and RDU theory, respectively10.  

In other words, Column 6 shows mean y x
rEU*
�

1 6 , and Column 7 shows 

mean y x
rRDU*
�

1 6 .   

Let us compare the utility assessment under EU and RDU assumptions for 
these four subjects.  For Subject 1, the utility of survival duration is slightly 
risk averse under EU assumptions (�rEU  = .89).  The RDU analysis, 
however, suggests that this subject is actually rather risk seeking (�rRDU  = 
1.60).  The reason for this discrepancy is that the RDU analysis finds that 
this subject is rather pessimistic with respect to the .5 probability (w(.5) = 
.31).  The preference behavior that the EU analysis attributes to risk 

                                                        
10  Technically, it would be better to apply the power transformations to 

individual PTTOs prior to averaging them, and then average these 
transformed PTTOs, but the risk-adjusted mean PTTOs reported in 
Table 5 are within � .01 of the mean RA-PTTOs that would be 
computed by this alternative method.   

 

 Table 5 

 EU 
Theory 

 
RDU Theory 

 Linear 
QALY 

EU 
Theory 

RDU 
Theory 

Subject �rEU  �rRDU  w(.5)  PTTO RA PTTO RA PTTO 

1 .89 1.60 .31  .56 .60 .40 

2 .89 .65 .58  .76 .78 .84 

7 5.15 2.61 .70  .89 .54 .73 

23 .72 1.06 .38  .55 .65 .53 
  

aversion is associated so strongly with pessimism in the RDU analysis that 
the curvature in the utility function is reversed from risk aversion to risk 
seeking.  These differing assessments of risk posture impact the assessment 
of H(b), the utility of current symptoms.  Assuming risk neutrality, H(b) = 
PTTO = .56.  Risk adjustment with respect to �rEU  yields H(b) = .60.  Risk 
adjustment with respect to �rRDU  yields H(b) = .40, a considerably lower 
utility for b.  Although the lower value of H(b) found under RDU 
assumptions is a direct result of the fact that �rRDU  is rather risk seeking, 
(see Figure 5), we should note that the more basic reason for the 
discrepancy between the EU and RDU assessment of H(b) is that the latter 
theory allows for pessimism in the probability weighting.  Nonlinear 
probability weighting impacts both the assessment of risk posture and the 
assessment of health state utilities by TTO methods.   

Under EU assumptions, Subject 2 is precisely as risk averse as 
Subject 1 (�rEU  = .89), but the RDU analysis found Subject 2 to be slightly 
optimistic with respect to the .5 probability (w(.5) = .58).  Therefore, 
unlike Subject 1, Subject 2 is more risk averse under the RDU analysis 
than under the EU analysis.  Consequently, H(b) assessed under RDU 
assumptions is greater than the estimate of H(b) found under either the 
linear QALY model or the power QALY model and EU theory.   
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Subject 7 is an example of an individual who appears to be 
extremely risk seeking under EU assumptions (�rEU  = 5.15).  When 
nonlinear probability weighting is taken into account in the RDU analysis, 
the subject is considerably less risk seeking, although still risk seeking 
(�rRDU  = 2.61), and is found to be rather optimistic (w(.5) = .70).  Whereas 
the EU analysis yields a RA-PTTO of .54 which is far below the PTTO of 
.89 found under linear QALY assumptions, the RDU analysis yields a RA-
PTTO of .73 which is approximately midway between .54 and .89.  
Absorbing some of the apparently risk seeking preferences into an 
optimistic estimate of w(.5) reduces the discrepancy between the estimate of 
H(b) found under linear QALY model and the estimate of H(b) found 
under EU assumptions and the power QALY model.   

Finally, Subject 23 appears to be somewhat risk averse under EU 
assumptions (�rEU  = .72), but the RDU analysis attributes the apparently 
risk averse preferences almost entirely to pessimism (�rRDU  = 1.06, w(.5) = 
.38).  Therefore the utility of health state b is almost identical under the 
linear QALY model (H(b) = .55) and under the power QALY model and 
RDU assumptions (H(b) = .53), whereas it is somewhat higher under the 
power QALY model and EU asssumptions (H(b) = .65).   

These examples illustrate several differences between utility 
assessments under EU and RDU assumptions.  First, in general �rEU  < �rRDU  
when w(.5) < .5, and conversely, �rEU  > �rRDU  when w(.5) > .5.  Richard 
Gonzalez, Jon Treadwell, and I have examined certainty equivalents data 
for 65 utility functions for survival duration, and have found only one 
exception to this pattern.  Equation  (29) shows that the PTTO must be 
adjusted for risk posture in order to estimate H(b).  As we have seen here, 
nonlinear probability weighting has a systematic impact on the degree of 
risk aversion or risk seeking that will be found in the assessed utility 
function.  Putting these two findings together, we can see that if 1 > (y*/x) 
> 0, then in general, 

 
y

x

rEU*
��

�
�
�   >  

y

x

rRDU*
��

�
�
� if and only  if   �rEU  < �rRDU  

 if and only if   w(.5)  <  .5. 

Because y x rEU*
�1 6  is the EU assessment of H(b) and y x rRDU*

�1 6  is the 

RDU assessment of H(b), this shows that the EU assessment of H(b) will 
exceed the RDU assessment of H(b) for individuals who are pessimistic 
with respect to the .5 probability.   

What these examples show is that nonlinear probability weighting 
impacts both the measure of risk posture, r, and the RA-TTO.  Although 
this example is confined to estimation of risk posture from certainty 
equivalents data, I believe that analogous relationships will be found in 
standard gambles data.  In other words, if standard gambles data are 
collected that allow one to estimate the form of nonlinear probability 
weighting for individual subjects, the RDU utility assessment will be 
relatively more risk seeking than the EU utility assessment for individuals 
who are pessimistic with respect to the probabilities in the utility 
assessment.  For health state utilities, the RDU estimates of H(b) should be 
lower than the EU estimates of H(b) for individuals who are pessimistic 
with respect to the probabilities in the utility assessment.  In effect, 
nonlinear probability weighting should impact measures of risk posture 
and health state utility regardless of whether utilities are assessed by 
standard gambles or certainty equivalents and time tradeoffs.   
 

Conclusions 

The assessment of utilities under EU assumptions is strongly 
influenced by the assumption that probabilities contribute linearly to the 
utility of a lottery.  This is certainly true of the standard gamble where the 
probability equivalent of an outcome is interpreted as the utility of that 
outcome (after possible rescaling--see Equation (11)).  In the method of 
certainty equivalents, the .5 probability that appears in the stimulus gamble 
is assumed to carry a .5 weight in the evaluation of the utility of an 
outcome (see Equation (27)).  The only exception is the assessment of 
health state utilities by means of TTOs under the assumption that the 
utility of survival duration is linear.  If the linear QALY model is assumed 
to be descriptively valid, then the PTTO equals the health state utility 
under EU or RDU assumptions.  In effect, if one makes the strong 
assumption that the utility of survival duration is linear, one can use TTOs 
to assess health state utilities and thereby avoid the assumption that the 
perception of probability is linear.  It can be shown, however, that the 
utility of survival duration is typically not linear (Miyamoto & Eraker, 
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1985, 1989), and therefore, descriptive accuracy requires risk-adjustment 
of the PTTOs.  Risk-adjusted TTOs are influenced by nonlinear probability 
perception because nonlinear probability weighting affects the estimation 
of the risk parameter r (see Equations (29)).   

RDU theory provides a theoretical basis for taking nonlinear 
probability weighting into account in the process of utility assessment.  
Given a probability weighting function w, the standard gamble method can 
be applied under RDU assumptions to assess the utilities of individual 
outcomes, health state utilities, or the utility of continua like survival 
duration.  At present, only population-based estimates of w are available, 
and it can be questioned whether a single weighting function is sufficiently 
close to the weighting functions of individuals.  It is likely that research in 
the near future will determine whether it is possible to estimate weighting 
functions for individuals from the kinds of small data sets that are common 
in health utility analysis.  This chapter also describes an approach to 
QALY measurement based on certainty equivalents and TTOs.  Richard 
Gonzalez, Jon Treadwell, and I are currently investigating this approach to 
QALY measurement.  An advantage of this approach is that it only 
requires the estimation of one probability weight, w(.5), but it requires that 
one assume that the utility of survival duration is drawn from a specific 
class of parametric utility functions, like power functions or exponential 
functions.   

As was shown in the examples of utility assessment, nonlinear 
probability weighting affects both the measurement of risk posture and the 
assessment of health state utilities.  Pessimistic probability weights reduce 
the degree of risk aversion that is found in the assessments of the utility of 
survival duration.  Not only do changes in risk aversion affect utility 
tradeoffs between short and long-term survival, they also affect 
assessments of health state utility through the process of risk adjustment of 
TTOs.  One goal of future research should be to investigate whether 
decision analyses are sensitive to descrepancies between EU and RDU 
assessments of health state utilities.   

Another goal of future research will be the further generalization 
of utility assessment methods to cumulative prospect theory (CPT) of 
Tversky and Kahneman (1992).  The principal difference between CPT 
and RDU theory is that CPT postulates that outcomes are perceived as 
gains or losses relative to a reference level rather than as absolute levels of 
wealth or health.  Furthermore, CPT postulates that the utility 

representation for lotteries can differ depending on whether the outcomes 
of a lottery are exclusively nonlosses (gains or "zero" outcomes), 
exclusively nongains (losses or "zero" outcomes), or a mixture of gains and 
losses.  The CPT representation for lotteries that are nonlosses is 
isomorphic to the RDU representation, as is the CPT representation for 
lotteries that are nongains.  Hence the methods for RDU assessment that 
were described in this chapter remain valid for CPT when the domain 
consists exclusively of nonloss outcomes or of nongain outcomes.  The 
main issues that arise in the generalization of the present work to CPT are, 
first, the development of a methodology for identifying reference levels in 
health domains, and second, the development of assessment methods that 
take into account preferences for lotteries whose outcomes are mixtures of 
losses and gains.   
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