Final Comments on Homework 6
Design

1. You should segregate your code into header files (.h) and implementation files (.cpp).

The header files should only contain declarations no definitions.

Declarations are intended to bring a name into namespace…they do not allocate any memory. They should include function prototypes and class declarations. Declarations are introduced into the program via include files

Definitions allocate memory. They should include function bodies and class function member definitions. Definitions are introduced into the program by the link process…never through the include process.

2. Every class should have a constructor and a destructor and ultimately, a copy constructor and an assignment operator.

3. Use the init list to initialize the data members. Do not use assignment in the constructor body.
4. You don’t call the destructor directly.

5. You do not have to use this …the this pointer when referring to a member function or a data member within a class.

6. At this point in the class, we are not using inheritance and have not discussed polymorphism. Consequently, there is no need to be using any virtual functions. Do not arbitrarily qualify function members as virtual.
7. At this point in the class, we are not using templates. Consequently, there is no need to be using anything from the STL – the standard template library. We will cover templates in the Intermediate and Advanced classes. Do not use them here.

8. At this point in the class and the program, use composition or aggregation rather than inheritance. Put the composing classes in the private area of the containing class. The data members of these composing classes do not need to be private. If you do make them private, then make the containing class a friend so as to avoid the overhead of a function call when access such data members.
9. The major point of qualifying data members as static is to be able to share data amongst all instance of a class. That is, to have what Smalltalk refers to as pool variables. Do not use static the static qualifier unless this is what you really what you want.

10. Once again, have only a single entry or exit point from any block of code. Do not use returns, breaks, or continues in the middle of code blocks. Only use breaks and continues in switch statements.

11. Separate your implementation and test functions. The test functions should be in a separate set of files that are called from main when testing.

12. Close any files that you open before exiting your program. Do not exit with open files. You stand a good chance of damaging the file and making it unusable in future.
13. Don’t use magic numbers….use symbolic constants.
14. Don’t use single character variable names (with minor exceptions). Use names that mean something and are relevant to the program.

15. The major strength of the oo paradigm is to be able to divide the solution to a problem into loosely coupled, highly cohesive, cooperating objects. I am seeing a number of cases in which people are using the C++ language, classes, and creating objects then executing the design and implementation as a procedural program. Don’t do this.
16. Don’t overly complicate your design….one of your major goals in any design it to make it clear and easy for someone else to come in and make modifications or additions to your design. When a design is complicated to the point that it is very difficult to figure out, errors in such modifications are common. I am seeing a number of designs that are reaching this point….keep things simple and to the point.
For these exercises, we do not need complex user interfaces, web pages, sophisticated data storage schemes, or the like. The material covered and contained in the lessons is sufficient for any of the problems.
Modeling

1. The use cases should define the major portion of the public interface to your classes. These use cases should be reflected in your class diagrams. I am seeing a number of cases in the use cases bear little resemblance to the class diagrams and the ultimate implementation.

2. Once again, in formulating your CRC cards and ultimately in structuring your classes, you want them to be highly cohesive – the responsibilities all related to what that class is intended to do and loosely coupled – the number of collaborators necessary to do the job is kept to a minimum. The classes follow directly from the CRC cards which follow from the functional decomposition which follows from the use case analysis.
Test

1. Separate your implementation and test functions. The test functions should be in a separate set of files that are called from main when testing. They should not be an integral part of the implementation code.

2. Now that you know how to use C++ file I/O, put your test vectors and results into files and annotate what you are doing. You don’t need to provide screen shots.

3. Test results of the form

PASS! entry counter contains the expected value!

provide no information. In your output file identify, with meaningful names, what was expected and what the specific results were…passed or failed are not legitimate entries.

2

