Comments on Homework 5
Design

1. You must check for the success or failure of a file to open before trying to write to it. The text and the lecture material identify several ways by which you can do this.

2. You must always close a file before you exit a program. You may corrupt the file and not be able to access in future if you don’t.
3. Put function prototypes and class declarations into separate headers and the implementations into implementation files.

4. Do not have (asynchronous) entrances or exists to or from the middle of code blocks...always have only a single point of entry and exit from all functions or blocks.

5. Don’t use magic numbers….use symbolic constants.

6. Don’t use single character variable names (with minor exceptions). Use names that mean something and are relevant to the program.

Modeling

1. The purpose of the use case analysis is to identify the public interface to the system that you are designing…it is not intended as a flow chart or state chart. You are trying to answer the question: ‘what does the customer or user want to do with the system.’ This is an external view of the system.
The textual component provides a description of behaviour of the use case.

The exception component is absolutely essential. It gives an early view of potential errors or failures within the system. It identifies, up front, the potential risks and consequences of failures in your design. You then must then consider these during the design.

2. The purpose of the functional decomposition is a first, high level cut at how you can design the software to implement the requirements you identified in the use cases. This is the first internal view of the system and is directly connected to the external vew.

3. The purpose of the CRC cards is to guide and to begin to formalize the process of object discovery. Here, those objects are software modules or classes. They are not pieces of hardware like keyboards or displays.
The CRC cards should lead to the first cut at the classes for the system. They follow from the functional decomposition and are a refined view of the internals of the system and should be directly traceable back to the use cases. You should be able to say: ‘this class or these classes implement that use case’.
Through the responsibility section, you should be establishing a first cut at the implementation of public interface to the corresponding potential class.
Through the collaborator section, you should be identifying which other classes within the system you will need to work with to do your job.
In formulating your CRC cards and ultimately in structuring your classes, you want them to be highly cohesive – the responsibilities all related to what that class is intended to do and loosely coupled – the number of collaborators necessary to do the job is kept to a minimum.
4. The classes follow directly from the CRC cards which follow from the functional decomposition which follows from the use case analysis.
Program Structure
1. Align your comments and code.
2. Separate major functional blocks and minor segments with white space. Whitespace adds nothing to the final size of the compiled program and proper inclusion makes the program much easier to read and follow and ultimately can lead to fewer mistakes if it ever needs to be modified.

3. Use indentation to visually structure the layout of your program.
4. Limit the number of characters on a single line to 80 or fewer. Never wrap or truncate lines. Exceeding this number or wrapping lines make your code very difficult to read and follow…particularly if it is printed.
5. Use the preprocessor to control how a program is built and to conditionally include code. Don’t leave commented out code fragments in your program.
6. Reread the comments for hw4 with respect to the difference between declarations and definitions, what should and should not be included in a header file, and what files should be included in your project and which ones should be linked in.

7. When you design your program, once again, keep things simple. Don’t make something unnecessarily complex. Learn and use the library functions that are available rather than writing your own unless your version offers some benefit.
8. When you turn in your design, saving the results as a .png file looses a lot of information during the compression. The resulting files are very difficult to read.

2

