Practicing Debugging on Simple Programs

3.1 The following code module deals with containers and the problems with writing beyond the end of the container.
The problem with the code is not related to the several deprecated features in the language that have not been reflected into this assignment. Further, while some development environments will flag writing beyond the end of an array type container, depending upon such a flag is not how such problems should be debugged.

One approach is to set a breakpoint before the first for loop then single stepping through the loop. The debugger should show that 6 values are written into the container that was specified to hold 5. The 6th value that is written is beyond the end of the container in memory that the author of the program does not own.
Similarly walking through the second loop will also read beyond the end of the container.

For many environments, such a violation will not be caught.

The root cause of the problem is specification of the termination condition on the for loops. With such a condition, one additional write and one additional read are permitted. A second problem is that the designer of the code appears to want a larger container based upon the values to which it was to be filled.

Please take a look at the file hw3-1-2010.cpp

3.2 The following code module deals with the problem of pass by value or pass by reference.

On executing the program, it appears that the values of the addresses contained in the two pointers passed into the swap function are interchanged and on dereferencing and printing, do refer to the alternate container as was intended by the program.
However, back in the main routine, they seem to be referring to the containers to which they were originally assigned.
Setting a breakpoint at the call to the swap function is the first step in the debugging process. When the program breaks, inspect the values of the two address variables passed into the function. Then, step into the swap function and look at the addresses of the two pointer arguments. They will be different.

The pointer arguments are temporary variables that exist on the stack and are local to the swap function. Any changes to their contents while within the swap function are lost when returning to the original context. The pointer contents swap works locally, but are lost when returning.
The problem is fixed by first declaring pointers to the arrays:

int* myArray0Ptr = myArray0;
// the array name is the address of the 0th element

int *myArray1Ptr = myArray1;
// the array name is the address of the 0th element

then pointers to the pointers

int** myArray0PtrPtr = &myArray0Ptr;

int** myArray1PtrPtr = &myArray1&;

then modifying the signature to the swap function

void swapPointers (int** aPtr0Ptr, int** aPtr1Ptr)
Now, you are working with the actual pointers and values, not copies.
Test this by repeating the initial debugging steps and tracking the values of all of the pointer variables.

Please look at the file hw3-2-2010.cpp

3.3 The following code module deals with returning local variables to a calling function.

On executing the program, the data that was entered in the get function is correct there but not in the calling function despite the fact that a pointer to the return location was passed in.

To debug, set a breakpoint at the point where the get function is called. Inspect the contents of the pointer variable passed in. Step into the get function, confirm the value of the pointer, then, track it through the function, then again back in the calling routine.

This should reveal that the pointer is now referring to a new address…in fact the address of a local variable that disappeared when the flow of control left the called context.
The problem can be fixed by not creating a local container and overwriting the address of the external container that was passed in.

The fix is tested by repeating the same steps that led to the problem.

Please look at the file hw3-3-2010.cpp
Hints and the Preprocessor when Debugging Code
Helpful Hint

You should get into the habit of writing some conditional statements as follows

Rather than writing…

if (x == 9)

{

Stuff;

}

Write them as…

if (9 == x)

{

Stuff;

}

The reason is that 9 is what is called an rvalue and x is what is called an lvalue.

An rvalue can only appear on the right hand side of an assignment statement and an lvalue can appear on either side.

Since 9 is an rvalue, if we happen to make a mistake and write…

if (9 = x)

{

Stuff;

}

The compiler will catch it immediately and fail to compile the code. This is good. On the other hand, if we happen to make a mistake and write…

if (x = 9)

{

Stuff;

}

The compiler will compile the code without issue and the if test will always succeed.

Using the Preprocessor when Debugging Code
When inserting debug code into a program, you can use the preprocessor to help and to control when that code gets included.
At the top of your program write something like
#define DEBUG

// for example or / and
#define DEBUG1

// for example

Later around your test / debug code write
#ifdef DEBUG

// code will be included when DEBUG is defined
Test / Debug code0
#endif

Program code A
#ifdef DEBUG1

// code will be included when DEBUG1 is defined
Test / Debug code1

#endif

Program code B
#ifdef DEBUG

// code will be included when DEBUG is defined
Test / Debug code2

#endif

Program code C
You can then, at the beginning of the program, either comment out the #define or write

#undef DEBUG

or / and

#undef DEBUG1

After the #define.

and the specified debug code will no longer be included in the build.

You can use as many such conditional compiles in your code as you like

#include <iostream>

using namespace std;

// this is a simple routine that demonstrates how to fill an array of characters

void main(void)

{

	char myArray[5];							// declare a character array

	for (int i = 0; i <= 5; i++)					// fill array with characters

	{

		// fill with the ascii characters A..F

		// 65 is the ascii value for A

		myArray[i]= 65+i;

	}

	for (int i = 0; i <= 5; i++)					// display the array

	{

		cout << myArray[i];

	}

	cout << endl;

	return;

}

#include <iostream>

using namespace std;

// get data from the user

void getData(int* aValuePtr);

void main (void)

{

	// declare a shared variable and a pointer to it

	int myValue;

	int* myPtr = &myValue;

	// get data from the user

	getData(myPtr);

	// display the data

	cout << *myPtr << endl;

}

// prompt the user for some data and return it through a shared

// variable pointed to by valuePtr

// inputs: 	pointer to a container in which to place the data

// outputs: 	none

// function:	the routine accepts a pointer to a container in which to store data from a user,

// it prompts for the data, accepts the data, displays it, and returns

void getData(int* valuePtr)

{

	// declare a temp place to store the data

	int tempValue;

	// let valuePtr point to it

	valuePtr = &tempValue;

	// prompt for data

	cout << "Please enter a value" << endl;

	// get the data

	cin >> *valuePtr;

	// display its value

	cout << *valuePtr << endl;

	return;

}

#include <iostream>

using namespace std;

void swapPointers (int* aPtr0, int* aPtr1);

void main(void)

{

	// declare a couple of arrays

	int myArray0[] = {1, 2, 3};

	int myArray1[] = {4, 5, 6};

	// swap them

	swapPointers (myArray0, myArray1);

 	// test to make sure it worked

	for (int i = 0; i < 3; i++)

	{

		cout << myArray0[i] << " " << myArray1[i] << endl;

	}

	return;

}

// this routine interchanges the pointers to two arrays

// inputs:		pointers to two arrays

// outputs: 		none

// function: 	accept pointers to two arrays. Interchange them such that the first

// 			pointer points to the second array and the second pointer to the first.

void swapPointers (int* aPtr0, int* aPtr1)

{

	// swap the pointers

	int* tempPtr = aPtr0;

	aPtr0 = aPtr1;

	aPtr1 = tempPtr;

	// test it to make sure it works

	for (int i = 0; i < 3; i++)

	{

		cout << aPtr0[i] << " " << aPtr1[i] << endl;

	}

	return;

}

2
- 6 of 6 -

