
Comments on Homework 9

Overall
The assignment listed several things that were to be included in this assignment. One of
these asked why the particular design approach was chosen. Most people did not answer
this question.
Another question asked for the public interface for each class….remember, a classes
public interface should be evolved from or based upon the use cases.
While writing something like ….

certainly graphically depicts the public interface and meets the strict letter of the
requirement, it really contains no information. It’s important to briefly identify what
each such function member is to do…

For the class Move, the function member

up()
Moves a player one space forward unless there is a wall. If there is a wall, the
player looses a turn.

down()
….

Now, someone other than the person who wrote the specification or designed the
architecture can proceed with the details of coding the method.

The design is the difficult, challenging, creative, and fun part of the project…the coding
is simply mechanics. Anyone can write code…not everyone has developed the skills for
creating a clever, robust, and interesting design….this takes a lot of practice.

As the Final Project requirements state, the final deliverables must include:

1. A requirements specification
2. Your design documentation including: a functional diagram, CRC cards, and

UML class diagrams.

3. A test plan.
4. Test cases.
5. Source code.

A number of people submitted a first cut at a portion of those deliverables with
Assignment 9. Overall, those looked good. There was nothing glaring missing. Please
include the updated versions reflecting any changes in the final delivered package.

Further, it is noted that the design must contain and use

1. At least 5 or 6 classes – these must be legitimate classes….not classes created for
the sole purpose of creating classes.

2. Copy constructor
3. Assignment operator
4. Overloaded insertion operator functions as appropriate.
5. Composition
6. Inheritance and polymorphism

Design a First Cut

Looking over the preliminary designs based upon the functional decompositions, CRC
cards and class diagrams, several problems stood out.
1. Some people are not showing any inheritance; most who do use it are not showing

any inheritance hierarchies utilizing polymorphism in their designs.
2. I do not recall seeing any assignment operators or copy constructors in any of the

classes public interface.
3. The specification stipulated that the game was to include things such as gold, fake

gold, a teleporter etc. There were a number of designs that did not include any such
things; that were only implementing movement around the board by the player, the
gnome, and the leprechaun. This is not sufficient.
In several other cases the things were included, but, none of the classes supported
methods to do anything with them. Methods are needed to pick things up or to do
something with them.

4. The most serious problem I encountered was that many people are significantly
misusing inheritance.
I found a number of cases such as people or gnomes etc. classes as being subclasses
of rooms or walls. These, however, were not the only such examples; there were
many others.
There were other cases in which multiple inheritance was being used, as a illustrative
example, to create a child class person with the parents such as the game board and
rooms.
In other cases, circular inheritance was being used…A was a child of B and B was a
child of A.

When inheritance is used, the child should be ‘A Kind Of - AKO’ the parent. The
child class should exhibit the ‘IS A’ relationship with the parent…an apple ISA fruit
an apple is A Kind Of fruit.
An apple is not a subclass of tree or of garden.

Multiple inheritance can be tricky. In addition to creating object oriented spaghetti
code, it’s very easy to create some rather dangerous and error prone situations using
it. This is one of the reasons that Gossling left it out of Java.
In particular, one needs to be very careful when creating a child class as a subclass
from multiple (unrelated) parents. This should not be done simply to get something
from such parents. It should only be done after it has been well thought out and there
is a specific and constrained advantage to do so. In many many cases, composition is
a much better choice.

Composition and aggregation are other ways for extending the class type system. In
such cases, we should be using the ‘HAS A’ relationship. The game board HASA
room…not the room ISA subclass or child of game board. A room is not AKO game
board.

5. In their class diagrams, many people are showing all of the data members as public.
These should be all be private.

	Comments on Homework 9
	Overall
	Design a First Cut

