
Thoughts on Testing

Like the design process, testing offers us two views of our system: one from the outside and one

from the inside. When we begin a design, we take an outside, top-level view of the system. That

view (must be) is through the customer’s eyes. We then move progressively to the inside and to

an increasingly detailed view as we develop the system. When we test, we do the opposite. We

begin on the inside with a detailed view and move to the outside, top-level view.

Design should be inherently top down; testing should be inherently bottom up. We make certain

that the lower level, building block modules work and are tested first. We then integrate them

into working subsystems and test again. We repeat these steps until all of the system modules

and subsystems are integrated and tested.

When we are testing, our goal for the inside view is to try to ensure that we are designing a safe,

reliable, and robust system that meets all of its specifications. Our goal for the outside view is to

make certain that we did a good job with the inside view.

Testing is perhaps one of the more neglected yet most important parts of design. Testing should

not begin, nor should it be done, as an afterthought when a design is completed. It should be an

integral part of every phase of the development cycle. It should be considered as part of the

formulation of the original requirements, incorporated into the formal specification, and

implemented during the detailed design.

An Inside View

In this class, we do not have the time to be able to execute either the outside or inside views of

the test process with the same thoroughness that we would in industry. None-the-less, this does

not diminish their importance. As a result, in the scope of our work, we will limit our focus to

several basic aspects of the test process. For our inside view we will incorporate simple type

conformance, ensure the proper functionality of the design over the range of and at the boundary

values for the input data, and manage dynamic memory allocation.

Type Conformance

In the context of this discussion, we are interpreting type conformance to mean ensuring that the

types of variables entered as inputs to stand alone functions or to class member functions are

 - 1-

consistent with and compatible with the types specified in the function’s signature – the number,

types, and order of its arguments and with the implemented function body. For our present work,

we will relegate most of the testing to our compiler. Among other things, this means not setting

the warning threshold of the compiler so high that it never bothers us. With the proper levels set,

when or if warnings are generated, we must analyze them, identify the cause of each, then either

correct the problem(s) or determine that it (they) can be safely ignored….this does not mean just

saying “oh yeah, I always get a bunch of warnings”.

The compiler can be a very powerful tool. Take advantage of it. Remember, what we do here is

only the tip of the iceberg.

When we study class inheritance, we will learn that we can pass child class instances as

arguments to functions that may have been written with a parent class type as one of the

arguments. While syntactically correct and legal, we must ensure that when doing so, the

intended behaviour of such a function is consistent with and valid for the designed behaviour of

the child.

Range and Boundary Values

One of the essential steps during the early phases of a design is defining the interface inputs and

outputs for and amongst the system functions then for the comprising modules. This process

begins when we develop the use cases and extends through the definition of the public interfaces

for each of the classes. It involves specifying the type and the range of each input or output

variable. As each of those decisions is made, we must further consider and evaluate how the

system will behave / respond if the input data either does not match the expected type or exceeds

the specified range. In addition to deciding what to do if the data value exceeds the specified

range, we must also consider the proper course of action if (and when) the data magnitude

returns to the proper values.

The problem can be addressed from during the design process and at runtime. As part of the

design, we must ensure that the input data values are in bounds prior to using them in any

calculations or before making any irrevocable decisions – the test code for ensuring that such

constraints are met is incorporated at design time and used at runtime. Further, we must decide

how to treat out of bounds values should they occur at runtime.

 - 2-

Under no circumstances should an out of bounds piece of data ever be mapped into one that is in

bounds or valid without warning. That said, the boundary tests must incorporated into the

runtime code to confirm that input data has values (and types) that are within the specified upper

and lower bounds. Further, we need to decide what to do if such bounds are exceeded.

Alternatives include,

• Hold at max or min value
• Alarm
• Combination

The following diagram illustrates a typical variable and a specified range or limits on the values

of such a variable. At points A and B, the signal is just at the low and high boundaries

respectively; at these two points, the variable’s value remains exactly in range.

At C1, the value exceeds the specified range in the negative direction and continues decreasing.

It reaches a negative peak and begins increasing, crossing the lower bound at C2. The increase

continues until the upper bound is crossed at D1. The behavior at the lower bound is repeated at

the upper and eventually the signal crosses back into the specified range at D2.

The variable’s values at the points A and B are valid and must be accepted as proper inputs. The

design and subsequent tests should confirm that behavior. The values at points C and D,

however, exceed the specifications. At both sets of points, we have several choices:

• Ignore the out of range values.
• Detect the out of range values, issue a warning, and continue operating. When or if

the value returns to the proper range, continue operation with annunciation of the
original fault.

• Detect the out of range values, issue a warning, throw an exception, then try to
correct the problem.

• Detect the out of range values, issue a warning, and terminate operation.

 - 3-

There are also several choices as to what values to assign to the data at these points.

• Accept the actual value of the data
• Map the actual value into the maximum or minimum value but do not use the value

other than for annunciation.
Whatever the choice, the system must be thoroughly tested at such values to ensure proper

operation according to specification. Testing at a typical or a single value of the input is not

sufficient.

As an example, consider a design that utilizes a linked list as a container. There are five

positions within a linked list that are important: the three in bounds values (position 0 – the head

of the list, position (n-1) – the tail, and any position between the head and the tail) and the two

out of bounds values (a negative position and a position beyond the tail of the list). The design

must test for and properly handle attempts to insert, delete, and search for both of the out of

bounds indices and function properly for the in bounds cases. Neither of the out of bounds cases

should ever be mapped into a valid in bounds value.

W

In the C++ language, we allocate m

orking with Dynamic Memory

emory dynamically using one of the forms of the new

mory;

char* pptr = new (nothrow) char;

This will ensure that if the allocation fails, an exception will not be thrown and that a NULL will

...

then, elaborating on the above example, write either

operator. If the allocation succeeds, new will return the address of the newly allocated me

if it fails, it will either return a NULL or throw an exception. Either of these failure cases, must

be handled.

For this class, we will not be working with exceptions; we will cover these in later classes.

However, this does not mean that we do not have to worry about memory allocation failures.

Thus, each time that we use the new operator, we must invoke it with the nothrow constant, for

example.

be returned instead. Before proceeding, whenever we use the new operator, we must then check

for NULL as follows …

First, include the library cassert into your program

#include <cassert>

 - 4-

char* pptr = assert (new (nothrow) char);

 - 5-

#include files

global declarations

 program and tests

rations
ation();

/*
* header describing

 */

main(void) int
{
 local decla

testerInvoc

 return 0;
}

include system header files
include linkedList class and function
definitions etc.

/*
 * header describing program
 */
 member function implementations

or s

tr = new (nothrow) char;

If th aluate to NULL, program flow will continue undisturbed;

ugging tool, we do not want to use it in production

r, our goals for the outside view of testing are two: first and foremost, to

n

de. That

owers

 program, the main() routine should

ic

n and test files implementation files

first. For each file…that way →

imply

char* pp
assert (pptr);

e argument to assert does not ev

otherwise the program will terminate.

Bear in mind, the assert macro is a deb

code...right now, we are only using it temporarily until we learn exceptions.

An Outside View

As we noted earlie

make certain that our design meets the customer’s specifications and secondly to make certai

that we did a good job in satisfying the goals of the inside view. As with the inside view, time

constraints limit the scope of coverage of the testing process that we can incorporate into this

certificate. The following, then, comprise a simple set of guidelines that we’ll follow.

First, at the highest level, we want to separate the test code from the implementation co

said, as we discussed in the tutorial on debugging, we can use the preprocessor to control what

goes into our system build. Thus, we can selectively incorporate test code into the

implementation suite to facilitate testing. We should make

certain, however, that none of the test code is included in the

release build.

Separation of P

When architecting your

serve as a high-level container for the two main pieces of

functionality: the test function and the implementation

function. Let’s examine the structure for testing a dynam

linked list type container.

We begin at the top…

Then the implementatio

…now the test suite… that way ↓

include system header file
include header containing

s
 function definitions etc

/*

and tests

d initializations

perly

il
iddle

r functions in public interface for expected behaviour

d list

 list

in public interface for boundary behaviour

 tu

 * header describing program
 */
oid testerInvocation(void) v

{
Local declarations and definitions an
// description of normal tests and expected behaviour

1. create initial instance of the linked list
 need to verify that each constructor functions pro

. test normal behaviour 2

 insert into empty list
 insert at tail

t several links in middle inser

 insert at head
 insert at tail

ve from head remo
 remove from ta

 m remove from

 display list

 test any other membe

 delete populate

3. test boundary behaviour

scription of boundary tests and expected behaviour // de

e a working list creat

insert before head

 sert after tail in

move before head re
remove after tail

pty remove from em

 display empty list
 delete empty list

ny other member functions test a

re rn

}

The follow written to a test results file

1. Name of the test being run.

ing should be

 - 6-

 - 7-

sed.

d” is not a presentation of the results of the test…neither is

riptive annotation.

at, simple representative examples. Your

2. Identification of test vector(s) or data being u

3. Expected results of the test.

4. Actual results of the test.

Note that “test passed” or “test faile

12 or myName with no other desc

Understand that the test and results files and the items being tested will be different for each

program being tested. The examples above are just th

tests and test file must reflect the design and important issues in your program.

	Thoughts on Testing
	An Inside View
	Type Conformance
	Range and Boundary Values
	Working with Dynamic Memory
	An Outside View
	Separation of Powers

