
Homework 5 Designing Classes – Overloading Operators – Working with File I/O C++ - Introduction

University of Washington

Outreach Program

Name_________________________

1. We require a container, Histogram, that can be used to keep count of the number of
alphas (letter or digit), digits (0..9), punctuation, and whitespace (\t, \v, \f, \r, or \n)
characters in an input file.

a. Develop the use cases for the Histogram. Don’t forget that the use case has the
graphical, textual, and exception condition components.

b. Develop a class diagram for the Histogram.

c. Implement the Histogram class. Remember, a histogram is a container only; it stores
things, it does not do any parsing.

d. Write a function parseAdd that takes a C-style string by value and an instance of the
Histogram by reference. Invoke the function parseAdd to parse the string and update
the Histogram entries. The string is to be read from a file.

e. Write a short test plan stating what must be tested to verify your design.

f. Based upon your test plan, write test cases and test your design using a file that
contains several sentences. Ensure that the sentences contain characters in each
category in the Histogram.

2. In addition to being able to individually access query the number of entries in any of the

categories, overload the ostream operator to support printing instances of a Histogram to
stdout.

3. Let’s now explore a more open ended design problem to which we can apply our skills in
the design of object centered systems.

As the president of Big Bucks Consulting, as well as its chief designer, you have been
hired by Fleecem National Bank to upgrade its customer database. You have chosen to
rewrite the data base using C++.

 Each customer account consists of a savings account and a checking account.

a. We begin the design by developing a set of use cases for the combined account that
will describe how a customer may interact with the account and each of the pieces.

Don’t forget that the use case has the graphical, textual, and exception condition
components.

b. As a next step, specify and describe, textually, the primary public and private
components of a customer account. Express these in a class diagram. Don’t get
carried away here - there are only a couple of basic attributes of such an account.

c. Now the design and implementation – and test too. Design a C++ class that
implements the requirements of parts a and b. First write the C++ code and classes
that implement that design then integrate them into the final system.

d. Write a short test plan stating what must be tested to verify your design.

e. Based upon your test plan, write test cases and test your design, including boundary
conditions, to ensure that it behaves as you (and the customer) intended.

Be sure to include all the data and function members.

	University of Washington

