Final Project C++ - An Introduction

Name

Let’s now bring the things that we’ve been studying together and have a little fun along the way.

This assignment takes us into rural Ireland amongst the green hills and valleys far far away. In
the mists of the ancient past, amid the wee people, leprechauns, fairies, and pots of gold we find
our hero, a simple cockroach, Reginald Pellage O’Reilly. On arriving, we look over the hill
down on the bucolic valley below. There we find,

A small and simple village, easily more than a thousand years old.
Our village appears as a 5 by 5 grid containing with 25 thatched roof cottages.
People etc.

We will have 2 main people

You the carefree adventurous wanderer, exploring from cottage to cottage in the
village.

A Drunken Cockroach,it seems that the wee cockroach had a rather unhappy
childhood. During one of its early years, wandering around on a table in an old
crofters cottage in a distant corner of Ireland, he was not paying attention and fell into
a bit of the barley. After swimming around in the pot for several weeks, one could
easily say that he was well preserved. Freed once again he set out to explore the
outside world. He has been seen weaving randomly from cottage to cottage ever
since.

A simple web search should net you a good random number generator to help you
model the steps in his journey.....

Things

Food gives you energy to keep going.

Teleporter moves the cockroach at random to some other cottage.
Light allows you to see in a dark cottage - tells you what’s in there.

Moves

Up or down allows you to move up or down by one space.

Left or right allows you to move left or right by one space.

Random a move to anywhere — reserved for the wee cockroach

Teleport allows the cockroach to teleport to some other cottage at any time.

Each move consumes 1 food unit for you. After teleporting the cockroach must rest for 3
moves.



e Rules and Commands
You invent these. Use your imagination and creativity when defining commands and
setting the rules of your game.
Remember that neither you nor the cockroach cannot go outside the boundaries of the
village.

Simple console input and output is sufficient for playing the game. The emphasis here is
on the design, not a fancy user interfaces.

For this exercise, you need to design the various classes, their public interfaces, helper methods,
and private data members. Some of these classes may be (abstract) base classes and others
derived classes.

Use your imagination and creativity when defining your classes, commands, and setting the rules
of your game.

For extra credit, the configuration of the game board can be stored in a file and downloaded at
the start of the game.

Simple console input and output is sufficient for playing the game. The emphasis here is
defining the classes, their capabilities, and their hierarchy, not graphical user interfaces.

Do not spend time creating any form of graphical interface or bringing in any other such
packages.

Your deliverables include the following,
Requirements Specification (15 points)

Requirements definition is the process of identifying and understanding what the needs of
all interested parties are then documenting these needs as written definitions and
descriptions. The focus is on what problem the system has to solve. The emphasis is on
the world in which the system will operate not on the system itself.

The purpose of the Requirements Specification step is to capture and express a purely
external view of the system. We refer to this view as the public interface of the system.
We identify what needs to be done starting from the user’s needs and requirements. Non-
functional specifications also have to be added. We use these to explain constraints such
as performance and timing constraints, dependability constraints, as well as cost,
implementation and manufacturing constraints.

Much of this information can / must be captured through UML use cases — remember,
graphics and text (including specifications and exceptions). These are part of your
deliverables.

Design Specification (20 points)
The purpose of the design phase is to find an appropriate internal architecture for the
system that explains HOW the requirements are implemented according to an application-
oriented viewpoint. The description based on a functional structure and the behavior of
each function must be technology-independent. The designer uses the functional design
as an entry point for this step.



Our goal is to define or develop the detailed solution to our design problem. In
developing the design, we begin with the functional design. We begin by analyzing the
problem. Through such analysis, we transform a vague understanding of the
requirements into a precise description. The result of such a process is a detailed textual
or graphical description of the system. When finished, we have a complete functional
definition of the required tasks with no internal contradictions.

As you begin the detailed design phase, structure the system into classes, groups of
related classes class or libraries, or types of jobs which include the notions of helper,
supporter, or doer. For each class, specify precisely its operations and relation to other
classes. Our goal at this stage is to have the classes crisply defined and the interclass
relationships of manageable complexity. We define the abstract data types (ADTS) then
define the underlying data structures.

Use a functional diagram, CRC cards, and UML class diagrams to help formulate the
static architecture of your design. These are part of your deliverables.

Test Plan (10 points)

Test Plan identifies what tests need to be carried out based upon the original requirements
specification. It describes in general terms the following information:

e What is to be tested?

e The testing order within each type of test.
e Assumptions made.

e Algorithms that may be used.

Test Cases and Results (10 points)
The test cases evolved from the test plan, provide the detailed steps for each test.
Annotated results of executing your test cases.

Source Code (90 Points)
Listings of your program.
Your program must be decomposed into main, test, implementation, and header files.

The solution must be implemented as an object centered design, not a procedural program
using classes.

Your design must include the following
1. The set of rules and constraints under which the journey proceeds.
At least 5 or 6 classes.
Copy constructor
Assignment operator
Overloaded operator function
Composition

o 0k~



7. Inheritance and polymorphism

Please clearly mark in your source code where you are using each of these.

For extra credit, the configuration of the village and the contents of each room may be stored
in a file and downloaded at the start of the game.



	Requirements Specification (15 points)
	Design Specification (20 points)
	Test Plan (10 points)
	Test Cases and Results (10 points)
	Source Code (90 Points)

