
Use Case Diagram

Create Account
Create a user account and set all balances to 0
Exception

Out of memory
Deposit Checking

Enter an amount into the checking component
Exception

The amount entered is negative
Balance Checking

Return the balance in the checking component
Exception

None
Withdraw Checking

Withdraw an amount from the checking component
Exception

The amount withdrawn is negative
The amount withdrawn exceeds the current balance

Deposit Savings
Enter an amount into the savings component
Exception

The amount entered is negative
Balance Savings

Return the balance in the savings component
Exception

None
Withdraw Savings

Withdraw an amount from the savings component
Exception

The amount withdrawn is negative
The amount withdrawn exceeds the current balance

Class Diagram

The account is a composition of instances of a checking and a savings account class.
Private:

The instances of the checking and saving accounts
Public:

The public portions of the account class use accessor functions to access the private
savings and checking portions of the account to make deposits, withdrawals, and to
check the balance in either component.
Exception management in each component is managed by the specific component.

The checking class maintains and manages access to the checking balance
Private:

The checking balance
Public:

The public portion of the checking class provides the access functions to the checking
balance to permit deposits, withdrawals, and balance check. These accessors ensure
that amounts and access methods comply with requirements

The savings class maintains and manages access to the savings balance
Private:

The savings balance

Public:
The public portion of the savings class provides the access functions to the savings
balance to permit deposits, withdrawals, and balance check. These accessors ensure
that amounts and access methods comply with requirements

+depositChecking() : int
+depositSavings() : int
+withdrawChecking() : int
+withdrawSavings() : int
+balChecking() : int
+balSave() : int

-savingsPart : Savings
-checkingPart : Checking

Customer Account

+deposit() : int
+withdraw() : int
+balance() : int

-myBalance : int
Savings

1

*

+deposit() : int
+withdraw() : int
+balance() : int

-myBalance : int
Checking

1

*

Test Plan

1. Test that the account can be created.
2. Test that deposits, withdrawals, and balance check can be made from the checking

portion of the account.
3. Test that negative deposits and those that exceed the current balance are blocked.
4. Test that deposits, withdrawals, and balance check can be made from the savings

portion of the account.
5. Test that negative deposits and those that exceed the current balance are blocked.

Test Cases

1. Create a new account.
2. Deposit a positive amount into the checking portion and verify that it succeeded.
3. Deposit a negative amount into the checking portion and verify that it failed.
4. Withdraw from the checking portion until the balance reaches zero and confirm that

further withdrawals are blocked.
5. Deposit a positive amount into the savings portion and verify that it succeeded.
6. Deposit a negative amount into the savings portion and verify that it failed.

7. Withdraw from the savings portion until the balance reaches zero and confirm that
further withdrawals are blocked.

8. Verify that an account instance can be printed to stdout using an overloaded insertion
operator.

	Use Case Diagram
	Class Diagram
	Private:
	Public:
	Private:
	Public:
	Private:
	Public:

	Test Plan
	Test Cases

