
Use Case Diagram
The Use Case diagram gives us several pieces of information. First the major pieces of
functionality…it answers the question: What does the user want to do….from the outside.
Second, it gives us a brief description of what each such feature is or does. Third, it
identifies, at an early stage, possible problems that we must address during the design phase.

Graphical View

User

Communications Interface

Record Greeting

Playback Message

Identify Caller

Record Message

Delete Message

Set Date-Time

Display Date-
Time

Upgrade System

myPhone 2010

Accept Call

Make Call

Textual Description
Record Greeting

The user can record a greeting that will be played when a call is received.
Exceptions – out of memory, power off.

Record Message
An incoming call has been received, the outgoing greeting has been played, and
the caller has begun speaking. The message will be tagged with the current time,
the caller’s identification, and stored in the message memory.
Exceptions – out of memory, power off.

Playback Message
The user selects a recorded message, presses a play button. The message is
played until the user selects stop or deletes the message.
Exceptions – out of memory

Delete Message
The user selects a recorded message, presses a delete button. The message is
deleted.
Exceptions – message not found

Identify Caller

The caller’s name and telephone number are identified and made available for
storage.
Exceptions – caller id information not found

Accept Call
An incoming call has been received, the user accepts the call by answering and
then speaking.
Exceptions – none

Make Call
The user initiates an outgoing call by dialing the desired number and pressing the
call button.
Exceptions – incorrect number, line busy, call refused

Set DateTime

The user may update the current date and time through a series of button presses.
Exceptions – incorrect format, invalid selection

Display DateTime
The display of date and time is the default case for the display, however, the user
may choose to pre-empt another displayed message to display current date and
time.

Exceptions – data lost
Upgrade System

The system can be upgraded by first checking for available upgrades, selectively
downloading then installing the chosen upgrades
Exceptions – connection loss during access, partial download

Functional Decomposition

The use cases have given us an outside view of the system that we are designing. We work
with those and our customer to put together a Requirements Specification which formally
captures the system requirements. We then quantify those requirements in a Design
Specification.
The use cases, Requirements, and Design Specifications are independent of the
implementation of the system, including any choice of language or hardware. At this stage in
the development, we move inside the system and begin to think about the implementation
that will satisfy the specified requirements.
We begin by trying to identify the major functional blocks that comprise or give rise to the
functionality or behaviour of the system. We repeat the hierarchical decomposition until we
are satisfied that the level of detail allows us to move further into the specific
implementations details of the design such as the microprocessor, the implementation
language, etc.
The current design is utilizing an approach from Smalltalk. This is called the Model, View,
Controller (MVC) paradigm. The entity that is implementing a piece of functionality is
called the Model. A model can have many associated view-controller pairs. The View
provides an interface to the Model and the Controller provides the input-output mechanics.
When the user (which can be another piece of software) of the module sends an input into the
module, that input is brought in by the controller and sent to the model which handles it. If
that input necessitates a change in the output of the module, that information is sent to the
view for updating.
Consider a simple case of a database filled with numbers. This is the Model. Now add the
Views and Controllers. One view of the numbers may be as a pie chart, another as a
histogram, a third as a line graph, and a fourth as an Excel spreadsheet. Whenever any of the
data changes, for any reason, all of the views are updated to reflect hose changes.
Now for the cell phone. The functional decomposition follows in the next diagram.
We identify four top-level functions: User Interface, Memory Management, Call
Management, and the Network. These are further decomposed into the secondary level
functions shown.

myPhone2010

User Interface Message Management

Timebase

Calendar

Mode

View

Controller

In

Out

Edit

Play

Network

Send

Recv

Call Management

Incoming

Outgoing

CRC Cards

The CRC cards are the next tool that we’ll use. We use these to begin to map the functional
blocks onto sets of implementing modules or objects. These will ultimately lead to our
classes for an object-centered design.
Each card will provide two major pieces
of information: what are the
responsibilities of the module and what
other modules will this one have to work
with to exchange information to get its
job done.

class: UserInterface
superclass
subclasses
responsibilities collaborators

1. get user input

2. manage display

3. manage status info

4. manage time functions

5. coordinate audio I/O

1. time subsystem

2. display interface

3. battery subsystem

4. keypad interface

5. audio subsystem

We don’t include the hardware, but will
include drivers for or interfaces to that
hardware if necessary.
The diagram that follows gives one CRC
card for the system. That for the User
Interface.

Class Diagram
From the CRC cards, we evolve the classes and their public interfaces. The first diagram
shows the diagram for the full system. The next diagram expands the User Interface class
into its implementing classes.
Observe that the diagram is decomposed along the lines of major pieces of
functionality…audio, memory, display, network, time…and each of these is further
decomposed. A similar decomposition occurs for the UserInterface with classes that
implement the major responsibilities expressed in the CRC cards.
The hardware pieces, the keyboard and the speaker, have associated software drivers.

User Interface

+outStream()
+inStream()

-volume : unsigned char
-inMessage : unsigned char
-outMessage : unsigned char

Audio Subsystem

User Controls

+send()
+update()

-date : int
-time : int
-status : int
-refresh

Display Driver

+getTime() : int
+setTime() : int
+getDate() : int
+setDate() : int
+refreshDisplay()

-time : int
Time Subsystem

+get()
-inData
Audio Input

+put()
-outData
Audio Output

Message Memory

+getMessage()
-message
Incoming Message

+putMessage()
-message
Outgoing Message

«uses» «uses»

1

100

1

1

«uses» «uses»

+get() : char
+send() : char

-configuration : char
Network Interface

«interface»
Speaker

«interface»
Microphone

The UserInterface (UI) class is implemented using the MVC model discussed earlier. Observe
how the UI class comprises a collection other classes along the lines of different pieces of
functionality. The controller has a callback list of views that must be updated whenever new
information is available. The top view subclasses the time and clock views.

+selectUserMode()

System::User Interface

+setVolume()
+inStream()
+outStream()

-volume : unsigned char
-inMessage : unsigned char
-outMessage : unsigned char

System::AudioController

+getButton()
-button
System::KeypadInterface

+getState() : unsigned char
-batState : unsigned char

System::Battery

+selectMode()
+disable()
+update()

-mode : unsigned char
System::UserMode

+update()

System::View
+drawText()
+foregroundColor()
+backgroundColor()
+font()
+clear()

System:ViewContext

+setTime()
-time : unsigned int
System::SetTimeUserMode

+setDate()
-date : unsigned int
System::SetDateUserMode

+setTask()
-task : unsigned int
System::TaskUserMode

+update()

System::ClockView

+update()

System::TaskView

1

1
1 1

+update()
-callBackList
System::Controller

1

1

1

1

+getTime() : int
+setTime() : int
+getDate() : int
+setDate() : int
+refreshDisplay()

-time : int
System::Time Subsystem

	Use Case Diagram
	Graphical View
	Textual Description
	Record Greeting
	Record Message
	Playback Message
	Delete Message
	Identify Caller
	Accept Call
	Make Call
	Set DateTime
	Display DateTime
	Upgrade System

	Functional Decomposition
	CRC Cards
	Class Diagram

