This document provides a set of style guidelines and general standards for the C++ course developers. This is a living document and will be updated as these guidelines mature.

The purpose of this document is not to enforce restrictions on the creative aspects of course content development, but to provide consistency, readability, and good practice for the students reading the material.

Minor Style Guidelines

These guidelines are meant to improve readability and standardize style, versus provide safety or functionality guidelines.

· All types (in particular class names) begin with an upper case letter.
· Most identifiers that consist of multiple words are concatenated together with an upper case letter beginning each word (i.e. mixed case – e.g. myVehicleObject).
· All objects / variables / parameter identifiers begin with a lower case letter.
· All function and method names begin with a lower case letter.
· Constant and enum literals are all uppercase.
· Every statement block is surrounded with braces, particularly one line statement bodies on if statements.
· Member data identifiers have 'm' pre-pended to each identifier, with the next letter being upper case. This makes “identical” parameter names in constructor arguments easy to differentiate.
· Use namespace declarations instead of namespace directives – i.e. use the following:

#include <iostream>
using std::cout;
using std::endl;
// …

instead of:

#include <iostream>
using namespace std;

Functionality and Safety Guidelines

These are guidelines that encourage safer, more robust, efficient, and correct code. [Editor note from Cliff – when reviewing the C++ course materials, I will make comments when these guidelines are violated, unless there are specific reasons why they are being violated.]

· Use initializer lists on every constructor, for every member data and for each base class (if derived). Failure to follow this guideline is one of the most common sources of inefficient initialization and subtle bugs, specially when initializing derived objects. Embedded programmers in particular can gain from efficient initialization of objects. Note that assigning to member data in the constructor body is not initialization – it is assignment after some form of (most likely unneeded) initialization. Constructor initializer lists can be introduced early in the C++ Introduction course – the following syntax:
class MyClass {
public:
 MyClass () : a(0), b(10.0), { }
private:
 int a;
 double b;
};
is just as easy to teach as ctor body assignment. By the end of the C++ Intro course, initialization through ctor lists should be ingrained, and students should know the difference between initializing and assignment.

· Use const consistently and thoroughly. This is another one of the most commonly ignored features of C++, but it can help a programmer write more correct and consistent classes, along with providing more information about the interface to a class or function.

· Always assign to every member data element, and the base class member data (call the base class assignment operator) in the overloaded assignment operator function. Similar conceptual logic applies for derived copy ctors.

· String literals (C-style strings) should be type const char*, not char*. Note that standard C++ has deprecated the old style declarations, plus the const correct form allows the compiler to potentially make additional optimizations.

· For every class, do one of the following:

· Implement the copy constructor, assign operator, and destructor, if needed (i.e. resources are being allocated somewhere in the class methods).

· Disable the copy ctor and assign op by putting the declarations in the private section, if copying and assignment should be disallowed.

· When the compiler generated copy / assign is desired (this should be the typical case), put the copy ctor, assign op, and dtor declarations in the class, but comment them out, putting a comment at the end of the line (e.g. // implicit).

· Prefer std::vector and std::string instead of fixed size buffers – this reduces a whole class of memory allocation bugs, “off by one” errors, and in many cases can reduce memory usage.

· All C++ single-parameter constructors should be preceded by the keyword “explicit” unless implicit conversions are truly wanted (this guideline is only appropriate for Intermediate and Advanced courses).

· When returning objects by value (if a non-intrinsic type), return them by const value. For further explanation of this guideline, see Stroustrup and Meyers. Note that the scenarios for getting in trouble by not using this guideline are rare, but are present nonetheless.

· Wrap headers with #ifndef guards.

· Consider using the std::string class for binary buffers. The std::string class is specifically designed to allow arbitrary binary buffer storage, although proper usage must be understood and followed (.e.g using the data() and length() methods instead of c_str()).

· Never use a leading underscore for an identifier and most importantly never use two or more consecutive underscores anywhere in the identifier. These are reserved for compiler identifiers, although the first is rarely a problem. From Steve Clamage: "Identifiers beginning with underscores might be reserved to the C++ implementation, depending on context and spelling. In addition, it is common to find identifiers beginning with underscores in typical system header files even if they are supposed to be available to the programmer in application programs." The compiler is under no obligation to warn of conflicts.

· Use namespaces (Intermediate and Advanced).

· Use the C++ exception handling facilities. Design and code for strong exception safety, when appropriate. This guideline requires quite a bit of additional knowledge of exception safety, and is probably only appropriate for part of Intermediate, and all of Advanced.

