PROTEINS: Structure, Function, and Bioinformatics 63:391-397 (2006)

Natively Unfolded Regions of the Vertebrate Fibrinogen

Molecule

Russell F. Doolittle* and Justin M. Kollman

Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California, San Diego, La Jolla,

California

ABSTRACT Although it has long been realized
that a large portion of the fibrinogen o chain has
little if any defined structure, the physiological
significance of this flexible appendage remains mys-
terious. Proteins 2006;63:391-397.
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INTRODUCTION

In their invitation to this special issue, the Editors noted
that authors ought to consider George Rose’s research
interests in their choice of topic. In line with that request,
some explanation may be needed for our chosen subject.

As it happens, in 2002 George Rose edited a volume of
Advances in Protein Chemistry on the subject of unfolded
proteins.! The volume, which contains articles from some
of the same individuals contributing to this special issue of
Proteins, was comprehensive. Nonetheless, we were sur-
prised to find that a protein that has been the subject of
study for a hundred years—and that for more than the last
thirty has been thought to have a disproportionate amount
of unfolded structure—was never mentioned. Nor was it
listed elsewhere in various tallies of protein sequences
designated as “intrinsically unstructured” or “natively
unfolded.”® * The present manuscript is intended to rem-
edy these apparent oversights by reviewing evidence for a
lack of structure in certain sectors of the vertebrate
fibrinogen molecule, particularly the carboxyl-terminal
“domains” of the « chains. At issue are two points: (1) what
constitutes a “natively unfolded” entity? And (2) do the
fibrinogen «a-chain carboxyl-terminal regions meet the
requirements? In recent years, criteria for designating a
protein as “disordered” or “unfolded”—in whole or part—
have usually been based on sensitivity to proteases, on the
one hand, or lack of secondary structure as determined by
physical methods like circular dichroism, on the other.®
Another commonly cited attribute is the absence of inter-
pretable structure in electron density maps calculated
from X-ray diffraction data. As we will show, the «C
domains of fibrinogen qualify on all these counts and some
others as well, including rapid evolutionary change and
distinctive amino acid compositions. At the same time,
there are some contrary data that imply a minimally
folded core structure that need to be discussed also.

© 2005 WILEY-LISS, INC.

STRUCTURAL ASPECTS
Vertebrate Fibrinogen

Fibrinogen is the large glycoprotein that circulates in
the blood plasma of all vertebrate animals and is the
precursor of fibrin blood clots. It is a six-chained entity
composed of two pairs each of three polypeptide chains
joined by a complex set of disulfide bonds (a5f57Y5). Physical-
chemico studies and electron microscopy long ago revealed
an extended multi-domained structure approximately 45
nm in length. A plethora of biochemical experiments over
the course of half a century gave flesh to that skeletal
structure and provided a general if conceptual model of its
structure (Fig. 1). One longstanding feature of the model
was that the carboxyl two-thirds of the a chains were
devoid of secondary structure, oft being referred to as
“free-swimming appendages”.®

The initial basis for this characterization was that the
designated segments were easily removed and destroyed
by a wide variety of proteases. In the ensuing three
decades, an enormous amount of data supporting a mostly
unfolded structure has been provided by other means.
What follows is a summary of the evidence for that view
and some speculation about how inherent flexibility may
play a role in fibrin formation.

The Core Fragments D and E

In 1961, a French group digested fibrinogen with the
enzyme plasmin and passed the products over an ion
exchange column.” Five distinguishable peaks were ob-
served, denoted A—E. Two of these, D and E, accounted for
the bulk of the applied material and were destined to
become the well studied core fragments D and E. Frag-
ments D, of which there are two per molecule, and E (the
central domain) together account for two-thirds of the
mass of the starting fibrinogen. The missing one-third,
which in most mammalian molecules amounts to about a
thousand residues per native dimer, is mostly from the
carboxyl-terminal segments of the two « chains. Frag-
ments D and E also accounted for the main morphological
features observed in shadow-cast electron micrographs of
fibrinogen.®*
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Fig. 1. An old model of fibrinogen concocted on the basis of early electron microscopy studies and sundry

biochemical data. FPA, fibrinopeptide A; FPB, fibrinopeptide B; SS RING, disulfide rings; XL, cross-linking
sites; CHO, carbohydrate. Aa, B, and y denote the «, B, and y chains of the dimeric protein, respectively. Note
the minimally folded «C regions. (reprinted from Marder, Francis and Doolittle”")
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Fig. 2. Diagram of various regions of human fibrinogen « chain. Residue numbers denote some key points.
A proteolytic fragment*® and two recombinantly expressed regions®®°® are labeled by authors and year.
Positions corresponding to changes that lead to truncated « chains in some variant human fibrinogens are
marked “X” (fibrinogens Arnhem*® and Marburg®"). Positions at which changes lead to amyloid formation are
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denoted by shaded circles.

Moreover, when fibrinogen was subjected to limited
proteolysis, the percent of secondary structure remaining
in the core structure, as determined by circular dichroism,
increased greatly.'® This observation was consistent with
the notion that the three globules observed in electron
micrographs were likely connected by o-helical “coiled
coils.”** Conversely, CD studies on the material released
gave a signal characteristic of a “random coil”.*%13

On another front, elegant scanning calorimetry experi-
ments showed that there were two discrete moieties in
fibrinogen that “melted” at very different temperatures,
two widely separated heat-absorbing peaks being entirely
accounted for by the fragments D and E with no other
obvious features being evident.**

Amino Acid Sequence Studies

When the human fibrinogen « chain was sequenced, ' it
was found to have three quite characteristic zones: a
coiled-coil domain that was homologous to the B and vy

chains, a region consisting of ten 13-residue imperfect
repeats, and an approximately 250-residue long terminal
domain corresponding to what is now generally referred to
as the aC domain (Fig. 2). The sequence was wholly
consistent with the model shown in Figure 1 that had a
terminal aC region connected to the main-frame of the
molecule by a flexible tether composed of imperfect re-
peats, both sections being susceptible to release by pro-
teases.

Sequence studies on other species revealed that the
carboxyl-terminal regions of a chains have experienced a
very rapid rate of evolutionary change, not only with
regard to amino acid substitution, but also in the way of
numerous deletions and insertions.'® A region containing
a single disulfide bond is modestly conserved (Fig. 3), but
even it changes faster than the average plasma protein.
For example, the 40-residue conserved segment containing
the disulfide is only 67% identical in humans and chickens,
whereas the entire 86-kDa fragments D of these two
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Fig. 3. Schematic depiction of human, bovine, rat and chicken fibrinogen « chains. The regions with the
variable numbers of repeats and the «C domains are both readily removed by limited proteolysis. Note that the
chicken « chain lacks the repeat region which in other species provides a connecting tether for the terminal «C
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Fig. 4. Sequence comparisons of aC domains from six assorted vertebrates. The extensive differences
reflect the rapid evolutionary change that occurs in this region of the fibrinogen molecule. Only six residues in
the approximately 240-residue segment are absolutely conserved (denoted by asterisks). Those positions in
which five of the six residues are identical are emboldened. The most conserved region, delineated by the two

cysteine residues that form the single disulfide bond, is shaded.

species are almost 80% identical. In general, the amino
acid compositions of the aC domains in various species—
their rapid change not withstanding—are consistent with
what is now being deigned as characteristic of intrinsically
or natively unfolded proteins.'”'® Rapid evolution has
been reported for other proteins with long disordered
regions.'® As it happens, also, some intrinsically disor-
dered domains have been shown to be the result of
evolutionary expansion of repeat regions.?® In this regard,
it is significant that the number of repeats in the central
region of these chains varies widely from species to species
(Fig. 4). Indeed, even the sizes of the repeats differ, being

13 residues in most species, but 15 residues in marsupials,
and 18 residues in dogs'® and lampreys.?' Birds were
found to lack the repeated region completely,?? as has now
been found to be the case for bony fish and amphibians.??
It has been proposed that in those molecules that do have
the repeats they serve as an accordion or spring-like tether
for the aC domain.?*

Evidence Favoring a Compact «C Domain.

In calorimetry studies conducted subsequent to the
those cited above, bovine fibrinogen was found to exhibit
additional small but reproducible heat effects that were
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consistent with some minimal structure in the aC do-
mains. These data were regarded as indicative of a com-
pact domain connected to the main body by a flexible
tether.?*2® Subsequent studies on human fibrinogen did
not find the same thermal effects, however.2® Nonetheless,
the view has persisted that these are compact globular
domains.?” The question arises as to whether the descrip-
tors “compact” and “globular” imply a fixed and folded
structure. Although “globular” is a broad, all-embracing
term that can accommodate both folded and unfolded
domains, “compact” almost always implies a degree of
order.

In line with this view, more recent studies employing
fluorescence methods, differential scanning calorimetry,
and CD were conducted on recombinant constructs of both
the bovine and human «C domain, with and without the
connecting tethers®® (Fig. 2). Although thermally-induced
changes in ellipticity were detected, virtually no conven-
tional secondary structure (i.e., a-helix or B-structure) was
found. Instead, the evidence favored the existence of an
extended helical poly(L-proline) type II structure, mostly
associated with the connector (tether) region. It is notable
that the polyproline II helix is now regarded as a hallmark
of the unfolded state.'2 It might be noted, also, that not
all a-chain repeats in different species are proline-rich; but
then again, polyproline II structure is often observed in
other proline-poor proteins, as well.? As pointed out to us
by a reviewer, enthalpy changes during scanning calorim-
etry are given to various interpretations and must be
considered with great caution.?!

Electron Microscopy

There have been conflicting reports over the years about
the whereabouts of the «C domain as determined by
various electron microscope approaches, some of which
contend that the aC domains are associated with the
central domain,?3% and others, mostly utilizing antibod-
ies (or FAB fragments) directed against peptides in the aC
region, which find the immuno-reactive material in varied
and more distal locations.>*35 In the latter experiments,
only the antibodies (or FAB fragments), and not the «C
regions themselves, appeared to be shadowed. However,
there have been more definitive studies on isolated aC
domains, particularly focused on a 40-kD fragment from
bovine fibrinogen.?®

A recent report utilizing scanning-transmission electron
microscopy (STEM) has focused on a minor form of fibrino-
gen that has alternatively spliced « chains with carboxyl-
terminal globular domains (denoted «C’) homologous to
the B and +y chains located distal to (in a sequence sense)
the usual aC domains.?” In those micrographs allegedly
including both kinds of domain, the globular «C’ domains,
which contain about the same number of residues as aC
domains, dwarf the images of any neighboring material.

Crystal Structures

More than three decades ago, it was serendipitously
found possible to crystallize bovine fibrinogen that had
been trimmed down by limited proteolysis, even though it
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was not possible to crystallize the native protein.?® Eventu-
ally, a structure of this modified protein—lacking oC
domains—was determined at a nominal 4 A resolution.?®

The fact that chicken fibrinogen totally lacks the middle-
region tether®? (Fig. 4) prompted efforts to crystallize that
protein. Indeed, the native protein was crystallized and a
structure determined at 2.7 A resolution.*® Not surpris-
ingly, the aC domains were not discernable. It is indisput-
able that the «C domains in these crystalline settings are
moving, whether or not they are intrinsically unfolded,
and this in a fibrinogen whose « chains lack the repetitive
region thought to be the flexible tether. Efforts to crystal-
lize recombinant constructs corresponding to the aC do-
mains from both bovine and chicken fibrinogens have been
wholly unsuccessful.*!

All of these observations are in accord with the aC
domains of fibrinogen having the properties of “natively
unfolded proteins” as currently defined. The questions
arise, why are these regions of fibrinogen unfolded, and
what is their raison d’etre?

FUNCTIONAL ASPECTS
Fibrin Formation

There is general agreement that aC domains play a role
in fibrin formation. Antibodies directed to that region of
the molecule interfere with clotting,*?> as do purified
fragments themselves.?%4%4* Moreover, if the «C domains
are absent, whether removed by proteases or—as we will
discuss further below—the result of genetic aberration,
clotting is greatly slowed.*® What the role may be, how-
ever, is not at all clear.

Put very briefly, fibrin formation occurs in two stages. In
the first, thrombin removes the fibrinopeptides A from the
amino-terminal segments of a chains, thereby exposing a
set of knobs in the central region of fibrinogen that can fit
into holes at the extremeties of other molecules and bridge
them together in an overlapping fashion to form a two-
molecule thick protofibril. In the second stage, thrombin
removes the fibrinopeptide B from the amino-terminal
segment of the B chain, the result of which is the lateral
association of the protofibrils and the formation of mature
fibers. The involvement of the readily removed aC domain
appears to be limited to this second stage.

In this regard, it has long been known that fibrinogen
prepared by conventional means from normal plasma
contains separable fractions that have different degrees of
solubility.*® Comparisons of “high-soluble” and “low-
soluble” fractions have been traced to differences in the
carboxyl-terminal regions of the a chains, the more soluble
fractions having distinctly shorter chains, the result of in
vivo proteolysis.*” Similar results are observed when
limited proteolysis is performed in vitro.

As it happens, however, proteolysis—especially when
conducted in vitro—removes other parts of the fibrinogen
molecule, most notably a flexible 40—50 residue segment
from the amino-terminus of the B chain, and the possible
contribution of these missing segments to the slowed
clotting could not be discounted, even though in some
reports great care was taken to show that the B chains
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were intact.*” The ambiguity was resolved, to a degree,
when individuals were identified who had genetic defects
in this region of fibrinogen, some of whom had the region in
question wholly deleted (Fig. 2) and whose blood clotting
was seriously disrupted.

Genetically Defective Fibrinogens

Genetically variant forms of human fibrinogen have
been helpful in assessing the functions of the «C domain. A
number of different variants result in truncated « chains,
the most informative of which are arguably those that
occur in the region just before the beginning of the ten
imperfect repeats and which ought to be equivalent to
those generated by limited proteolysis in vitro. One of
these is fibrinogen Arnem,*® in which a residue ordinarily
cleaved by plasmin, aLys-219, has its codon mutated to a
terminator. The patient experienced bleeding problems,
and the fibrinogen was definitely slow to clot when treated
with thrombin. Similar situations occur in a host of other
variants in which the a-chain changes are more distal. On
their own, then, variant human fibrinogens lacking all or
part of the aC domain demonstrate the importance of that
structure in fibrin formation.

Some of the genetically variant fibrinogens provide
evidence for the flexible character of «C domains, as well
as providing circumstantial evidence about their unfolded
nature. In this regard, a variety of changes lead to the
presence of unpaired cysteine residues in the «C region.
These come about in two ways. In one these, noncysteine
residues are simply mutated to cysteines. An example is
Fibrinogen Dusart, which has a substitution of a cysteine
for an arginine at position a554.4%° In the other situation,
termination codons occur in the 29-residue segment be-
tween cysteines 0442 and 472 (Fig. 2). An example is
fibrinogen Marburg which has a stop codon in place of the
normal lysine at position «461,%! and as a result it not only
lacks the carboxyl-terminal 150 amino acids that encom-
pass most of the «C domain but has an unpaired cysteine
at 442 as well.

Invariably these unpaired cysteines form disulfide bonds
with plasma albumin, the most abundant of the plasma
proteins. Burdened by that extra 67-kDa entity, these
fibrinogens exhibit markedly abnormal polymerization.
Significantly, none has ever been found to be disulfide-
linked to its partner aC domain in the same or other
molecules. It is of interest, also, that electron microscopy
readily identifies the attached plasma albumin moieties
but not the «C domains themselves.??

It should be mentioned in passing that several variant
human fibrinogens in the region of a-chain residues 522—
554 result in the formation of amyloid deposits.?*~55
Interestingly, unfolded domains are often associated with
amyloid formation.? Finally, adding another note to the
puzzle is the observation that a recombinant fibrinogen
engineered to have its a chains terminate at position a251
was only modestly affected with regard to polymeriza-
tion.?¢
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Factor XIII Cross-Linking

In its early stages, fibrin formation is driven by the
formation of noncovalent interactions. As the molecules
polymerize and specific regions are brought into juxtaposi-
tion, the transglutaminase known as factor XIIla incorpo-
rates isopeptide linkages between certain lysine and glu-
tamine side chains. In particular, sets of reciprocal cross-
links are rapidly formed between the carboxyl-terminal
segments of abutting vy chains—in a time course measured
in seconds or minutes—and while the first stage of fibrin
formation is still in progress.?”® In contrast, a network of
the same kind of cross-links (e-amino-y-glutamyl lysines)
is formed very much more slowly—over the course of hours
or days—between o« C domains. The latter involve a variety
oflysine and glutamine side-chains®® and lead to a multim-
erically cross-linked system.?® Studies with recombinant
oC domains and exogenous factor XIII have yielded simi-
lar results.®%-61

Unquestionably, the cross-linking of the «C domains
contributes to the stability of clots, even though the wide
variety of different cross-links formed reflects an almost
random nature of encounter consistent with a lack of
specific structure.®?

The aC Domain as a Binding Site

It is well established that the aC domains in fibrinogen
have binding sites for factors that are involved in the
destruction of fibrin clots, namely, tissue plasminogen
activator (t-PA) and plasminogen.®® It is also known that
inhibitors of such proteolytic enzymes can bind to these
regions.®* Moreover, these same regions of the « chains are
also known to be involved in the binding of fibrinogen to
blood platelets,®® fibroblasts,%® endothelial,®” and other
lymphoid cells.®® The «C domain is also the site for
cross-linking fibrinogen to fibronectin,®® a process vital to
wound healing.

A Guardian Function

A region of a protein can have multiple functions, of
course. One interesting but almost forgotten suggestion
was that these flexible appendages—Ilike leashed hounds—
guard the otherwise vulnerable coiled coils against proteo-
lytic attack. A careful kinetic analysis of the proteolysis of
both bovine and human fibrinogens concluded that such a
role was indeed reasonable.”®

SUMMARY

In spite of the evidence for an intrinsically disordered
structure marshaled above, the popular view remains that
aC domains are compact and globular.2”-?® That in most
species they are tethered to the main frame of the parent
molecule by a flexible connector is not in dispute. How
these regions can be associated intra-molecularly in fibrino-
gen and be in motion at the same time remains mysteri-
ous. It may be that these are matters of degree: we need to
ask, how disordered and how much motion?

Beyond that, the argument may be largely semantic,
different images being provoked by the terms “compact
globular” on the one hand, and “intrinsically unfolded” on
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the other. In this regard, reference is made in discussions
of other natively unfolded proteins to “an ensemble of
interchanging conformations.”*® Surely this must be the
case for the «C domain, defined loops of as yet unknown
conformations being able to serve as specific binding sites
for other proteins. Other loops must be able to form loose
associations with themselves or other features on the
neighboring «C domains. What these domains do not do is
form stable structures with defined geometries that form
specific associations with themselves; if they did we would
expect readily defined cross-links to be introduced by
factor XIII, if only because of the very limited number of
glutamines that can act as acceptors. We would also expect
to see the intra-molecularly associated structures in X-ray
diffraction patterns. Finally, we would expect regions of
association—whether intra- or inter-molecularly—to have
amino acid sequences that are at least moderately con-
served in an evolutionary sense.

In the end, there is good reason to believe that the aC
domains of vertebrate fibrinogen are intrinsically un-
folded. Even so, their mobility must be greatly constrained
after the conversion of fibrinogen to fibrin, and especially
after the introduction of covalent cross-links between
them. The fact that individual cross-links involve different
glutamine and lysine participants underscores the random-
ized encounters expected from these highly mobile enti-
ties. Apart from this ultimate stabilization, the general
whereabouts and precise function of these segments re-
main controversial matters.
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