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ABSTRACT
In this paper, we present DoppleSleep – a contactless sleep
sensing system that continuously and unobtrusively track
sleep quality using commercial off-the-shelf radar modules.
DoppleSleep provides a single sensor solution to track sleep-
related physical and physiological variables including coarse
body movements and subtle and fine-grained chest heart
movements due to breathing and heartbeat. By integrat-
ing vital signals and body movement sensing, DoppleSleep
achieves 89.6% recall with Sleep vs. Wake classification
and 80.2% recall with REM vs. Non-REM classification
compared to EEG-based sleep sensing. Lastly, it provides
several objective sleep quality measurements including sleep
onset latency, number of awakenings, and sleep efficiency.
The contactless nature of DoppleSleep obviates the need to
instrument the user’s body with sensors. Lastly, DoppleSleep
is implemented on an ARM microcontroller and a smart-
phone application that are benchmarked in terms of power
and resource usage.
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INTRODUCTION
Consuming almost a third of our daily lives, sleep is a
significant marker of an individual’s health and well-being.
Getting ample, good-quality sleep facilitates higher levels
of productivity, mental performance, and physical growth
[11]. However, a majority of the general population remains
unaware of their overall sleep quality or longer-term patterns
in their sleep duration and consistency [37]. Some people
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suspected of having sleep disorders such as sleep apnea or
narcolepsy may be advised by physicians to undergo sleep
studies in a laboratory, which consists of a single, highly
studied night. However, many people with poor sleep quality
have more long-term sleep issues such as insomnia or delayed
sleep phase syndrome that require longer term monitoring to
diagnose, monitor, and treat. A sleep monitoring system that
can unobtrusively and objectively measure sleep quality over
the long term could provide users with valuable insights into
their sleep habits, help them take corrective measures such as
improving their sleep hygiene, and ultimately help with iden-
tifying more sleep disorders, which often go undiagnosed.

Apart from short-term diagnostic systems like polysomnog-
raphy, there is a wide variety of commercial long-term sleep
monitoring devices. An overview of the state of art in
sleep sensing can inform us of the existing gaps in the
practical usage of sleep sensing systems. At one end of the
spectrum is polysomnography (PSG), which is regarded as
the medical gold standard for assessing sleep quality and for
diagnosing sleep-related disorders such as sleep apnea [15].
By instrumenting patients with at least 7 different sensors
and electrodes that track various sleep-related physiological
parameters throughout the night, PSG provides fine-grained
sleep quality assessment. PSG is considered a highly ob-
trusive sleep sensing system due to its expense, practicality
for home-based use, and comfort-level for the patient, and
thus its application is limited to diagnosing sleep-related
disorders in clinical settings and only for short durations.
At the other end of the spectrum are commercial devices
that enable long-term sleep monitoring. These primarily
use Actigraphy, a widely adopted method that infers sleep
duration and quality by measuring body motion during sleep
[18]. Numerous consumer electronic devices such as fitness
trackers [8, 3], smart watches, and smart phones leverage
inbuilt accelerometers to provide actigraphy based sleep mon-
itoring. However, many users are resistant to the idea of
having to wear or place sensors close to the body during sleep
[17]. To facilitate non-contact sensing, smartphone apps
have been developed that sense sleep-related environmental
factors in addition to body movement to infer sleep quality.
A low-cost, long-term, contactless sleep sensing system that
monitors sleep related physiological variables similar to PSG
but with the unobtrusiveness and potential for long-term mon-
itoring of actigraphy can potentially bridge the gap between
effectiveness and daily usage of sleep sensing.



Figure 1: compares proposed DoppleSleep with a few state of the art sleep sensing technologies in terms of their typical usage,
intrusiveness, affordances, sensing modalities, captured sleep biomarkers and predicted sleep variables.

In this paper, we present DoppleSleep, a contactless sleep
sensing technology that monitors three significant sleep-
related biomarkers: breathing rate, heart rate, and body
motion using a single, low-cost, off-the-shelf, K-band 24GHz
radar module. Using a radar transceiver, the system tracks
phase changes in the reflected electromagnetic waves and
tracks the sleeper’s body and limb movements. In the absence
of large body movements, it also estimates the sleeper’s
breathing and heart rate using the periodic phase changes
of the reflected wave from the expansion and contraction of
heart and chest wall. DoppleSleep’s breathing and heart rate
estimation algorithm is relatively robust at various orienta-
tions and distances up to 2m between the user’s body and
sensor. It can estimate heart and breathing rate with an overall
mean absolute error of 1.98 and 3.29 cycles per minute
respectively. DoppleSleep uses these three sleep biomarkers
to classify an epoch (the time unit for sleep classification)
as a sleep or wake event with a recall of 89.6%. The sleep
events are further classified as REM or NREM sleep stages
with a recall of 80.2%. Lastly DoppleSleep objectively
quantifies sleep quality using validated measures like sleep
onset latency, number of awakenings, total sleep time, and
sleep efficiency, similar to those produced in a PSG report [6].
DoppleSleep is comprised of an embedded system unit and
a smartphone application unit. The embedded system unit
locally samples and amplifies the raw radar baseband signal
and transmits the signal to the smartphone via Bluetooth
for further processing. The smartphone application unit is
then used for heart rate, breathing rate, movement estimation,
and sleep modeling. Although contactless detection of vital
signals has been explored and refined over the last several
decades, this is the first attempt that uses vital signals for
sleep stage mining. The specific contributions of this paper
are as follows:

1. A novel and complementary approach to sleep measure-
ment that does not require contact with the user or the
user’s bed.

2. Evaluation of the contactless sensing of physical move-
ments, heart rate, and breathing rate using short-range
Doppler radar in both laboratory and real world settings.

3. Development and preliminary validation of Sleep vs. Wake
and REM vs. Non-REM classification and objective sleep

quality measurements on about 110 hours of sleep data
collected from 16 sleep sessions with 8 participants.

4. Implementation and benchmarking of the signal process-
ing and machine learning algorithm on an ARM micro-
controller and an Android smartphone.

RELATED WORK
Polysomnography (PSG), which is considered as the ”med-
ical gold standard” of sleep sensing [15], is performed in
a controlled environment such as a sleep lab and is used to
diagnose sleep-related breathing disorders like sleep apnea as
well as other disorders such as narcolepsy, idiopathic hyper-
somnia, periodic limb movement, or parasomnias. In PSG,
patients have electrodes and sensors attached to them that
monitor physiological functions such as electrical activity of
the brain, heart rate, respiration rate, oxygen saturation, limb
movements, and eye movements during sleep. A sleep tech-
nician then scores the data, typically collected over a single
night, using various criteria to assess sleep quality. PSG is
limited to short-term sleep sensing since it is performed in
a lab and thus may not be an accurate representation of a
patient’s typical sleep habits. The WatchPAT [10] is one
of the few portable wearable sleep apnea diagnostic tools
that continuously monitors peripheral arterial tone (PAT)
and changes in the autonomic nervous system during sleep
outside of a lab setting. Although WatchPAT allows users to
diagnose sleep apnea from the comfort of their homes, it is
still considered obtrusive due to its comparatively large form
factor combined with the fact that the users will have to wear
the device for an average of 8 hours each night.

Since EEG has been established as an accurate method to
monitor sleep stages [21, 25], commercial sleep sensors
like the Zeo [7] assess sleep quality by measuring electrical
activity in the brain. Users are required to wear a band
embedded with three EEG sensors around the forehead while
sleeping. Although less obtrusive than PSG, this is may still
be considered cumbersome and may interfere with the natural
sleeping habits of the user, as many are reluctant to wear
sensors to bed on a regular basis [17]. For this reason, other
less-invasive commercial alternatives have been developed.

Actigraphy infers sleep quality by measuring human motor
movements [36]. Because body movement can be easily



measured from an accelerometer placed in a user’s vicinity,
actigraphy based sleep sensing can be done non-intrusively
either using commercial fitness bands like the fitbit [8],
jawbone up [3], or using a smart phone: all devices that
have built-in accelerometers. The raw accelerometer data is
continuously sampled to detect coarse body movements such
as tossing and turning during sleep and marks these as arousal
events. However, it still requires a user to either place a
smartphone in their vicinity or wear a wristband while sleep-
ing. Another drawback is that by inferring sleep quality by
tracking only a single physiological factor, actigraphy tends
to overestimate or underestimate certain sleep parameters like
sleep onset latency, total sleep time and sleep efficiency [18].
In addition, clinicians believe actigraphy is only accurate for
normal adults with relatively good sleep patterns [35], which
limits its use in children, older adults, or people suspected
of sleep disorders, which is a large percentage of the target
population for sleep sensing.

To facilitate non-contact sleep sensing, several groups in the
research community have proposed systems that indirectly
assess sleep quality by measuring factors related to the sleep
environment, Kay et al. [26] proposed Lullaby, a capture and
access system that tracks various factors in the environment
that affects sleep quality using a suite of temperature, light,
sound, motion and an off-the shelf sleep sensor to help
identify potential sleep disruptors. More recently, researchers
have leveraged existing sensors in a smartphone to do the
same. Hao et al. proposed iSleep [24], which leverages a
smartphone’s built-in microphone to unobtrusively measure
sound caused by body movement, cough, and snoring. Gu
et al. [22] proposed Sleep Hunter, a system that uses the
smartphone’s microphone, accelerometer, light sensor, etc.
to capture both environmental disturbances (light, noise etc.)
and human physiological reactions (like movements, cough,
snore etc.) to model different stages of sleep (e.g., REM,
deep, and light sleep). Sleep is considered as a private activity
in our everyday life [26], and thus recording audio and video
information throughout the night, although contactless and
online, might still be considered obtrusive in terms of privacy
and comfort.

Research from the medical community has shown that vital
signals vary depending on sleep stages, including wakeful-
ness, REM, and Non-REM [2]. Therefore, variability in
vital signals such as breathing and heart rate can be used
as indicators of transition into different sleep stages. A
recent commercially available sensor, Aura[13], tracks both
movements and vital signals using pressure pad on the users’s
bed. This however requires user to be in contact with the
sensor. In this paper, our proposed sleep sensing system uses
a short-range doppler radar module to track the user’s vital
signals such as heart beat and breathing along with coarse
body movements unobtrusively while sleeping. By detecting
variations in vital signals and body movement, our mobile
system then classifies different stages of sleep and assesses
sleep quality. Due to the contact-free nature of the radar
module, our mobile system alleviates users from the physical
burden of wearing a sensor. Due to lack of any audio-visual
recording, there is lesser privacy concerns. Figure 1 outlines

the contribution of DoppleSleep and compares with other
sleep sensing technologies.

TRACKING SLEEP BIOMARKERS USING DOPPLESLEEP
Here we describe the techniques of tracking human physical
movement, heart rate and breathing rate using a single short-
range Doppler radar. We then report the feasibility of our
system in a controlled study in laboratory settings.

Fundamentals of Doppler Radar
The concept of contactless vital signal monitoring using
microwave signals has been explored since the 1970s [32].
Since then a lot of research has been done to improve the
performance of the system both in analog circuit design of
high frequency carrier signal as well as signal processing of
base-banded signal. Different choices of radio frequencies
have been explored starting from 1150 MHz to detect vitals
through earthquake rubble and concrete [16] all the way up
to Ka band [39] to improve detection sensitivity. Different
receiver architectures [31] and techniques to compensate for
phase noise [29] have been proposed and tested. Over the
years, RADAR modules have been reduced from bulky mili-
tary grade systems mounted on a tripod to a relatively small
BiCMOS chips suitable for integration in portable electronic
devices [20]. A comprehensive study on RADAR technology
for vital signal detection can be found in [27]. Building on
top of this massive prior knowledge, DoppleSleep explores
the feasibility of contactless vital sensing using RADAR in
the sleep-sensing domain. We selected a K band (24 GHz)
direct conversion quadrature RADAR module, as it was most
suitable for our application.

Figure 2: Detection theory of heartbeat and breathing using
continuous wave (CW) Doppler radar.

The fundamental principle behind detecting vital signals us-
ing continuous wave (CW) Doppler radar is demonstrated in
figure 2. The module transmits a single tone T (t) on a carrier
frequency of f , wavelength of λ = c/f , combined with phase
noise φ(t) from the oscillator, given by the equation (1):

T (t) = cos(2πft+ φ(t)) (1)

Assume that T (t) traverses a distance of d0 and hits a
human’s body generating periodic chest movements due to
respiration and heart beating. If the displacement of chest
due to respiration is xr(t) and the displacement of heart due
to heart beat is xh(t), the overall movement can be expressed
as x(t) = xr(t)+xh(t). As a result, the reflected signalR(t)
received by the radar is given by:



R(t) ≈ Ar cos(2πft− 4πd0
λ
− 4πx(t)

λ
+ φ(t− 2d0

c
)) (2)

R(t) is a time delayed and amplitude reduced version (re-
duced to Ar) of the transmitted signal T (t). Most impor-
tantly, the information of x(t) is phase modulated in R(t)
in addition to the distance between the human body and
the radar, d0 and a time delayed version of the phase noise
φ(t − 2d0

c ). After R(t) goes through a Low Noise Amplifier
(LNA), it is converted to baseband by a mixer that multiplies
the received signal with a copy of the transmitted signal. The
output of the mixer gives the difference or intermediate fre-
quencies (IF). The receiver thus gets rid off any information
related to carrier frequency (2πft) and preserves the change
in phase of the signal corresponding to x(t) which we want
to capture. In this study we use a quadrature receiver, which
compensates for null detection points a problem faced by
single channel receivers [19]. In a quadrature receiver, R(t)
is split into two components and multiplied by two copies of
transmitted signal that are 90o out of phase with each other.
The output is thus a pair of orthonormal baseband signals,
BI(t) and BQ(t), expressed by equation 3.

Bi(t) = cos(θ +
π

4
+

4πx(t)

λ
+ ∆φ(t))

Bq(t) = cos(θ − π

4
+

4πx(t)

λ
+ ∆φ(t))

(3)

Here, θ = 4πd0/λ+ θ0, contains the target distance informa-
tion d0. and ∆φ(t) is the residual oscillator phase noise. The
portion of interest is therefore the phase modulation due to
physical and physiological movements x(t) given by 4πx(t)

λ .
Since BI(t) and BQ(t) have a 90o phase difference, the
quadrature receiver ensures that atleast one of the baseband
channels is not at a null detection point [19]. For example,
if the distance d0 that makes up θ is such that θ is π/4, then
Bi(t) and Bq(t) can be approximated as

Bi(t) ≈
4πx(t)

λ
+ ∆φ(t)

Bq(t) ≈ 1− [
4πx(t)

λ
+ ∆φ(t)]2

(4)

Here Bi(t) is at an optimal point with full sensitivity, while
Bq(t) is at a null point with least sensitivity. Thus phase
information can be recovered from one channel even if the
other is at a null point. The next step is to process the
two channels to get a output signal that is compensated for
null-point. Among a few algorithms proposed for null-point
compensation and for optimal extraction of any movement
frequency tuning technique [38] one of them which requires
manual tuning of the intermediate frequency every time the
distance between the radar and the subject changes. A few
more computationally complex algorithms are also proposed
including complex signal demodulation [28] and arctangent
demodulation [34]. In this study we used a simpler technique

of selecting one optimal channel that is farthest from the null
point using interquartile range. Higher interquartile range
of a channel will indicate that it is further away from the
null-point, thus the optimal channel.

Sensing Physical Movements
During sleep, out body manifests voluntary body movements
such as tossing and turning, changing posture and involun-
tary limb movements such as myoclonic twitches [2]. The
frequency and extent of the physical movements and vital
signal variations during sleep can be used as indicators of
sleep quality. Now we explain the algorithm used to segment
physical movements during sleep.
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Figure 3: The scatter plot of no physical movement, physi-
cal movement and external vibrations in a two-dimensional
feature space formed by frame-level RMS energy and zero
crossing rate of the low passed signal (cutoff 3Hz) of the
optimal channel.

The challenge of using Doppler radar to track physical move-
ments is that we must be able to isolate noise due to vibrations
from appliances such as fan, air-conditioning unit or a speaker
within the radar’s range from human body movements. In
order to address this challenge, we recorded physical activity
data using the radar module and an accelerometer in our
lab with 4 subjects. We then simulated three scenarios:
(a) no physical movement, (b) common sleep related body
movements (e.g. leg movements, tossing and turning, sitting
up, head movements) and, (c) environmental noise induced
by appliances. This was used as training data for our motion
classifier. We then applied a low pass filter with cut off
frequency at 3Hz, on the baseband signal, to remove high
frequency periodic noise caused by environmental factors. As
a result the frame-level RMS energy of the filtered baseband
signal mostly corresponds to the presence or absence of
body movements (figure 3). However, there may be some
frames where relatively high RMS energy may be caused
due to aperiodic changes in the machine (e.g when the
machine switches) (figure 3). In order to isolate these frames,
the zero-crossing rate and the RMS energy of the filtered
baseband signal are used as features for every 30 second
frame. A leave-one-subject-out cross-validation experiment
with a very simple threshold-based classifier indicates that
these two features extracted in a frame level can easily dis-
criminate among the three categories with an average recall
of 94.5%. Using our algorithm to detect human movement,
we found that the frame-level RMS energy of the filtered
baseband signal is correlated (mutual information 0.86) with
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Figure 4: (a) shows the estimated and the reference breathing
waveform, (b) shows the power spectral density of the esti-
mated breathing waveform.
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Figure 5: (a) shows the estimated and the reference heart
beat waveform (b) shows the power spectral density of the
estimated heart beat waveform.

the frame-level RMS energy of the norm of 3D acceleration
values from the accelerometer worn by our participants.

Sensing Breathing and Heart Rate
Once the signal frames containing movement data have been
classified and isolated, we then proceed to estimate breathing
and heart rate on frames that contains no body movement. As
explained previously, the baseband signal Bi(t) is a linear

combination of movement caused by breathing and heart
beat signal (x(t) = xh(t) + xr(t)). As breathing process
generates relatively lower frequency signals than the heart
beating process, we used two bandpass filters to isolate xh
and xr(t) from Bi(t). The bandpass filter for estimating
breathing rate captures the lower frequencies that gets created
in the baseband signal due to chest expansion and contraction.
Specifically, we used a minimum order Butterworth filter
with stop-band frequencies at 0.1 Hz, 0.8 Hz and passband
frequencies at 0.3 Hz, 0.7 Hz to estimate any breathing rate
ranging between 9 and 20 Breath per Minute. Similarly
another minimum order band-pass Butterworth filter was
designed with stop-band frequencies at 1 Hz, 3 Hz and
passband frequencies at 1.5 Hz, 2.5 Hz to estimate any heart
rate between about 45 and 80 Beat per Minute. For both
filters, passband ripple and stop-band attenuation was chosen
to be 1 dB and 60 dB respectively. These Butterworth filters
have proven to be useful for vital sign estimation in prior
literature [33]. These two filters are applied on the baseband
signal Bi(t) to get the estimated breathing and heartbeat
waveform. Figure 4a shows the estimated and reference
(or ground truth) breathing waveform from a respiratory in-
ductance plethysmography (RIP). Similarly, figure 5a shows
the estimated heartbeat waveform overlaid with the reference
heartbeat signal from an electrocardiogram (ECG).

In figure 4a, the peaks and troughs of the reference signal
correspond to inhalation and exhalation. Notice that the
estimated breathing waveform has peaks in both peaks and
troughs of the reference signal. Hence, for every cycle of
the reference breathing signal, we get about two cycles of
our estimated breathing signal, one for inhalation and the
other for exhalation. Thus the estimated breathing rate is
half the frequency of the filtered signal. By applying a
Fourier transform on the filtered baseband signal, we can
then estimate the power spectral density of the signal as
illustrated in figure 4b. The peak of the power spectral density
corresponds to the dominant frequency, which is in this case
the breathing rate. Similarly in figure 5a, for every cycle
of the reference heart beat signal, we get two cycles of our
estimated heart beat signal. Thus the estimated heart rate
is half the frequency of the filtered signal. Figure 5b shows
the power spectral density of the estimated heart beat, where
the peak corresponds to the dominant frequency, which is the
heart rate. In order to smooth our heart and breathing rate
estimation, we applied a moving average filter with a length
of 16. We also found that the window size of 30 seconds and
shift of 5 seconds minimizes the heart rate and breathing rate
estimation error.

For a sleep sensing system to work in real-world settings the
vital signal tracking needs to be robust to relative orienta-
tion and distance between the radar sensor and the users’
bodies during sleep. In order to evaluate the performance
of DoppleSleep at various orientations and distances, we
conducted two studies in a controlled environment. Four
participants were recruited and their breathing and heart rate
was recorded using the radar modules placed at different
distances and orientation. The reference heart and breathing
rates was recorded from a biometric shirt Hexoskin [9],



embedded with an electrocardiogram (ECG) to provide heart
rate value and respiratory inductance plethysmography (RIP)
to provide breathing rate value. Comparing the estimated
heart and breathing rates to the reference values we computed
the mean absolute error.

Distance Test
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Figure 6: The performance of the heart and breathing rate
estimation algorithm across different distances in terms of
mean absolute error measured in cycles (beats or breaths) per
minute (CPM).

The distance d0 between the subject and the radar is directly
correlated to the power of the reflectedR(t) and the baseband
signals BI , BQ. Specifically, as the distance d0 increases,
the reflected signal gets weaker (Ar → 0 in equation 2) due
to signal loss when propagating through the longer distance.
The aim of this test was to find out the effect of distance on
DoppleSleep’s heart and breathing rate detection algorithm.
We recruited 4 subjects and asked them to lie down in a
supine position in our laboratory. We then varied the distance
between the Radar and the subject from 0.5m to 2m with
0.5m increments. Figure 6 illustrates the mean absolute error
of heart and breathing rate estimation for different distances.
We can observe that as distance increases the estimation error
for both heart and breathing rate slightly increases as we
expected. However the overall error rate stays within 2 CPM
for distances up to 2m.

Orientation Test

Figure 7: The setup of the orientation test where heart and
breathing rates are estimated with a radar in five different
orientations with respect to the body: (A) facing the bottom
of the feet, (B) facing the chest, (C) facing the side of the
torso, (D) facing the top of the head and (E) facing the back.

The orientation test was conducted to explore the effect of
relative orientation of the radar sensor with respect to the
user’s body, on heart and breathing rate estimation. Different
orientations allow the sensor to capture different profiles of
the human body as the heart and chest wall compress and

expand. Thus different orientations may result in different
error rates for heart and breathing rate estimation. Figure 7
illustrates the setup of the test conducted with 4 participants
in a laboratory setting. We estimated heart and breathing rates
using the radar at five different orientations with respect to
the subject’s body: (A) facing the bottom of the feet, (B)
facing the chest, (C) facing the side of the torso, (D) facing
the top of the head and (E) facing the back. In all the five
orientations the radar was 1 meter apart from the subject’s
body. From figure 8, we can observe that the lowest error rate
for heart rate and breathing rate estimation is achieved when
the radar faces the back of a subject’s body. In other words,
if user places the sensor underneath the bed, the performance
of heat and breathing rate estimation might be maximized.
Our result is in accordance with the findings in [30] where
the authors explained that the accuracy of heart rate and
breathing rate estimation from the back is maximized due
to the minimal harmonic interference. Also we can observe
that orientation A yields relatively smaller error rate. This
could be attributed to the fact that the radar captures a larger
profile of the abdomen than the chest, which exhibits more
motion due to breathing and heartbeat in a supine position.
Although different orientations yield different error rates, the
overall error rate is within 3 CPM no matter where the sensor
is placed.
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Figure 8: The performance of the heart and breathing rate
estimation algorithm across different orientations in terms of
mean absolute error measured using the unit of cycles (beats
or breaths) per minute (CPM).

EVALUATING DOPPLESLEEP IN THE WILD

Data Collection
We recruited 8 healthy participants with no prediagnosed
sleep disorders and collected sleep data for 2 sleep session
each during their normal sleeping schedules at their homes. In
total, we collected around 110 hours of sleep data. A biomet-
ric shirt (Hexoskin [9]) was provided to capture ground truth
heart rate using embedded EKG electrodes, breathing rate
using respiratory inductance plethysmography, and physical
movement using accelerometer. Two commercially available
sleep-sensing systems were provided to track sleep stages
and serve as reference for sleep quality parameters. Zeo
[7] is one such system that uses a headband embedded with
EEG electrodes to track brain activity. Respironics [1] is
another actigraphy-based system that predicts sleep stages
based on accelerometer data. Both systems have been used
in the research community as reasonably accurate references



(a)

(b)

Figure 9: (a) illustrates the data collection setup where each
participants sleeps in their natural sleeping place all the sen-
sors. (b) shows all these sensor including Zeo EEG headband
(A), Hexoskin biometric shirt (B), Actiwatch Activity tracker
(C) and Doppler radar Sensor (D) used in our user study.

for wake/sleep and objective sleep quality parameters [22].
Each sensor’s form factor and modalities are listed in table 1.
Figure 9 shows the data collection setup, with biometric shirt,
EEG headband, wristband sleep tracker and the proposed
DoppleSleep system. Participants were instructed to place
the Doppler radar sensor at least 0.5 meters away from
the body. The radar module’s sensitivity in horizontal and
vertical direction is respectively 80 degree and 34 degree. As
long as the body is within the radar’s angular coverage, the
radar can effectively capture any movement from the body.

Sensor name Form Factor Sensing Modalities

DoppleSleep
Movement

Contactless Heart Rate
Breathing Rate

Hexoskin [9]
3D Acceleration

Biometric Shirt Heart Rate
Breathing Rate

Zeo [7] Headband Electrical activity of brain
Actigraphy[1] Wristwatch Hand movements

Table 1: List of sensing devices used in the data collection

Validating Physical Activity Estimation
From the experiments conducted in Section we observed that
the RMS energy of the filtered (fc = 3Hz) baseband signal
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Figure 10: shows how the RMS energy of low-passed (fc =
3Hz) baseband signal can successfully identify user’s move-
ment by successfully avoiding other bedroom vibrations (in
this case a air conditioning unit). The total RMS energy of
the baseband signal captures all the vibration present in user’s
sleeping environment.

contains information about the presence and extent of body
movement. Now we evaluate DoppleSleep’s movement clas-
sification algorithm against the ground truth estimation, in the
wild. The ground truth movement is estimated using a norm
(
√

(ax)2 + (ay)2 + (az)2) of 3D acceleration (ax, ay, az)
averaged over a 30 second window from the accelerometer
data in the wrist band. The movement estimation from the
radar module is extracted from the RMS energy of the filtered
baseband signal for the same 30 seconds. Figure 10 shows
60 minutes of estimated movement from the reference data
and DoppleSleep for one sleep session. The peaks of the
estimated movement using radar matches very well with the
peaks of the reference movement. In this particular session,
the air-conditioning unit in the participant’s bedroom kicks
in about every 10 minutes and the fan movement induces
noise in the received signal: the peak in total RMS energy
of baseband. Once, low pass filtered, the high frequency
noise significantly reduces in energy. In order to objectively
estimate the accuracy of physical movement estimation from
the de-noised signal, we hypothesize that in a particular
window, if the average of the norm of 3D accelerations of
accelerometer worn by sleeper is greater than the median
value, then the sleeper is physically active. Based on this
hypothesis, we get the ground truth and classify sleeper’s
physical movement based on average RMS energy of base-
band signal. Table 2 shows the confusion matrix of the
activity vs. non-activity classification. It shows that with
just one feature (average RMS energy of baseband), we could
achieve reasonably good classification performance (about
86% average recall). These results indicate that the RMS
energy of the low-passed baseband signal contains a lot of
information about sleeper’s physical movement.

DoppleSleep
No Activity Activity

Accelerometer No Activity 85.8% 14.2%
Activity 13.0% 87.0%

Table 2: The confusion matrix between the window-level
(size 5 mins) prediction of sleeper’s physical activity using
the average RMS energy of low-passed baseband signal.



Validating Breathing and Heart Rate
Figure 11a and 11b show breathing rate and heart rate
respectively of one participant during sleep. Signals from
the EKG electrodes and RIP bands in the biometric shirt
[9] are used as reference. From the data collected using
DoppleSleep, breathing and heart rate is estimated using the
algorithm described in section . Figure 11a and 11b show
that the estimated breathing and heart rates closely follow the
reference signal.
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Figure 11: shows the reference and estimated (a) breathing
rate (in breaths per minute) (b) heart rate (in beats per minute)
of a participant collected during sleep.

Table 3 shows the error of our heart and breathing rate
estimation algorithm across all the participants over the entire
dataset. In addition to Mean Absolute Error (MAE) we
used Normalized Root-Mean-Square Deviation (NMRSD) to
calculate the error between the reference and estimated time
series. NRMSD is a well-established metric that calculates
the root-mean square of the error between the predicted and
the reference time series and normalizes it by a dispersion
measure of reference values. For example, the estimated heart
rate for nth window is HRest(n) and the reference heart rate
for every window is HRref (n). The NRMSD is defined as:

NRMSD =

√∑N
n=1(HRest(n)−HRref (n))2

N

HRrefmax−HRrefmin
(5)

If it is converted into a percentage (NMRSD ∗ 100%), it
can be thought as a expected percent error measure from
the reference. The results in table 3 suggests that the
estimated heart rate is expected to be within 8.07% from the
predicted value. Similarly the breathing rate estimation is
expected to be within 10.84% of the reference value. The
breathing error rate is slightly higher than the heart rate
for our system. During sleep we almost always manifest

slight movements that generates similar frequencies as the
breathing process in the baseband, which has a negative
affect on the breathing estimation algorithm. The results also
indicate that DoppleSleep can track heart and breathing rate
with a reasonable accuracy and can be sufficient for sleep
modeling, if not for urgent medical diagnostic purposes.

Breathing Rate Heart Rate
MAE 1.98 3.29

NRMSD (%) 10.84 8.07

Table 3: The Mean Absolute Error (MAE) and Normalized
Root-Mean-Square Deviation (NMRSD) of heart and breath-
ing rate estimation.

SLEEP MODELING
The sleep inferences (sleep vs. wake state and REM vs.
Non-REM stage) from the EEG headset (Zeo) are used
as ground truth for modeling sleep. Our sleep modeling
starts with a Sleep vs. Wake classifier, which is a primary
requirement for any daily sleep tracking purposes. Once a
particular epoch of data is identified as sleep, we then classify
the epoch into two stages: REM and NREM (or Non-REM).
Lastly we objectively estimate sleep quality using clinically
validated sleep quality parameters.

Sleep vs. Wake Classifier
In order to train the Sleep vs. Wake classifier, we extract
high-level features of the sleeper’s physical activity, heart rate
and breathing rate for every 5 minutes to predict sleep or
wake states. We then apply different statistical functions to
summarize various aspects of the activity, heart and breathing
rate values in a frame. These statistical functions include
extremes (min, max), averages (mean, RMS, median, quar-
tiles), dispersion (standard deviation, interquartile range),
peaks (number of peaks, average distance between peaks,
average amplitude of peaks), rate of change (zero crossing
rate) and shape (linear regression slope). This feature ex-
traction process yields 42 frame-level features. As heart rate
and breathing rate is only estimated during episodes of no
physical movement, we apply spline interpolation to estimate
missing heart rate and breathing rate values during these
occasional episodes of movement. In order to find the most
discriminative features for our Sleep vs. Wake classifier,
we then apply a correlation-based feature selection (CFS)
algorithm [23]. Figure 12a shows a scatter plot between
two top frame-level features on the activity estimate. This
suggests the presence a lot of body movements during wake
state and little or no movement during sleep. Figure 12b
shows that heart rate tends to decrease and reaches a resting
value as we transition from wakefulness to sleep.

From the feature subset selected by our CFS algorithm for dif-
ferent combinations of low-level features (movement, heart
rate and breathing rate estimates), we trained different classi-
fiers that are listed in table 4. Using leave-one-subject-out
cross-validation, we evaluated all these classifiers in terms
of precision, recall and F-measure. From the results in table
4, we can observe that Random Forest outperforms all other
classifiers with 89.3% precision, 89.6% recall and 89.1 %
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Figure 12: (a) shows a scatter plot between two frame level
features: median and standard deviation of RMS energy of
the low-passed (fc = 3Hz)baseband signal. (b) shows
a scatter plot between the first quartile of RMS energy of
the low-passed baseband and average amplitude of peaks of
estimated heart rate.

F-measure. When training the classifiers on just movement
estimates (Mo) the performance decreases to 86.0% preci-
sion, 86.5% recall and 86.2 % F-measure. This clearly indi-
cates that vital signal estimation (both breathing rate, Br and
heart rate, Hr) carries discriminative features that enhance
the performance of the classifier. Lastly the comparison
between performance of two Random Forest classifiers: one
trained on just vital estimates (Br and Hr) and the other
on just movement (Mo) estimates, suggests that movement
estimation (Mo) plays a more significant role in this Sleep vs.
Wake classification.

Features Classifier P (%) R (%) F (%)
Mo+Br+Hr Naive Bayes 82.3 83.5 81.3
Mo+Br+Hr Logistic Regression 83.1 84.2 82.3
Mo+Br+Hr SVM 83.1 84.2 82.3
Mo+Br+Hr Random Forest 89.3 89.6 89.1

Mo Random Forest 86.0 86.5 86.2
Br+Hr Random Forest 77.8 80.4 75.9

Table 4: Sleep vs. Wake classification performance with
different classifiers with different sets of features selected
by CFS feature selection from different combination of
low-level feature sets consisting radar-based movement (Mo),
breathing rate (Br) and heart rate (Hr) estimates in terms of
precision (P), recall (R) and f-measure (F).

Sleep Stage (REM vs. Non-REM) Classifier
While Sleep vs. Wake classification provides an estimate on
the amount of sleep a person gets, further classification of
sleep stages or sleep stage mining can indicate the quality
of sleep or how restorative the sleep was. To this end, we
developed a binary sleep stage classifier that disambiguates
REM and NREM stages for episodes/epochs that are pre-
dicted as sleep by the Sleep vs. Wake classifier. We used
the same feature extraction and selection process as described
in section . Table 5 shows the effect of low-level features
and classifiers on the performance. Random Forest based
classifier trained on all the three modalities (movement, heart
rate and breathing rate), outperforms all the other classifiers
with 80.5% precision, 80.2% recall and 80.2 % F-measure.

Only using features extracted from movement estimates,
reduces the performance to 75.5% precision, 75.4% recall
and 75.8% F-measure. This illustrates that high-level features
extracted from breathing and heart rate estimation provide
more complementary information for REM vs. NREM clas-
sification than for Sleep vs. Wake classification.

Features Classifier P (%) R (%) F (%)
Mo+Br+Hr Naive Bayes 73.8 64.2 60.5
Mo+Br+Hr Logistic Regression 71.8 71.7 71.6
Mo+Br+Hr SVM 76.1 74.2 75.3
Mo+Br+Hr Random Forest 80.5 80.2 80.2

Mo Random Forest 75.5 75.4 75.8
Br+Hr Random Forest 62.8 64.4 62.9

Table 5: REM vs. Non-REM classification performance with
different classifiers with different sets of features selected
by CFS feature selection from different combination of
low-level feature sets consisting radar-based movement (Mo),
breathing rate (Br) and heart rate (Hr) estimates in terms of
precision (P), recall (R) and f-measure (F).

Objective Sleep Quality Measurement
Summarizing a sleep session using a validated set of objective
sleep quality measures can intuitively inform users of their
sleep quality and aid in taking corrective measures such
as improving sleep hygiene if needed. It also facilitates
establishment of long-term trends in sleep quality. In this
study we used 4 well-established sleep quality measures to
summarize a sleep session. Figure 13 shows how sleep
quality parameters are estimated from DoppleSleep’s sleep
vs. wake inference.
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SE = 284/400

      = 0.71

SOL = 66 minutes

Figure 13: Illustration of objective sleep quality estimation.

(i) Sleep Onset Latency (SOL) is defined as the time taken
to transition from being fully awake to being asleep. Ab-
normally large SOL values indicate insomnia and small SOL
values indicate sleep deprivation. From figure 13, we can
infer that the participant took about an hour to transition from
wake to sleep. (ii) No. of Awakenings (NAwk) indicates the
total number of transitions from sleep to wake in a particular
sleep session [14]. It is another significant sleep metric that
is linked with sleep apnea, disruption in circadian cycle,
insomnia etc. Our participant has 3 arousal events: two long
awake segments and a third brief event. (iii) Total Sleep Time
(TST) is a measure of the total time duration that someone
spends in sleep state in a particular sleep session. This equals
to the length of sleep session minus wake time. In figure 13,
the total wake time (284 mins) was subtracted from the length
of sleep session (400 mins) resulting in a TST of 284 minutes.



(iv) Sleep Efficiency (SE) is the ratio between total sleep
time (TST) and total length of sleep session. It summarizes
the three previous metrics. Reduced Sleep efficiency (below
85%) is indicative of sleep disorders since initiating (high
SOL), and maintaining sleep (high NAwak and low TST)
tend to be difficult. Figure 13 shows that our participant’s
TST was 284 minutes and total bed time was about 400
minutes resulting in sleep efficiency (SE) of 71%. A Pearson
correlation coefficient analysis between the SOL, NAwk and
SE estimated by DoppleSleep and by the ground truth reveals
relatively high correlation (0.83, 0.69 and 0.78).

DOPPLESLEEP SYSTEM IMPLEMENTATION

(a)

(b)

Figure 14: shows (a) overview of the DoppleSleep system im-
plementation. (b) the embedded systems unit of DoppleSleep.

Figure 14a shows an overview of DoppleSleep consisting of
an embedded system unit and an Android smartphone unit.
The embedded system comprises of an off-the-shelf K-band
(24 GHz) short-range doppler radar module[12]. Although
the module has an in-built low noise amplifier to boost the I
and Q baseband signals, we found that the output signals of
the radar needed further amplification before sampling by an
ADC. We used a dual channel, non-inverting op-amp and set
the gain to 11 times. After amplification we used a Teensy
3.1 Microcontroller [4] with an ADC of 16 bit resolution
to sample the signal. The amplified baseband signals were
sampled at a 1kHz. The sampled data was stored in a circular
buffer and the optimal channel was selected by measuring the
interquartile range. The signal was then framed (containing
1024, 16-bit values) and transmitted through a bluetooth
unit, BlueSMirf Silver [5]). The Bluetooth modem ensures
reliable wireless connectivity with the Android device up to
a distance of 18 meters. Figure 14b illustrates different parts
of the embedded system unit. The Android application unit

buffers the asynchronous frame-by-frame data received from
the embedded unit via Bluetooth. It then runs the physical
activity, heart rate and breathing rate estimation algorithms,
classifies sleep stages estimates sleep quality.

The radar module consumes 28.5mA at 5V (0.1425W), the
bluetooth module and microprocessor consume 102mA at
5V (0.3675W), and the amplifier consumes 4mA at 9V
(0.036W). The total power consumption of the DoppleSleep
system comes out to be 0.546W while connected and trans-
ferring data. The DoppleSleep Android application consumes
0.471W of power and utilizes 2.11% of the CPU.

HEALTH CONSIDERATIONS
Federal regulation limits the continuous exposure of wireless
signal to 1mW/cm2 of skin surface to be harmless. At a
distance > 19cm from a 24 GHz radar transceiver with an
output power of 100mW and an opening angle of 80X35, the
power per cm2 surface drops below 1mW. Thus, DoppleSleep
has no health implications for continuous use in a home.

CONCLUSION AND FUTURE WORK
In this paper, we have described the design, implementa-
tion, and evaluation of DoppleSleep - a contactless sleep
sensing system that facilitates continuous and unobtrusive
long-term sleep monitoring using a single Doppler radar
sensor. DoppleSleep tracks an individual’s physical body
movements, heart beat and breathing during sleep, and objec-
tively infers of sleep quality. We have validated the feasibility
of DoppleSleep in a lab setting and in the wild and our results
show that DoppleSleep can detect physical movements with
86% recall rate, and estimate heart and breathing rate with an
error rate of 8.07% and 10.84% respectively. Based on our
results, by combining vital signal estimation with movement
tracking, DoppleSleep shows great promise for continuous,
passive, unobtrusive sleep monitoring in real-world settings
with 89.6% recall for Sleep vs. Wake and 80.2% recall for
REM vs. Non-REM classification.

There are many areas for further exploration in sleep stage
mining using vital signals. Since PSG is considered as
the medical gold standard for sleep stage mining, we are
currently working on validating the system in clinical settings
against PSG. This also provides an opportunity to test the
efficacy of DoppleSleep in diagnosing sleep related disorders
in patients suffering from sleep apnea. We are also working
on extending DoppleSleep to continuously track vital signals
as well as movement from multiple individuals in a bedroom.
In order to do so we are considering implementing an radar
array to triangulate reflections from different persons.
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