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ABSTRACT
Throughout the day, our alertness levels change and our cog-
nitive performance fluctuates. The creation of technology that
can adapt to such variations requires reliable measurement
with ecological validity. Our study is the first to collect alert-
ness data in the wild using the clinically validated Psychomo-
tor Vigilance Test. With 20 participants over 40 days, we find
that alertness can oscillate approximately 30% depending on
time and body clock type and that Daylight Savings Time,
hours slept, and stimulant intake can influence alertness as
well. Based on these findings, we develop novel methods for
unobtrusively and continuously assessing alertness. In esti-
mating response time, our model achieves a root-mean-square
error of 80.64 milliseconds, which is significantly lower than
the 500ms threshold used as a standard indicator of impaired
cognitive ability. Finally, we discuss how such real-time de-
tection of alertness is a key first step towards developing sys-
tems that are sensitive to our biological variations.
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INTRODUCTION
Our cognitive abilities wax and wane over the course of the
day [57]. In particular, alertness — a central component un-
derlying a wide range of cognitive functions from learning to
problem-solving to memory consolidation [39] — fluctuates
in daily cycles called circadian rhythms [61]. Alertness is
also influenced by a number of other factors, including sleep
and one’s internal body clock type (for example, whether one
is an “early bird” or a “night owl”) [13].

Given the key role alertness plays in cognitive performance,
improving individuals’ everyday alertness could have far-
reaching positive impacts: it could improve productivity [3],
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help enhance learning outcomes [32], and combat road acci-
dents and occupational errors caused by fatigue [17]. These
areas are ripe for novel technological solutions. HCI and Ubi-
Comp researchers have recently shown interest in studying
related aspects of cognitive performance such as attention and
boredom (e.g., [41, 52]). However, to build effective solu-
tions in this space, we must account for the fluctuating nature
of alertness and the behavioral, environmental, social, and bi-
ological factors driving those fluctuations — something that
current work rarely does [57]. Moreover, alertness patterns
are different from one person to the next [13], necessitating
personalized rather than generalized recommendations.

Novel UbiComp systems built on continuous, individual as-
sessment of alertness therefore have the potential to signifi-
cantly improve learning [4], occupational safety [17], work
performance [3], and overall quality of life [3]. What could
we build if we knew how alert someone was at all times of
day? Unfortunately, existing methods for assessing alertness
are cumbersome and ill-suited to continuous measurement:
typically, alertness is assessed through stimulus-response
tests, such as the widely-used Psychomotor Vigilance Task
(PVT) [18]. This is a 2–10 minute task, during which the
participant is presented with visual stimuli at random time
intervals and asked to respond (e.g., press a button or touch
a screen) as soon as they see the stimulus. Various statisti-
cal summaries of the resultant response time have been used
as a measure of alertness. Studies utilizing tests like PVT
are normally conducted in controlled lab environments un-
der artificial conditions (e.g., to assess alertness after enforc-
ing 85 hours of total sleep deprivation [64]). While the PVT
has been implemented on smartphones [31], which makes it
amenable to use in the wild (e.g., in experience sampling),
any such use still requires at least 2 minutes of a person’s
undivided attention for each assessment — rendering it un-
suitable for continuous measurement over extended periods
of time.

We present an alternative: continuous, unobtrusive assess-
ment of alertness using machine learning, backed by features
of an individual’s smartphone use and validated against PVT.
This approach opens the door for more personalized, context-
aware tools that can model, adapt to, and provide feedback on
our alertness (and in turn our cognitive performance) in real
time. In this work, we focus on collecting data in the wild in
order to develop passive approaches for estimating alertness.



We make the following specific contributions:

• Moving outside the controlled environment of a labora-
tory, we use experience sampling to assess alertness as peo-
ple go about their everyday lives. We also collect diverse
streams of self-reported and passively-sensed data, includ-
ing body clock type, sleep information, and stimulant use.
Using a validated smartphone-based PVT tool [31], we op-
erationalize (measure) alertness in two ways: as response
time and as relative response time (RRT) — the percent de-
viation of a response time from that person’s overall mean
response time [31, 62]. The widespread adoption and high
usage levels of smartphones suggest that our methodology
and models could potentially be applied at-scale.

• Collecting data over 40 days with 20 participants, we:

– Extend lab findings from the cognitive perfor-
mance literature into the wild. As the first study
to focus on patterns of alertness using data captured
in the wild, we seek to compare and extend findings
from previous laboratory based work. Replicating
prior findings is not only important for advancing sci-
entific knowledge but it also validates our methodol-
ogy. Among other comparisons, we demonstrate that
alertness across the day is influenced by local time, in-
ternal body clock time, daylight savings, hours slept,
and stimulant intake.

– Demonstrate passive alertness sensing on a smart-
phone. Towards the vision of unobtrusive and contin-
uous assessment of cognitive performance that can be
deployed among large, diverse, and distributed popu-
lations, we describe novel methods for automatically
estimating alertness. Specifically, we develop models
grounded in chronobiology that can predict response
time with an RMSE of 80.64ms (which is significantly
lower than the 500ms threshold used as a standard in-
dicator of impaired cognitive ability [7]). Using only
passively sensed data, models for RRT also perform
well with an average RMSE of 10.87% across all par-
ticipants (i.e., we can detect as small as an 11% devi-
ation in response time from an individual’s baseline,
which is significantly lower than the average daily
peak-to-peak change in RRT of 29.4%).

• Lastly, we interpret key findings and discuss the broader
implications of our work for the UbiComp and context-
aware computing fields, specifically focusing on the op-
portunities our findings offer in the areas of scheduling,
education, and accident-prevention.

RELATED WORK

Cognitive Performance
Our cognitive functions can be categorized into three main
domains: i) attention, ii) executive functioning, and iii) mem-
ory [57]. These domains are usually assessed by measuring
performance at specific tasks.

An essential factor in optimal performance is alertness given
that it is a core subcomponent of the attentional system, which
modulates sensory, motor, and cognitive processing [61]. In-
deed, fatigue — a state of diminished alertness — is linked to
motor vehicle accidents, industrial disasters, and other occu-
pational errors [17] and has been equated to alcohol intoxica-
tion in terms of its negative impact on performance [36].

HCI and UbiComp research on cognitive performance has so
far focused on understanding and modeling various aspects
of attention. Research on patterns and contexts of attentional
states in a workplace environment found that focused atten-
tion peaks during mid-afternoon and that online activities can
reflect attentional states — associating, for instance, heavier
use of productivity software with focused periods and internet
surfing and window switching with boredom [41]. Leverag-
ing such usage behaviors, other work has developed machine
learning algorithms to automatically infer boredom [43, 52]
from mobile phone use (e.g., the amount and types of apps
used), along with contextual information (e.g., light levels
and charging status) and demographics. However, while such
studies have reported a time-of-day effect on attention, the
fact that they do not take any chronobiological factors into
consideration hinders both the range of analyses explored as
well as the ability to offer biologically-informed explanations
as to why particular trends are observed.

Circadian Rhythms of Performance
While cognitive performance is well studied, only recently
has a more complete and nuanced understanding emerged
from the field of chronobiology regarding how and why per-
formance (and alertness specifically) fluctuates throughout
the day. Specifically, these fluctuations are driven by the hu-
man body’s “biological clock”, which influences our sleep-
wake patterns and numerous behavioral, mental, and physi-
cal processes that follow a roughly 24-hour cycle, known as
our circadian rhythms. These rhythms are endogenous and
rooted in our genetics, though external cues (predominantly
sunlight) adjust them to the local environment [13].

Early work has connected cognitive performance with
rhythms in body temperature (a well-known biomarker for
circadian rhythms) — associating increased body tempera-
ture with better performance and vice versa [33]. More re-
cently, a broad set of empirical work has confirmed these per-
formance rhythms, including for alertness. Prominent among
findings are a short-term, mid-day dip during which sleepi-
ness increases and alertness drops [13, 46] as well as an
evening alertness rebound [38].

While all (healthy) individuals experience these variations
in cognitive performance and alertness levels throughout the
day, the amplitudes and phases of these patterns display indi-
vidual variability. A person’s chronotype represents his or her
unique circadian rhythms and lies on a spectrum from early to
late types. Early types tend to be more alert earlier in the day
while late types are more alert later [27, 61]. Beyond alert-
ness, higher level cognitive processes including orientation
and executive functioning also show differences depending
on chronotype and time of day [42].



Age can also influence alertness patterns. While older adults
are typically more alert in the morning, younger adults tend
to be more susceptible to distraction in the morning and are
more alert in the afternoon [25]. In addition, alertness lev-
els can be impacted by external factors such as caffeine or
alcohol consumption, food intake, and physical activity [57].
Finally, sleep can have marked impacts on alertness and cog-
nitive performance, with inadequate sleep degrading alertness
and extending sleep improving it [22].

Sensing Rhythms of Performance
Unfortunately, chronobiology research and performance
modeling is typically constrained by challenges in approx-
imating ecologically valid scenarios, since most studies are
conducted in controlled, artificial lab setups. The emergent
area of “circadian computing” aims to develop novel compu-
tational techniques for passively sensing biological rhythms
using more broadly deployable, unobtrusive, and technology-
mediated approaches. Its preliminary steps have focused on
sleep sensing using smartphone screen on-off patterns [2] and
social media data [47]. In this study, we go beyond sleep to
consider daily cognitive performance. Specifically, we ex-
tend the findings from previous laboratory-based studies from
chronobiology, cognitive psychology, and neuropsychology
to introduce new methods for in-situ, at-scale computational
modeling and prediction of alertness performance.

METHOD

Participants
In this study, we set out to detect daily variations in alert-
ness for a student population. We focus on college stu-
dents, who biologically tend to be significantly late types
[55]. They are also known to experience significant dis-
sonance between their internal biological rhythms and their
socially-constrained scheduling [32, 55] — for instance, in
the timing of their classes, meetings, and social engagements,
among other activities. Chronic sleep deprivation and its
impacts on cognitive performance and alertness are serious
problems for this population [60] and can lead to drug and
alcohol abuse, increased mental health problems, impaired
academic performance, and learning deficits [11]. Regarding
cognitive performance specifically, procrastination is just one
manifestation of dips in alertness that is commonly observed
in college students [15]. Students also tend to be heavy smart-
phone users [58] and are therefore well-suited for a passive
sensing methodology based on smartphone usage behaviors.

Our inclusion criteria required participants to be an Android
phone user and willing to participate for the full duration of
the study. Through public mailing lists, recruitment portals,
and snowball sampling, we recruited 20 individuals: 7 males
and 13 females who all fall in the 18 – 29 year old age group.

Assessment Instruments
Momentary Assessments
To reiterate, we focus on alertness due to its well-established
impact on almost every aspect of cognitive ability. To allow
us to monitor alertness throughout the day along with rele-
vant factors mentioned previously, our participants installed

an Android application on their mobile phones that we de-
veloped to deliver a brief ecological momentary assessment
(EMA) comprised of subjective assessments and an objective
assessment.

To capture subjective measures of alertness and fatigue, our
EMA included validated, brief questions from the Chalder
Fatigue Scale [14] and Fatigue Visual Analogue Scales (VAS)
[45]. Participants also checked off activities they had done in
the past hour — specifically, consuming caffeine [64], ex-
ercising [12], using nicotine [23], napping [12], consuming
alcohol [26], eating [54], and loafing (e.g., cyberloafing) [63]
— to supply information about stimulants and anti-stimulants
known to impact cognitive performance and sleep.

To objectively assess alertness, we used the Psychomotor
Vigilance Task (PVT), a reaction test commonly used to mea-
sure alertness [40]. While the original PVT requires special
hardware, we employed a validated Android smartphone im-
plementation, PVT-Touch [31], which shows a visual stimu-
lus at random intervals to the user, who responds by touching
the screen. Response times are measured in milliseconds, and
various statistical summaries of these times have been shown
to be indicative of alertness [40]. One distinct advantage of
using the PVT to assess cognitive performance over a long
period of time is its immunity to practice or learning effects
[37]. Further, brief versions of the PVT have proved sensi-
tive to changes in alertness [7]. We administered a 3-minute
version, a duration validated for alertness assessment [7, 8].

Processing PVT data first involves removing false starts —
touch events before the stimulus is shown. In our dataset,
false starts amounted to 2.85% of all touch events. Continu-
ing to follow previous work [31, 62], we operationalize alert-
ness as relative response time (RRT), computed as follows.
First, since a PVT session includes multiple visual stimuli
tests, we calculate the median response time (MRTs,p) for
each session s per person p. We also remove outlier sessions
with MRTs,p falling outside (mean ± 2.5 × SD) for each
participant [62]. In our sample, 6.4% of all sessions were re-
moved as outliers. Next, we take the mean MRTs,p across
all of participant p’s sessions to establish an individual base-
line for participant p. Finally, we compute the RRT of a given
session as its percentage deviation from p’s individual base-
line1. That is, given a PVT session s for a participant p with
a median reaction time for that session of MRTs,p, the cor-
responding RRT is calculated as:

RRTs,p =

(
1− MRTs,p

MMRTp

)
∗ 100,

where MMRTp = 1
N

∑N
i=1MRTi,p, is the mean MRT av-

eraged across allN sessions from participant p. Positive RRT
values thus indicate increased alertness, and negative RRT
values indicate decreased alertness.

We placed the PVT at the end of the EMA battery, after
the subjective assessments, because PVT-induced fatigue can
cause a reverse biasing effect on subjective responses; plus
1Our code for computing and analyzing RRT is available at https:
//github.com/saeed-abdullah/alertness-ubicomp-2016
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since the PVT’s user burden is higher, placing it first might
result in decreased compliance. Our current ordering allows
participants to quit the EMA without completing the PVT but
having at least completed the subjective questions. However,
to protect against data quality issues arising from such non-
compliance especially to the PVT portion, we instructed par-
ticipants during an onboarding interview to only begin the
EMA if they expected to have 5 minutes without significant
distraction. We also provided instructions and demonstrated
how to perform the PVT and tested it thoroughly on each per-
son’s phone; our instructions stressed focusing on accuracy
and speed when responding to the stimuli.

We delivered the EMA four times per day at the start of 6-
hour-long morning, afternoon, evening, and late night time
windows defined by prior work [1] via passive phone notifica-
tions, which research has shown are successful in improving
compliance [9]. Participants could complete the EMA any-
time within a given window. (As mentioned, we instructed
participants that an immediate response to phone notifications
was not necessary but rather to wait to undertake EMAs until
they had at least 5 distraction-free minutes). Once that time
window ended, its notification would expire and a new one
would be delivered in order to avoid redundant or temporally-
mislabeled assessments. We chose this study design both to
increase data coverage throughout the day as well as to im-
prove data quality since the PVT task requires sustained at-
tention without distraction.

Sleep and Chronotype Information
Participants completed a daily sleep journal in the form of a
survey that included questions about bed time, minutes to fall
asleep, number of wakeups during the night, wake time, and
total sleep duration. Participants were reminded everyday at
10:30AM through a phone notification to complete this sur-
vey. Prior research validates the reliability of self-report jour-
naling for in-situ nightly sleep measurement [50].

We used collected sleep information to assess individual
chronotype. Since the comparison of chronotypes requires
a single reference point, we use the well-established mid-
sleep point on free days (MSF) — the halfway point be-
tween going to sleep and waking up — as the marker for
individual chronotype [55, 56]. Because a majority of
the population compensates for sleep debt accumulated on
work days by sleeping longer on free days, this “oversleep”
on free days is taken into consideration using a corrected
measure of mid-sleep (MSFSC): MSFSC = MSF −
0.5 (SDF − (5 ∗ SDW + 2 ∗ SDF )/7) [56], where SDF

and SDW are sleep duration on free days and work days, re-
spectively. (5 ∗ SDW + 2 ∗ SDF )/7 represents the averaged
sleep duration across the week.

The mean and distribution of chronotypes in our dataset is
consistent with prior related work on the identical age group
[2]. Given that our young sample is predominantly late types
as expected, we follow prior work [25] and consider anyone
withMSFSC < 5:00AM as “early” and those with later mid-
sleep points as “late”. We also administered the Morningness-
Eveningness Questionnaire (MEQ) [27] to confirm these clas-
sifications as early or late.

Given that chronotype influences our circadian rhythms in
alertness performance, prior studies have introduced the con-
cept of internal time [56]. We can think of internal time as
a corrected measure of time that factors in an individual’s
chronotype. That is, while “external time” (ExT) represents
the hours elapsed since midnight (12:00 AM), “internal time”
(InT) is calculated using an individual’s biological midnight
(MSFSC) [62]: InT = ExT −MSFSC . We later present
analyses based on internal time.

Phone Instrumentation
Our sensing framework incorporated phone probing that runs
in the background to collect usage data. In this study, we fo-
cus on screen on/off events. We pre-processed phone probes
by filtering out any data collected between periods when a
participant began and completed EMAs to avoid overestimat-
ing a user’s phone usage, when such interactions were actu-
ally due to conditions caused by participation in the study.

Compensation was based on the duration of participation ($5
for each week), sleep journal completion ($0.50 for each en-
try), and the number of completed EMA assessments ($0.20
for each entry). The Cornell University Institutional Review
Board approved all procedures.

RESULTS
Over our 40 day study, our 20 participants provided an aver-
age of 2.52 (sd: 0.79) subjective alertness assessments, 2.46
(sd: 0.8) stimulant assessments, and 2.05 (sd: 0.87) objec-
tive alertness assessments per day. The average EMA com-
pliance rate across all participants was 63.7%. Excluding the
late night session (12:00AM - 5:59AM) when participants are
likely to be asleep, the average compliance rate was 79.9%.
Sleep diaries had a similar compliance rate of 72.8%.

While a number of studies have looked into cognitive per-
formance and chronotype, ours is the first to use real world
data collected over an extended period of time. This provides
us an opportunity to compare with and extend previous lab-
oratory based findings. Such replication is important for the
scientific process and also validates the reliability and gener-
alizability of our methodology based on data captured in the
wild. Moreover, these steps help to introduce key chronobio-
logical findings about cognitive performance to the UbiComp
community, which can enrich the realm of ubiquitous systems
aimed at enhancing our cognitive abilities.

We therefore first focus on comparing our results with pre-
vious laboratory-based studies. Then building on those find-
ings, we later move on to presenting our novel methods for
unobtrusive, continuous alertness assessment and prediction.

Replicating and Extending Extant Lab-Based Findings
Influence of Chronotype and Time-of-day on Alertness
We begin by looking into how alertness levels change across
the local time of day. As a reminder, we operationalize alert-
ness as relative response time (RRT) based on PVT data. Fol-
lowing prior work (which also facilitates comparison with it),
we aggregate all participants and bin RRT values computed
across sessions at 2-hour intervals [46, 62]. We find that RRT
varies as a function of local time as shown in Figure 1.
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Figure 1. Relative response time (RRT) with standard error of mean
(SEM) over the day. Positive and negative values of RRT indicate alert-
ness higher and lower than individual baseline, respectively.

First, we see a local, short-term afternoon dip around
2:00PM, which is consistent with a well-known postpran-
dial (i.e. after meal time) dip in core temperature and cog-
nitive performance [13, 46]. We also see that RRT dips
around 4:00AM and 6:00PM. Similar dips in alertness in re-
lation to local time have been observed through controlled
studies [61, 62], though the dips in our dataset happen later
in the day, likely because our participants are later types
(MSFSC = 05 : 56± 0.94 hrs) than those from past studies
(e.g.,MSFSC = 05 : 19±1.75 hrs [62]). We further see that
RRT improves during the late evening and night, as expected
again since late types are the majority in our sample.

Next, we examine how RRT patterns differ between early and
late types. Specifically, we calculate the difference in median
RRT (using mean RRT does result in similar findings) be-
tween the groups over any given time period and normalize it
by average daily change in RRT. As shown in Figure 2, this
comparison between chronotypes reveals a striking difference
between the groups’ alertness levels depending on the local
time of day. We find that early types are more alert in the
morning (17% higher RRT compared to late types), and their
alertness worsens in the later phase of the day (15% lower
RRT compared to late types). Performing an ANOVA test
on response time between early and late types across these
time periods shows a significant difference with F(5, 964) =
5.36, p < 0.001. The fact that these results align with prior
findings that early types are more alert in the morning while
late types reach optimal performance later in the day [27, 61]
helps validate the reliability of our alertness assessment.

While cognitive performance literature and UbiComp re-
search have predominantly focused on alertness variations
over local (“external”) time, recent studies have shown that
alertness can also be affected by our biological, “internal”
time [62]. (Formula for internal time provided in the Method
section). Figure 3 shows the variation in RRT for our sam-
ple according to internal time. Similar to prior research [62],
we see RRT improves during early afternoon with a local
peak around biological 2:00PM (i.e., 14 hours since biologi-
cal midnight, MSFSC). We notice the dip in alertness, how-
ever, occurs much later than in prior work, at around 12:00PM
likely because our participants have later chronotypes.
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Figure 2. RRT of early chronotypes compared to late chronotypes across
the day. Blue and red indicate higher RRT for early and late types,
respectively. In the morning, early chronotypes display much higher
alertness than late types, while the opposite is observed later in the day.
Response time difference between early and late types across the day is
also statistically significant: F(5, 964) = 5.36, p < 0.001.

Daylight Savings Time (DST) Impacts Alertness
More than 70 countries practice Daylight Savings Time
(DST), which impacts around 1.6 billion people worldwide
[30]. This twice-yearly 1-hour forward or backward clock
shift is a social clock change, rather than an internal one.
Similar to jet lag experienced after travel, DST can therefore
significantly impact physiological and behavioral functioning
as a result of the circadian disruption it produces [30]. While
debates around DST have mostly focused on economic ad-
vantages [34], a number of studies have pointed out the re-
sultant increased risk of driving accidents [59], deterioration
in academic performance [21], and fragmented rest-activity
cycles [35]. These issues can potentially be attributed to dif-
ficulties our internal circadian clocks experience in adjusting
to the sudden social clock change. Because such disruptions
can also impact cognitive abilities, we compare alertness be-
fore and after DST for early and late types in our sample.

While past research has shown that DST can result in higher
workplace injury [6] and lower productivity due to cyberloaf-
ing [63], our study is the first to look into the impact of DST
on alertness using PVT data, which allows us to investigate
the cause rather than the symptoms. The Spring DST tran-
sition can affect circadian stability for days [30], an impact
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Figure 3. RRT with standard error of mean (SEM) with internal time
on X-axis.
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Figure 4. RRT change for early and late chronotypes before and after
Spring DST. While the DST transition negatively affects both early and
late types, late types suffer more. The difference in RRT before and after
DST for both early (t = −2.37, p = 0.02) and late (t = −2.52, p =
0.01) types is statistically significant.

we believe our data can reflect since it spans 23 days be-
fore and 17 days after DST. To examine the effects of DST,
we calculate the difference in median RRT (using mean RRT
does result in similar findings) in the morning sessions before
and after DST and normalize it by average daily change in
RRT. As shown in Figure 4, RRT drops after DST for both
early and late types (−4.70% and −11.8%, respectively).
This difference in RRT before and after DST for both early
(t = −2.37, p = 0.02) and late (t = −2.52, p = 0.01) types
is statistically significant. Thus the overall alertness of both
types degrades after Spring DST — though late types’ alert-
ness suffers significantly more than early types. Future study
would do well to investigate whether alertness is similarly af-
fected after the Fall DST transition.

Sleep Affects Alertness
Well known are the positive and negative impacts of ade-
quate and deprived sleep, respectively, on numerous cog-
nitive domains — though alertness is one of the earliest
and most severely degraded by sleep deprivation [22]. We
therefore next investigate the effect of our participants’ sleep
patterns on their alertness throughout the day. Given that
the required duration of sleep varies across individuals [62],
we compute sleep duration relative to individual sleep need.
Sleep need is calculated as average sleep duration across
work days (SDW ) and free days (SDF ) [62]: Sleep need =
(SDW ∗ 5 + SDF ∗ 2) /7
Previous research on shift-workers has found that reduced
sleep duration negatively impacts alertness during morning
shifts [62]. In our dataset, however, we do not find any such
statistically significant difference in morning RRT between
adequate (relative sleep need ≥ 1.0) and inadequate (rela-
tive sleep need < 1.0) sleep (t-score = −1.45, p = 0.14).
We believe this contrasting result is explained by the fact that
our sample consists of significantly later chronotypes than the
studied shift-workers, which means our participants are more
likely to exhibit low alertness levels in the morning regardless
of their sleep duration the night before.

Going beyond prior studies, we also consider how sleep dura-
tion on nights following the daylight savings transition factors

into alertness. We find that on nights after Spring DST, ob-
taining adequate sleep does improve RRT during the follow-
ing day. Specifically, median RRT after nights with inade-
quate sleep falls by 17.49% (t-score = −2.11, p = 0.03). We
find no similar relation that is statistically significant before
the DST transition. This finding suggests that sleep depriva-
tion has a more negative impact after Spring DST, when one
is experiencing an already disrupted circadian system.

Stimulant Use Impacts Alertness
Stimulants can improve or reduce short-term alertness and
cognitive performance. Caffeine has been shown to momen-
tarily enhance alertness and counteract the negative effects of
sleep loss [64], nicotine intake can improve alertness [23],
and napping has been suggested as a preventive countermea-
sure against performance deterioration during long periods
of wakefulness (at least for shift-workers, including those in
the aviation industry [12]). On the other hand, alcohol is
known to disrupt cognitive abilities including alertness [26],
and a heavy meal can exacerbate daytime sleepiness and neg-
atively impact cognition [54]. However, most studies about
how stimulants impact cognition focus on shift-workers and
are conducted in lab environments with artificial conditions,
which means the results of such work might not be applicable
to more general populations or everyday contexts.

We therefore aim to examine the impact of stimulants on
alertness in a real-world setup. As a reminder, part of our
EMA framework asked about activities done in the past hour
that are known to improve alertness (i.e., positive stimulants)
or diminish alertness (i.e., negative stimulants) [12, 23, 26,
54, 64], as shown in Table 1. Note that though loafing may be
considered taking a “break”, it is actually a negative stimulant
since it represents activities that result in cognitive depletion
rather than restoration (e.g. playing video games that require
sustained attention).

Positive Stimulants Negative Stimulants
Caffeine Consumption, Exercising,
Napping, Nicotine Intake

Alcohol Consumption,
Food Intake, Loafing

Table 1. Groupings of stimulants based on how they impact alertness.

We find that RRT increases by 5.08% across all participants
after the use of positive stimulants, while we observe the op-
posite effect following the use of negative stimulants, which
see a −1.37% drop in RRT. The difference in RRT immedi-
ately after taking positive vs. negative stimulants is statisti-
cally significant as well (t = 2.21, p = 0.03), indicating that
stimulants can lead to short-term changes in alertness, which
is consistent with the aforementioned lab based findings.

Comparing Self-Assessed to Objectively-Measured Alertness
In some settings, it is infeasible to perform objective alert-
ness assessment using instruments like the PVT, making self-
assessment the only practical option (e.g., during long haul
driving, where there is a high risk of fatigue-related accidents
due to deteriorated alertness). Researchers are therefore inter-
ested in determining the reliability of self-assessed alertness
and how it relates to objective measurements.



As mentioned, we asked participants before each PVT test
to rate their energy levels, concentration, and tiredness on 5-
point scales. Participants’ scores are highly-correlated with
each other, supporting the internal validity of responses. To
compare these subjective reports with our objective PVT
measurements, we first group data based on high and low sub-
jective scores using median as a threshold. Following prior
work, we then compare the subjective high and low scores
with RRT [19]. As shown in Table 2, we find that RRT differs
significantly between periods with high and low self-assessed
ratings, indicating that participants have a good awareness of
their reduced cognitive capability, at least on a coarse level.
This reliability of self-assessment is similar to findings re-
ported by past studies that compared subjective and objec-
tive alertness for shift-workers [5, 19] — though it is worth
noting that fatigue might impair a more fine-grained subjec-
tive assessment (i.e., “how tired are you” rather than “are you
tired”), as found in prior work in the context of response time
and road accidents [51].

Self-Assessed Variable RRT difference between
self-assessed alertness states

Energy t = 2.06, p = 0.04
Concentration t = 2.76, p = 0.005
Tiredness t = −2.1, p = 0.03

Table 2. RRT differs significantly between self-assessed high and low
alertness, indicating fatigued individuals are usually aware of reduced
capability.

Novel Contributions: Passive Alertness Assessment
These results based on real world data confirm and augment
previous laboratory based findings. Building on these results,
we next focus on developing a novel means of continuously,
automatically, and unobtrusively assessing alertness that can
be deployed at scale.

Phone Usage Reflects Alertness
So far, we have explored how various internal and external
factors (e.g., chronotype, internal time, external time, DST,
and sleep) can influence an individual’s alertness through-
out the day and, importantly, how an awareness of biological
rhythms can provide deeper interpretations of these observa-
tions. Given that our overarching goal is the development
of methods for capturing and modeling these fluctuations in
alertness, we next delve into whether technology-mediated
behavioral traces can serve to reflect alertness patterns. While
recent work has looked into the relationship between usage
patterns and self-reported attention and boredom [41, 52],
ours is the first study to consider objective alertness based
on PVT — a clinically-validated tool.

We focus on usage patterns from smartphone interactions,
which have been shown to reflect various aspects of our daily
life related to both cognitive performance [41, 43] and circa-
dian rhythms [2]. Moreover, individuals from this age group
are the heaviest users of mobile technologies [53, 58]. We be-
lieve our sample’s usage behaviors are representative of this
population of interest since our participants’ overall amount
of phone use aligns well with that observed in prior work [20].

Based on related research, we hypothesize that more frequent,
prolonged usage may signal a decreased ability to focus for an
extended period of time [41, 47, 52] and so define two metrics
to represent such aspects of engagement: i) burstiness, the to-
tal number of usage sessions in a given hour, where each ses-
sion is marked by unlocking the phone and ii) total duration
of phone usage in a given hour.

To begin, we systematically compare how usage patterns
based on these metrics differ between periods with high (≥ 0)
and low (< 0) RRT. The distribution of high and low groups
is balanced with 56.98% and 43.02% of instances, respec-
tively. We find that mean burstiness during high RRT pe-
riods is greater (9.07 ± 0.45) than periods with low RRT
(7.9± 0.30), and the difference is also statistically significant
(t-score = 2.14, p = 0.03). In other words, our participants
initiated more sessions (i.e., unlocked their phones more) dur-
ing periods when they were more alert. In contrast, the dura-
tion of phone usage per burst shows an opposite trend, with
a mean duration of 116.37 ± 5.5 seconds/burst during high
RRT periods compared to 123.47±6.62 seconds/burst during
low RRT. That is, when more alert, participants checked their
phones frequently but for shorter lengths of time, while dur-
ing low alertness, participants engaged in more sustained use.
To further assess relations between RRT and phone use be-
haviors, we next compare short usage sessions (sessions less
than 30 seconds, based on prior work [20]) between differ-
ent alertness levels. From our dataset, we find that the mean
number of short sessions during high RRT is 20% more than
periods with low RRT (t-score = 1.97, p < 0.05).

Overall, these findings suggest that during periods of high vs.
low alertness, phone use behaviors vary considerably and so
can potentially be leveraged for passive alertness assessment.

Predicting Alertness
While response time tests like the PVT have been extensively
used in lab studies, they are difficult to deploy in real world
settings for extended periods due to the burdensome 2–10
minute time commitment necessary for meaningful results.
A more unobtrusive, subtle, and contextually-embedded way
to measure alertness is thus necessary to enable a new suite
of UbiComp applications and systems that can accommodate
variations in cognitive ability throughout the day and across
circumstances. A main focus of this study is therefore ex-
ploring whether alertness can be predicted automatically us-
ing behavioral and contextual information — specifically, lo-
cal time, internal time, sleep duration, relative sleep need,
stimulant intake, subjective-assessment scores (energy, con-
centration, tiredness), and phone usage patterns (burstiness,
duration, mean time between consecutive sessions, and short
sessions under 30 seconds) as features. These features were
selected based on our previously presented findings about
phone usage patterns that are reflective of alertness variations
along with behavioral and biological cues that extant litera-
ture suggests as relevant to cognitive performance.

Sleep and cognitive performance research has used response
time in a number of different ways beyond RRT to assess cog-
nitive ability. The ability to estimate response time is thus
valuable to a large community and widely applicable, so we



begin by attempting to predict response time from PVT data.
We use Stochastic Gradient Descent (SGD) with the Huber
loss function [28] for estimating response time. We use SGD
because of its fast convergence speed and scalability for large
scale learning, and we choose the Huber loss function since it
is robust against outlier data points. SGD is known to be sen-
sitive to feature scaling, so we standardize all features to have
zero mean and unit variance. We also randomly shuffle the
training data after each epoch, which prior work suggests can
improve performance and convergence speed [10]. We ran-
domly select 10% of the training data to choose model param-
eters (e.g., hyper-parameter α). The best performing model
uses L1 norm as the regularization (penalty) term with hyper-
parameter α = 10−7 and learning rate set to γt = (α · t)−1

[10]. Using 10-fold cross validation, a generalized model for
all participants results in a root mean square error (RMSE)
of 83.81 milliseconds (ms). We also train personalized mod-
els using data from each participant; as expected, individual
models further improve accuracy — average RMSE across all
participants from 10-fold cross validation is 80.64ms.

The performance of our developed model using real-world
data is very encouraging. To contextualize the accuracy of
the models: in sleep loss and cognitive performance studies,
a response time higher than 500ms is often considered as a
“lapse” — a standard measure of impaired cognitive ability
[7, 40]. The average RMSE of 80.64ms achieved by our de-
veloped models — a much higher granularity than the stan-
dard definition of lapse — indicates that these models could
reliably be deployed instead of using PVT, especially to re-
duce burden for scenarios lasting extended periods of time.

Given these promising results in modeling response time, we
next focus on modeling RRT. Since one of our key goals is es-
timating alertness unobtrusively, we now use a reduced set of
features that can all be captured passively using smartphone
sensors — specifically, local time, internal time, sleep dura-
tion, relative sleep need, phone usage burstiness, mean du-
ration of phone usage sessions, average time between suc-
cessive phone usage sessions, and frequency of short (less
than 30 seconds) phone usage sessions. (Note that though
we use self-reported sleep diaries in this study, it is possi-
ble to instead reliably perform passive sleep assessment us-
ing smartphone data [2, 44], which would enable the calcu-
lation of information such as chronotype, internal time, and
relative sleep need without active user input). We again use
SGD with Huber loss function, standardize features to zero
mean and unit variance to avoid scaling issues. We randomly
select 10% of the training data to choose model parameters
(e.g., hyper-parameter α). The best performing model uses
L1 norm as the regularization term with α = 10−8 and learn-
ing rate set to γt = γ0 · t−

1
4 where γ0 = 0.01 is the initial

learning rate. Using 10-fold cross validation, our general-
ized model achieves RMSE of 11.39% across all participants.
Training individual models again produces further improve-
ment and an average RMSE of 10.87% across all participants.
That is, we can detect as small as an 11% deviation from indi-
vidual baseline; given that daily peak-to-peak change in RRT
averaged over all participants is 29.4%, this reaffirms the fea-
sibility of using our models in place of PVT tests.

To evaluate the importance of each feature in modeling both
response time and RRT, we perform feature ranking with re-
cursive feature elimination (RFE) [24]. At each step of RFE,
a model is trained on the entire dataset and the feature that
contributes least to the model (as measured by the absolute
weight assigned to each feature) is discarded. This procedure
continues recursively until there is only one feature left. Ta-
ble 3 shows our results from this process. For response time
modeling, the highest ranked features (i.e., self-perceived en-
ergy, internal time, stimulant use) have also been identified by
prior research as well-established modulators of alertness [19,
57, 62]. The ranking of the reduced feature set used for RRT
modeling demonstrates the importance of taking individual
chronotype into consideration as well as the informativeness
of phone usage patterns, which is consistent with our earlier
findings that phone checking and engagement behaviors ex-
hibit distinct trends during periods of high and low alertness.

Overall, we think the performance of our models speaks to the
feasibility of deploying our tools in real-world settings — and
in turn, opening new UbiComp possibilities, from sensing to
intervention in a range of domains and application areas.

Rank Response Time RRT
1 Energy rating Internal time

2 Internal time Avg. time between
phone usage sessions

3 Stimulant intake Short session frequency

4 Avg. time between
phone usage sessions Phone usage duration

5 Concentration rating Relative sleep need
Table 3. Top ranking feature groups for modeling response time and
RRT based on relative feature elimination (RFE).

DISCUSSION
Cognitive performance — particularly alertness — is known
to vary significantly across the day as a result of multiple in-
dividual factors including chronotype, a sleep pressure that
mounts as the day progresses, and social obligations. While
previous studies have looked into temporal alertness trends,
most were conducted in controlled laboratory setups or did
not take biological factors into consideration. Our study is
the first to use alertness data captured in ecologically valid
settings over an extended period of time in order to develop
passive sensing techniques grounded in chronobiology.

We first focused on replicating and extending the findings
of previous lab-based studies both in order to push forward
scientific knowledge as well as to validate our employed
methodology and its generalizability. Furthermore, since the
biological factors responsible for the fluctuations in our cog-
nitive ability have mostly been unexplored by UbiComp re-
searchers, replication also serves as a way to acquaint the
community with chronobiological findings that are pertinent
and valuable to the field. Our findings were mostly consis-
tent with prior studies. We found that alertness drops in the
early morning, peaks around noon and again in the evening,
and we saw clear evidence of the well known mid-day dip.
Comparing alertness across chronotypes, we confirmed that
early types are more alert earlier in the day, while late types



peak during evening. We further extended previous findings
about the impact of the Spring Daylight Savings Time (DST)
transition — a socially enforced change in time that can pro-
duce circadian disruption — and found that DST resulted in
declined performance, with late types affected more severely.

Beyond extending previous work, we also set out to develop
models capable of detecting and predicting temporal trends
in alertness, which is a keystone of the attentional system and
has considerable influence on a wide range of other cognitive
functions [57]. Capable of assessing alertness in the wild, our
models for both response time and RRT achieved high accu-
racy. Comparing to PVT tests, which can take as long as 2–10
minutes to complete, our passive-prediction approach is low
burden and low cost, and it enables the real time measurement
of performance in real world settings.

Sensing and Design Implications
Increasingly, technology is improving through personaliza-
tion and context-awareness, but most systems have yet to rec-
ognize and support the timings of our internal body clocks.
The alertness modeling techniques we have provided here
could enhance context-aware computing systems as well as
those from the emerging area of circadian computing: tech-
nologies that are aware of our internal timings and can play
to our biological strengths [2].

Systems with this sort of empirical foundation may have a
better chance of success since they can target the biological
roots of a problem rather than just the symptoms. For in-
stance, tools designed to limit cyberloafing behaviors might
first help people identify and address other aspects of their
personal behavior or environment that are disruptive to their
circadian rhythms (e.g., caffeine use or trying to do cogni-
tively demanding tasks at biologically ill-suited times). Our
research lays the groundwork for the development of such
circadian-aware systems that can help optimize performance,
encourage restorative activities during alertness dips, or sim-
ply help us become more aware and accepting of our bio-
logical capabilities (and limitations) — ultimately leading to
healthier, safer, and more sustainable working schedules.

Applications in Education and Scheduling
Given the connections among alertness, learning, and mem-
ory [4], the techniques we have introduced here for passive,
in-situ alertness assessment offer substantial positive impacts
for educational settings. Various studies have demonstrated
that the learning schedules for college students [16] and high
school students [32] (who both tend to have later chrono-
types) run contrary to their attentional rhythms, resulting in
increased fatigue and negative academic outcomes.

On an institutional level, our assessment methods provide
a way to capture large-scale, ecologically valid data about
students’ cognitive performance rhythms, which could be
used to advocate for more widespread reform in educational
scheduling. At the class-level, this type of data could in-
form the creation of lecture schedules that account for collec-
tive group chronotype or support instructors in class planning
(e.g., when choosing members for a group project). On an in-
dividual level, alertness assessment tools could help students

identify personal productivity patterns in order to make more
informed decisions when arranging class and study schedules
that better align with their own cognitive rhythms.

More generally, the ability to predict alertness can enable
novel forms of event scheduling (for both groups and individ-
uals) that reflect the dynamic and oscillating nature of cog-
nitive performance. For instance, a calendar system could
intelligently suggest meeting slots based on the alertness pro-
files of participants. Also, given the rise of distributed work-
places, such systems could also facilitate team management
by pairing collaborators who are better synchronized in terms
of sensed alertness patterns. Similarly, a circadian-aware ac-
tivity recommender system might suggest the best times of
day for an individual to do either more or less cognitively-
demanding tasks. Such recommendations would be based on
one’s chronotype, idiosyncratic sleep-related behaviors, cur-
rent time-of-day, and overall sensed performance rhythms.

Applications in Accident Prevention
The ability to perform real-time, in-situ alertness detection
could be particularly valuable for improving road safety.
Driver fatigue is a major cause of road accidents: the National
Transportation Safety Board (NTSB) estimates that 30% of
all road accident fatalities in the US involve fatigue [49].
While a number of systems have attempted to predict driver
fatigue using a variety of sensors (e.g., computer vision [29]),
these systems tend to be costly and are considered more in-
vasive. Our unobtrusive and passive methods for alertness
sensing could complement increasingly ubiquitous driver as-
sistance systems (e.g., that provide lane departure and for-
ward collision warnings) in order to further increase driver
and passenger safety — and crucially, potentially take effect
before the driver even steps into the car.

While sensing based on smartphone usage during driving
would be inapplicable, phone use leading up to entering the
car could be used to infer alertness while driving, or a per-
son’s historic alertness patterns could be used to determine
expected alertness during the current driving period. Further,
the phone-based signals we focused on in this paper are only
the first steps, and the assessment framework could be ex-
tended to unobtrusively mine additional technology-mediated
behavioral cues from within the driving context (e.g., steering
wheel interactions or radio tuning patterns).

Limitations and Future Work
First, it would be valuable to extend our study to samples
of more diverse ages and occupations, particularly since our
population of interest has a greater proportion of late chrono-
types than is found in other groups. Broadening our focus
to older populations would be particularly worthwhile given
that a strong time-of-day effect has been observed in this
population as well [57]. That said, we believe that a pop-
ulation such as ours — with known conflicts between obli-
gations and biologically-preferred sleep-wake schedules —
is an appropriate starting point. Relatedly, we apply a use-
ful but coarse categorization of chronotypes into two groups;
since most participants in our study are late types, such a cat-
egorization makes sense, but a larger study with more diverse



chronotypes would enable more sophisticated analyses that
treat chronotype as a continuous variable.

Along with broadening our attention to other populations, ex-
panding our work to other aspects of cognitive performance
would also be valuable. While we have focused on daily vari-
ations in alertness, rhythmic changes also occur in higher or-
der cognitive functions like working memory and executive
control [57]. A logical next step would be to deploy similar
momentary assessment instruments in order to measure such
additional aspects of cognitive performance.

Lastly, prior studies on smartphone use have considered the
impact of context on usage. However, much work is left to be
done to explore how a dynamic model of alertness together
with an understanding of biological rhythms can be used to
help explain smartphone habits and observed patterns of use.
We have investigated how a straightforward set of phone us-
age metrics can reflect alertness, and related research has re-
cently undertaken a more in-depth analysis and interpretation
of smartphone application use trends in relation to different
alertness stages [48]. Moving forward, given that people’s be-
haviors related to work, entertainment, and social networking
span multiple devices, a broader inspection of overall tech-
nology usage including computers, tablets, and TVs might
provide additional insights or boost prediction performance.

CONCLUSION
Our cognitive performance varies considerably and pre-
dictably over the course of a day. Beyond behavioral, envi-
ronmental, and social factors, our internal circadian rhythms
play a particularly significant role in influencing our alert-
ness on a moment-to-moment basis. However, previous stud-
ies that have focused on understanding patterns of alertness
across the day either do not consider such key biological fac-
tors or are mostly done in controlled laboratory environments.

This paper presents the first chronobiology-informed study to
collect real-world alertness data over an extended period of
time. Expanding the findings of previous work, our data con-
firm that alertness fluctuates significantly over the course of
the day and that these fluctuations differ between early types
and late types. We also show that Daylight Savings Time
(DST) has a negative impact on alertness, with late types suf-
fering more; that alertness drops after a night of inadequate
sleep following DST; and that stimulants can lead to short-
term changes in alertness. Based on these results, we develop
models that can accurately, continuously, and unobtrusively
assess alertness.

Our contributions lay the foundation for a new class of
circadian-aware systems — technology that can model, adapt
to, and provide feedback about the dynamic cognitive varia-
tions experienced by individuals and groups, in order to sup-
port better collaboration, stabilize cognitive performance, and
improve overall well-being.
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