Designing for Personalized Article Content

Carolyn Gearig¹, Eytan Adar¹, Jessica Hullman²

¹University of Michigan, Ann Arbor, MI {ccgearig.eadar}@umich.edu
²University of Washington, Seattle, WA {jhullman}@uw.edu

ABSTRACT

While extremely personalized feeds and collaborative filtering have become extremely popular on media websites, content personalization has received much less attention. Automatically modifying the textual and multimedia features of an article offers significant opportunities. Doing so has potential benefit for journalists, media sites, and readers. However, personalizing content in a news context poses numerous challenges that are not encountered in other applications like education and targeted advertising. In this paper we articulate a design space and guidelines that we have defined in the process of developing a content personalization toolset.

Author Keywords
Personalized Content, News Personalization, Guidelines

INTRODUCTION

Personalization and customization in journalism has a long history. Outlets like The New York Times offer personalized homepages and print editions based on a reader’s location. Google News and other aggregators allow readers to customize their news feeds in a number of ways. This type of feed personalization addresses information overload concerns, and allows media sites to leverage archival content and create differentiated editions (e.g., local or hyper-local content). Content personalization, on the other hand, where the facts presented in a single news ‘article’ are changed, has only begun to emerge as a viable feature.

Content personalization allows a site to automatically customize the text and multi-media (e.g., visualizations) in a specific article. In May 2015, for example, The New York Times published a story [1] using location data to load personalized maps and text for each reader (see Figure 1). Personalization of this type is beneficial in a number of dimensions including: allowing a journalist to write one article that can be customized for many readers; increasing engagement and learning; and supporting behavioral change.

Although there is great potential to personalized content, and a nascent practice, there is little in the way of tools or even guidance in how to develop personalization. The implementation of content personalization is difficult to scale as it is article-specific and may involve the work of many individuals (authors, editors, copy-editors, fact-checkers, programmers, graphic designers, etc.). Because personalization is often based on inferred data (e.g., the site ‘believes’ you are a Republican living in California), and the use of this information is specific to the article, it is necessary to develop appropriate reader ‘views’ for this content.

As a potential solution we have been building PersaLog (personalization logic), a Domain-Specific Language (DSL) for authoring and rendering personalized news content (text and graphics). As part of this work we have been identifying how content personalization differs from feed personalization and other approaches (e.g., personalized education and targeted advertising). We have created a set of guiding principles that are specifically relevant to content personalization for journalism. In this paper we share our conceptualization of a design space for content personalization and identify guidelines that we are using to drive our design.

RELATED WORK

News Personalization

Feed personalization research, which started largely to deal with information overload, has since expanded to support the leveraging of archival content, increasing engagement, and the creation of ‘sub-properties’ (e.g., local news through hyperlocalization) [24]. Collaborative Filtering and related approaches have been broadly studied as mechanisms for filtering, sorting, or organizing (e.g., on a custom front page) a stream of news articles [7, 12]. Subsequent research has found that feed personalization can also increase engagement (e.g., [6]). News services including the BBC (through MyBBC), The New York Times, The Huffington Post and NPR (through NPR One) as well as aggregators such as Google News have integrated this type of personalization into their online presence. Although we do not focus on feed personalization in this work, we can gain insight in how personal information is collected and used for this purpose. Specific design aims and values are visible in the way feed personalization is reflect to the reader (e.g., how does the reader understand curation? How does curation modify behavior and what are ethics of curation?).

Content personalization is much less evident in both research and practice. The New York Times’ article (Figure 1) is a rare example [1], but one that, we believe, demonstrates an effective use of content personalization. The article dynamically adjusts visualizations (e.g., a thematic map) and article text based on geolocation (inferred by IP address). In the context of broadcast news, the BBC has used object-based broadcasting—the ‘chunking’ of content (e.g., video, audio, etc.)—in applications that shorten or otherwise personalize broadcasts dynamically while still retaining coherence [17]. In another creative example, The New York Times created a dynamic story to support active learning by personalization [2]. The interface allowed the reader to draw what they believed was the relationship between parent income and college enrollment of their children. After completing the task, the article dynamically changed to compare the reader’s answer to both the true...
relationship as well as what others had drawn. This type of work is the inspiration for our current research. Our goal is to understand how such ideas can be generalized and scaled.

Education

Personalization in education (which, depending on application, may be called differentiated or individualized learning) has had a long history. Journalism, in its role as educating the reader, can gain insight from this literature. However, the specific goals of personalized education are somewhat unique. For example, personalized education can utilize fictional text to achieve learning objectives (e.g., mathematical word problems where generic terms are replaced by personally-relevant ones such as favorite foods, or the gender is changed). While this results in clear improvements in student engagement and performance [9, 10], fictional information is rarely appropriate in news contexts. Additionally, personalized education rarely, if at all, considers how personalization should be reflected or controlled by the student–something we believe is critical.

Patient education has also benefited from personalization (e.g., see [11]). Personalized pamphlets and mailers have supported behavioral changes in numerous contexts. However, the objectives (e.g., intervention for behavioral change) and requirements of health professionals (e.g., high-confidence in the patient’s medical state and the provider’s medical advice) may be different than those of the media. As a result, the necessary complexity of patient-focused authoring tools may not mesh perfectly with day-to-day journalism.

Adaptive Hypermedia

Adaptive hypermedia (surveyed extensively in [5]) has had a long history in computer science. These systems focus on sophisticated ways to modify hypertext (primarily link structure, but also text) by ‘‘bundling’’ hypermedia objects based on higher-level design goals (e.g., education). The systems often leverage a ‘‘user model’’ for additional personalization. The interfaces for adaptive hypermedia systems are extremely complex and may not be suited for the news context (but from which we can draw inspiration).

A related area, Natural Language Generation (NLG), is focused on taking structured content (e.g., a database of animal characteristics) and automatically generating unstructured text (e.g., [23]). Like adaptive hypermedia, NLG can be personalized through a user model (e.g., not describing an animal as ‘‘piglike’’ if the reader has not seen the article about pigs) [20]. Narrative Science (www.narrativescience.com) is an example of NLG applied to the news. The company automatically produces news articles when given data streams. While our goal is not to fully automate the generation of personalized text, we can nonetheless use ideas from the NLG community to support the journalist in building content personalization. For example, personalization may generate a large set of article variants [18] which may be difficult to copy-edit. Automated ‘‘repair’’ features of NLG [15] can test and correct personalized text with invalid grammar or style.

Advertising

Finally, we can not ignore the strong connection between news personalization and targeted advertising. The idea that advertisements should be customized for groups and individuals is fundamental to advertising practice and Internet-based ads have made the personalization more sophisticated and pervasive (see e.g., [19, 22]). We adapt some of the language and techniques of the advertising community in constructing our design space and implementation. However, as we do below, it is worth considering how the goals and values of advertising may diverge from journalism. As news organizations often directly benefit through advertising, it is critical to understand the relationship between targeted advertising (which is used on most news sites) and personalized news.

DEFINITION AND DESIGN SPACE

We define content personalization for news as: “An automated change to the set of facts in an article’s content based on properties of the reader.” For our purposes, article content can include both the textual content as well as any multimedia features (e.g., charts, static or interactive, photographs, videos, etc.). Properties of the reader can range from features of the individual (intrinsic or extrinsic) such as demographic or geolocation characteristics as well as behavioral features (e.g., past click behavior) or other derived features (e.g., learning style). Properties of the reader may also include preferences (e.g., preferred article length, background color, device format, etc.). In our definition, we treat each article as consisting of a
set of facts. These may be simple/atomic (e.g., unemployment in the state was 5%) or complex (e.g., based on some comparison or aggregation of atomic facts), and may be reflected in text or in multimedia (e.g., bars in a bar chart).

Personalization modifies the base set of facts in the article by: adding facts (e.g., inserting “unemployment in Courtland, MS was 5.1%” if the reader is in Courtland), removing facts (e.g., removing: “the accident occurred 20 miles north of Courtland, MS” if the reader doesn’t know where Courtland is), or changing fact emphasis (e.g., changing colors, modifying presentation order, etc.). These three operations can also be combined (e.g., replacing the less known “20 miles north of Courtland, MS” to the more familiar “40 miles south of Memphis, TN”). Figure 2 illustrates the configuration of facts before and after personalization.

DESIGN GUIDELINES

Below we share an initial design space and guidelines that motivate our tool-building and interface research.

Guideline 1: Interactive ≠ Personalized.

In the abstract, any interactive feature may appear to be personalization. For example, an interactive article with a search box can change an embedded visualization based on entered ZIP code (e.g., listing local unemployment rates). If the reader enters their own ZIP code (or one of interest) they are driving the article to display a personally-relevant view. Contrast this to the article automatically inferring the ZIP code from the reader’s IP address and automatically adjusting the visualization. While the latter is clearly personalization, the former is less clearly so. To distinguish between interactivity and personalization, we argue that some form of automation is critical. That is, if the only way an article’s content is changed is in reaction to the reader’s direct manipulation or input, we do not consider this personalization (though readily acknowledge that such actions produce personally-relevant views). Interestingly, interactivity can be used as a mechanism to drive personalization in other contexts (e.g., remembering what the reader did or said on one page to drive automated personalization on another). Thus, interactive behavior is an opportunity for learning something about the user—either explicitly (reader typed in their salary) or implicitly (reader gave us their name, and we inferred their gender).

Guideline 2: Personalize with function in mind

To effectively use content personalization it is useful to identify a set of common design patterns that describe what information can be modeled (which reader properties can be obtained) and the contexts in which they can be effectively used. Our ongoing work in identifying a set of such patterns began by surveying the targeting features (or alternatively, segmentation criteria) offered in Internet advertising services (e.g., Google AdWords and Facebook). We expanded our search through the existing personalization literature (which include features such as reading level or prior knowledge that are inferred through behavior). Though a complete catalog is beyond the scope of this article, we offer three basic cases.

• Location—Location is the most likely target for news personalization. Many datasets feature location attributes. Because articles are often written to be relevant to broad readership, specific locations are often aggregated. Personalization can reverse this by providing local context. Furthermore, location can be coupled with census data to infer other properties (e.g., income, race).

• Age—Though it often possible to include gender information in articles (most datasets capture a simple male/female binary), age is more nuanced. As with location, it is not possible to include facts for all ages as there are many age groups. Additionally, articles are often written with the mean reader age in mind. Knowing a reader’s age can support contextual personalization (e.g., explicating on unfamiliar concepts, or hiding obvious facts). One could imagine the same health or entertainment news reported very differently based on reader age.

• Education Attained and Reading Level—The one-size-fits-all nature of articles often encourages readers to seek alternative sources of information that are written in a more suitable style (e.g., simpler or more detailed depending on the reader). Personalization can support readers of different types. While age may be used as a proxy for education attainment or reading level, this information can be more directly inferred (e.g., through [8]) and used to customize article text (e.g., through simplification).

There are many additional reader properties that can be used for personalization (e.g., political affiliation and attitudes to topical interests and prior-knowledge to economic and marital status as well as many others). All can be inferred and leveraged. However, while the answer to ‘can we?’ for personalization is ‘yes,’ the answer to ‘should we?’ is more subtle. A key determinant in using these features is that they serve a higher goal, rather than personalization for the sake of personalization. One could: achieve learning/understanding objectives (clarifying information with personally relevant information or providing active-learning); drive behavioral change (providing personally relevant information that is know to motivate to action); or more simply increase engagement (encouraging the reader to spend more time on the article or site). The set of possible “functions of personalization” are as wide and varied as “functions of journalism.” Because personalization acts to enhance and support goals of the journalist, articulating the goals for the specific article and context is important. Thus,
we believe that a clear purpose should drive the selection of a
design pattern.

Part of strategic use of personalization is to have good ex-
amples of use that can be readily replicated and reused. Our
current design, for example, allows for personalization code
blocks to be copied from article text to article text. Code
blocks were intended to be reused, with small modifications,
in new contexts. The use of common patterns and personal-
ization property names (e.g., age, county, sex, etc.) helps for
rapid changes.

| Guideline 3: Consider inference quality at all levels |
User modeling (i.e., personal property determination) can
be achieved based on passive observation (implicit informa-
tion). For example, location can be inferred by IP-address [16]
whereas features as distinct as age, gender, political affiliation,
and reading level can be inferred by browsing or search behav-
ior. In the case of behavior, it is usually necessary to obtain
ground-truth to train the classifier (e.g., for a set of readers
with known genders, which websites did they visit [21]?). For
modeling reading level or political leaning of the reader, it is
possible to track ‘consumed’ versus ‘rejected’ search results
(that are labeled) [8]. Some inferences such as income level,
which are themselves based on inferred location (using census
blocks [13]), are ‘precariously’ constructed. Generally, the
more one uses ‘remote sensors’ as proxies for direct evidence,
the less confident one can be in the final inference.

The impact of this complexity is that inference quality can
vary dramatically from 90% accuracy to under 50% in some
tasks. It is critical to consider this in the use of personalization
as a mistake can be costly (either in the reader’s satisfaction
or the ‘cost’ of reversing the personalization). In PersaLog
we are attempting to model uncertainty directly by allowing
the inference engine to record distributions (rather than most
likely values). While the system will by default return the most
likely inference (e.g., age=25) it also returns the certainty in
this value (e.g, 80%) and alternatively the likelihood in some
other value (e.g., p(age = 45)).

| Guideline 4: Identify failure and fail gracefully |
There are various ways that personalization can fail. ‘Horror’
stories for targeted advertising are readily available (e.g., ads
for an airline appearing next to an article about a plane crash).
While such failures are less likely to occur in a restricted con-
tent personalization context, they are still possible depending
on the level of automation. Additionally, inference quality can
vary wildly, leading to incorrect personalization.

One safeguard is to pass the level of uncertainty through to the
personalization tool, and stop the personalization if inference
is poor (we have low confidence). In some cases inference (and
inference quality) is hierarchical. For example, geolocation
by IP-address is differentially accurate based on geographical
range (e.g., country, state, city, street, etc.). The larger the
area, the more accurate the system (e.g., one can infer country
with > 90% accuracy but this falls to < 60% for some city
predictions). For inferences on hierarchical data one could
set the personalization to the most narrow target that meets an
uncertainty threshold.

A final possibility is to make failures apparent during de-
design. As an extension to the traditional copy-editing and
fact-checking duties may include ‘stress-testing’ the personal-
ization system by creating profiles with different inference
qualities and values and perform quality control on different
instances. This clearly has the potential to dramatically in-
crease the workload for the human that is ‘in the loop,’ so
providing automated tools could help. This stress-test strategy
is the one we are currently pursuing in PersaLog.

| Guideline 5: Identify the bias |
A common critique for feed personalization is bias introduced
by automated curation. The possibility of “filter bubbles” or
“echo chambers” has led to various criticisms of algorithmic
curation (e.g., [4]). Because content personalization is most
likely done on a per-article level, rather than systematically,
and uniformly, applied to the entire site, the chance for this
kind of bias is lessened. However, systematic bias may still
emerge through the continuous use of the same personalization
features in the same way (e.g., only providing local unemployment
information in every article about unemployment) and
may have negative consequences. Finally, it is worth con-
sidering how personalization might interact with other site
features. For example, discussion threads may become less
useful if every reader experiences a different view. This has
both bias and usability issues that are worth considering as
content personalization is deployed.

We note that personalization also has the potential to act
against this type of bias. For example, The New York Times
provided visualizations to explain the neutral, Republican,
and Democratic ‘read’ of the same report [3]—thus allowing
the reader to gain insight into the perspectives of the ‘opposing’
party rather than focusing on their own.

| Guideline 6: Privacy is a crucial concern |
It remains to be seen if privacy issues around news personal-
ization gain the same negative attention as Internet advertising.
Regardless, we believe that in the context of news, issues of
privacy can not be ignored. Even if done successfully, there
is potential that readers could find it “creepy” (e.g., inferring
pregnancy [14]). Additional research is necessary to determine
reader attitudes for personalized content. However, it is clear
that the value systems of those implementing personalization
in the newsroom are quite different than than traditional users
of personalization (e.g. advertisers). The emphasis on sourc-
ing materials and provenance will likely drive a different kind
of bias is lessened. However, systematic bias may still
emerge through the continuous use of the same personalization
features in the same way (e.g., only providing local unemployment
information in every article about unemployment) and
may have negative consequences. Finally, it is worth con-
sidering how personalization might interact with other site
features. For example, discussion threads may become less
useful if every reader experiences a different view. This has
both bias and usability issues that are worth considering as
content personalization is deployed.

We note that personalization also has the potential to act
against this type of bias. For example, The New York Times
provided visualizations to explain the neutral, Republican,
and Democratic ‘read’ of the same report [3]—thus allowing
the reader to gain insight into the perspectives of the ‘opposing’
party rather than focusing on their own.

| Guideline 7: Provide reader control |
Providing reader control over personalization features is de-
sirable for a number of reasons. The ability to stop person-
alization may: assuage (some) privacy concerns; allow for a common view for discussion; and provide additional context that may reduce bias. A variation on this control is to provide the reader with the ability to switch to alternative personalized views (e.g., what does someone of a different gender see). We are currently designing PersaLog to allow readers to both remove and re-target personalization.

| Guideline 8: Journalism workflows are unique |

In many non-news applications of personalization, designers and developers act on the entire site at once (e.g., collaborative filtering is often a site-wide feature). However, the process of writing and preparing individual articles is more complex and involves (among others): authors, editors, fact-checkers, graphic designers, and copy-editors. Thus, personalization requires the attention of many stakeholders for every article—a clear problem for scaling and addressing multiple concerns. In the context of PersaLog, we have begun to survey different types of media professionals to support our goal of developing tools with role-specific authoring views.

CONCLUSIONS AND FUTURE WORK

While personalized feeds and algorithmic curation have become increasingly common in online journalism, content personalization has yet to be fully explored. Like feed personalization, content personalization can enhance learning and behavioral changes in readers and increase engagement. In our effort to design tools that support these features we have identified a number of unique properties and requirements that emerge in the context of news personalization. In this paper we describe guidelines we have identified and illustrate how they are helping us in designing our tools. We do not believe that these guidelines are complete or absolute, but that they are a useful starting point for a broader conversation. As we continue to develop, test, and deploy the PersaLog system we hope is to expand and refine these guidelines.

Acknowledgements

This work was partially supported by the NSF under grant IIS-1421438.

REFERENCES