
Introduction to Python

Prof. James H. Thomas

Use python interpreter for quick syntax tests.

Write your program with a syntax-highlighting text
editor.

Save your program in a known location and using “.py”
extension.

Use the command window (or terminal session) to run
your program (make sure you are in the same
directory as your program).

Getting started on the Mac

• Start a terminal session

• Type “python”

• This should start the Python interpreter (often called
“IDLE”)

• Use the Python interpreter to test simple things.

> python

Python 2.6.4 (something something)

details something something

Type "help", "copyright", "credits" or "license"

for more information.

>>> print “Hello, world!”

Hello, world!

Run your program
• In your terminal, Ctrl-D out of the python interpreter

(or start a new terminal).

• Type “pwd” to find your present working directory.

• Open TextWrangler.

• Create a file with your program text.

• Be sure that you end the line with a carriage return.

• Save the file as “prog.py” in your present working
directory.

• In your terminal, type “python prog.py”

> python hello.py

hello, world!

If your terminal prompt has three '>' characters you are in the Python
interpreter:

>>> print 7

7

>>>

To run a program, be sure you have a normal terminal prompt (will
vary by system), will usually end with a '$' or a single '>' character:

> python myprog.py arg1 arg2

(program output)

When you write your program (in a text editor), be sure to save it
before trying out the new version! Python reads the saved file to
run your program.

Common beginner's mistakes

Run a program by typing at a terminal session command line prompt (which
may be > or $ or something else depending on your computer; it also may or
may not have some text before the prompt).

If you type 'python' at the prompt you will enter the Python IDLE
interpreter where you can try things out (ctrl-D to exit).

If you type 'python myprog.py' at the prompt, it will run the program
'myprog.py' if it is present in the present working directory.

'python myprog.py arg1 arg2' (etc) will provide command line
arguments to the program. Arguments are separated by spaces.

Each argument is a string object and they are accessed using sys.argv[0],
sys.argv[1], etc., where the program file name is the zeroth argument.

Write your program with a text editor and be sure to save it in the present
working directory before running it.

Summary of Command Line Basics

Objects and types

• An object refers to any entity in a python program.
• Every object has an associated type, which determines the properties

of the object.
• Python defines six types of built-in objects:

Number 10 or 2.71828

String “hello”

List [1, 17, 44] or [“pickle”, “apple”, “scallop”]

Tuple (4, 5) or (“homework”, “exam”)

Dictionary {“food” : “something you eat”, “lobster” : “an edible arthropod”}

File more later…

• It is also possible to define your own types, comprised of combinations
of the six base types.

Literals and variables

• A variable is simply a name for an object.

• For example, we can assign the name “pi” to the
Number object 3.14159, as follows:

>>> pi = 3.14159

>>> print pi

3.14159

• When we write out the object directly, it is a literal,
as opposed to when we refer to it by its variable
name.

The command line

• The command line is the text you enter after the
word “python” when you run a program.

python my-program.py GATTCTAC 5

• The zeroth argument is the name of the program file.
• Arguments larger than zero are subsequent elements

of the command line.

zeroth

argument

first

argument

second

argument

Reading command line arguments

Access in your program like this:

import sys

print sys.argv[0]

print sys.argv[1]

> python my-program.py 17

my-program.py

17

zeroth

argument

first

argument

There can be any number of arguments, accessed
by sequential numbers (sys.argv[2] etc).

Assigning variables
In order to retain program access to a value,
you have to assign it to a variable name.

import sys

sys.argv[0]

import sys

s = sys.argv[0]

import sys

print sys.argv[0]

this says “give me access to all
the stuff in the sys module”

this says “get the string that is stored at
index 0 in the list sys.argv and print it”
(but it doesn’t do anything else)

this doesn’t do anything – it says “get the
string that is stored at index 0 in the list
sys.argv and do nothing with it”

this says “get the string that is stored at
index 0 in the list sys.argv and assign it
to the variable s”

Numbers

• Python defines various types of numbers:

– Integer (1234)

– Floating point number (12.34)

– Octal and hexadecimal number (0177, 0x9gff)

– Complex number (3.0+4.1j)

• You will likely only need the first two.

Conversions

>>> 6/2

3

>>> 3/4

0

>>> 3.0/4.0

0.75

>>> 3/4.0

0.75

>>> 3*4

12

>>> 3*4.0

12.0

• The result of a mathematical
operation on two numbers of
the same type is a number of
that type.

• The result of an operation on
two numbers of different
types is a number of the more
complex type.

integer → float

truncated rather than
rounded

Formatting numbers

• The % operator formats a number.
• The syntax is <format> % <number>

>>> “%f” % 3

‘3.000000’

>>> “%.2f” % 3

‘3.00’

>>> “%5.2f” % 3

‘ 3.00’

Formatting codes

• %d = integer (d as in digit)

• %f = float value - decimal (floating point) number

• %e = scientific notation

• %g = easily readable notation (i.e., use decimal

notation unless there are too many zeroes, then

switch to scientific notation)

More complex formats

%[flags][width][.precision][code]

Left justify (“-”)
Include numeric sign (“+”)
Fill in with zeroes (“0”)

Number of
digits after

decimal
Total width
of output

d, f, e, g

Examples
>>> x = 7718

>>> “%d” % x

‘7718’

>>> “%-6d” % x

‘7718 ’

>>> “%06d” % x

‘007718’

>>> x = 1.23456789

>>> “%d” % x

‘1’

>>> “%f” % x

‘1.234568’

>>> “%e” % x

‘1.234568e+00’

>>> “%g” % x

‘1.23457’

>>> “%g” % (x * 10000000)

‘1.23457e+07’

Don’t worry if this all looks like
Greek – you can figure out how
to do these when you need
them in your programs.

It sure looks like Greek to me.

Read as “use the preceding code
to format the following number”

Basic string operations:

S = "AATTGG" # assignment - or use single quotes ' '

S1 + S2 # concatenate two strings

S*3 # repeat string S 3 times

S[i] # get character at position 'i'

S[x:y] # get a substring from x to y (not including y)

len(S) # get length of string

int(S) # turn a string into an integer

float(S) # turn a string into a floating point decimal number

len(S[x:y]) # the length of s[x:y] is always y - x

Methods:

S.upper() # convert S to all upper case, return the new string

S.lower() # convert S to all lower case, return the new string

S.count(substring) # return number of times substring appears in S

S.replace(old,new) # replace all appearances of old with new, return the new string

S.find(substring) # return index of first appearance of substring in S

S.find(substring, index) # same as previous but starts search at index in S

S.startswith(substring) # return True or False

S.endswith(substring) # return True of False

Printing:

print var1,var2,var3 # print multiple variables with space between each

print "text",var1,"text" # print a combination of explicit text and variables

string basics

Basic list operations:
L = ['dna','rna','protein'] # list assignment

L2 = [1,2,'dogma',L] # list can hold different object types

L2[2] = 'central' # change an element (mutable)

L2[0:2] = 'ACGT' # replace a slice

del L[0:1] = 'nucs' # delete a slice

L2 + L # concatenate

L2*3 # repeat list

L[x:y] # get a slice of a list

len(L) # length of list

''.join(L) # convert a list to a string (a string function that acts on lists)

S.split(x) # convert string to list- x delimited

list(S) # convert string to list - explode

list(T) # converts a tuple to list

Methods:
L.append(x) # add to the end

L.extend(x) # append each element from x to list

L.count(x) # count the occurrences of x

L.index(x) # get element position of first occurrence of x

L.insert(i,x) # insert element x at position i

L.remove(x) # delete first occurrence of x

L.pop(i) # extract (and delete) element at position i

L.reverse() # reverse list in place

L.sort() # sort list in place

list basics

dict basics

D = {'dna':'T','rna':'U'} # dictionary literal assignment

D = {} # make an empty dictionary

D.keys() # get the keys as a list

D.values() # get the values as a list

D['dna'] # get a value based on key

D['dna'] = 'T' # set a key:value pair

del D['dna'] # delete a key:value pair

D.pop('dna') # remove key:value (and return value)

'dna' in D # True if key 'dna' is found in D, else False

The keys must be immutable objects (e.g. string, int, tuple).

The values can be anything (including a list or another dictionary).

The order of elements in the list returned by D.keys() or D.values()
is arbitrary (effectively random).

File reading and writing
The open() command returns a file object:

<file_object> = open(<filename>, <access type>)

Access types: 'r' = read
'w' = write
'a' = append

myFile = open("data.txt", "r") – open for reading

myString = myFile.read() – read the entire text as a string

myFile = open("new_data.txt", "w") – open for writing

myStringList = myFile.readlines() – read all the lines as a list of strings

myString = myFile.readline() – read the next line as a string

myFile.close() – always close a file after done

myFile.write(“foo”) – write a string (does not append a newline)

if <test1>:

<block1>

elif <test2>:

<block2>

elif <test3>:

<block3>

else:

<block4>

• Only one of the blocks is ever executed.
• A block is all code with the same indentation.

if – elif - else

Comparison operators

• Boolean: and, or, not

• Numeric: < , > , ==, !=, >=, <=

• String: in, not in

< is less than

> is greater than

== is equal to

!= is NOT equal to

<= is less than or equal to

>= is greater than or equal to

for loops

for <target> in <object>

for letter in “Constinople”

for myString in myList

continue

break

for integer in range(12)

range([start,] stop [,step])

object can be a list, a string, a tuple

(where myList is a list of strings)

skip the rest of the loop and start at the top again

quit the loop immediately

As usual, all the commands with the same indentation are run as a code block.

range simply returns a list of integers

Loops can be nested or have other complex code blocks inside them.

for base in sequence:

<do something with each base>

for sequence in database:

<do something with each sequence>

for base in ["a","c","g","t"]:

<do something with each base>

for index in range(5,200):

<do something with each index.

Examples of for loops

while loops

while (conditional test):

<statement1>

<statement2>

. . .

<last statement>

While something is True keep running the loop, exit as
soon as the test is False.

Any expression that evaluates True/False can be used
for the conditional test.

Similar to a for loop

Examples of while loops

while (error > 0.05):

<do something that will reduce error>

while (score > 0):

<traceback through a DP matrix, each

time setting the current score>

Sorting

The list method sort implements an efficient version of the
merge sort algorithm (actually it uses both merge sort and
insertion sort in a hybrid usually call timsort).

The sort is “stable” meaning that equal elements come out of
the sort in the same order they started.

The stable property means you can apply multiple sorts
sequentially and everything will behave the way you want.

You can supply your own comparison method as an argument to
sort.

myList = [0,2,7,-5,4,-2,3]

myList.sort()

myList will now be [-5,-2,0,2,3,4,7]

switching the -1 and 1 below will cause this to

act the same as the default sort

def comp(A,B):

if A > B:

return -1

if A < B:

return 1

return 0

myList.sort(comp)

myList will now be [7,4,3,2,0,-2,-5]

The comparator function provided to sort can be arbitrarily complex
and it can be designed to compare any two entities.

Here is a comparator function that will sort by length:

def lencomp(A,B):

if len(A) > len(B):

return 1

if len(A) < len(B):

return -1

return 0

myList = ["a","tttt","cc","ggg","ttaa"]

myList.sort(lencomp)

myList is now ["a","cc","ggg", "tttt","ttaa"]

Note that tttt and ttaa remain in their original order even
though they are the same length (the stable property).

def lencomp(A,B):

if len(A) > len(B):

return 1

if len(A) < len(B):

return -1

return 0

myList = ["a","tttt","cc","ggg","aatt"]

myList.sort()

myList is now ["a","aatt","cc","ggg","tttt"]

myList.sort(lencomp)

myList is now ["a","cc","ggg","aatt","tttt"]

Sequential sorts taking advantage of the stable property:

Code efficiently

Time efficiency
Rough order of speed for common operations:

reading/writing files - very slow
going through a list serially for matching elements - slow
accessing a list (or string) element by index - fast
accessing a dictionary value by key - fast

File reading - sometimes you only need to look through a file until you find
something. In this case, read lines until you have what you need then close
the file.

Dictionaries can be used in various clever ways to save time.

Do simple profiling to see what part of your code is slowest (for example,
invoke time.time() twice, once before and once after a code block).

Future - beginning Python is kept simple by hiding a lot of complex things
from you - dig in deeper to understand what takes more time (and memory).

Beware of string slicing - it is beguilingly simple and very time
(and often memory) wasteful. For example, these two code
snippets do the same thing, but the second one is much faster,
especially if longStr is very long and has lots of matches:

query = "foo"

pos = longStr.find(query)

while pos != -1:

print pos

pos = longStr.find(query, pos+1) # starts search inside the same string

query = "foo"

pos = longStr.find(query)

while pos != -1:

print pos

longStr = longStr[pos+1:] # creates a new string

pos = longStr.find(query)

By the way, longStr.find(query) is identical to longStr.find(query, 0).
When you leave out the search index, python provides 0 as the default.

BAD

GOOD

Think about what is happening under the hood

For example, here is what is happening under the hood in the bad
code snippet from the previous slide:

1) find and report the position of the match
2) allocate a memory block to hold the new (sliced) string
3) read the string slice from the old memory block into the new

memory block
4) free the memory associated with the old memory block
5) repeat

Steps 2 through 4 are time consuming and totally unneeded.

Beware of string slicing clocked example

count = 0

ix = 0

while ix < len(longStr):

if longStr[ix] == 'T':

count += 1

ix += 1

count = 0

while len(longStr) > 0:

if longStr[0] == 'T':

count += 1

longStr = longStr[1:]

runtime 0.25 sec

runtime 73.7 sec

string of length 700,000:

Use xrange() rather than range()

xrange() is functionally nearly identical to range(), but
rather than actually creating a list that you loop (iterate)
over, it provides a single incremented value.

We teach range() because it elegantly shows how you can
iterate over a list, but usually you don't need the list.

for ix in range(0, len(longStr)):

creates a list, with elements 0, 1, 2, 3, …

for ix in xrange(0, len(longStr)):

creates a single integer value that is
increased by 1 each time through the loop

This hardly matters when longStr isn't all that long, but if it is, e.g.
genome sized, it matters a lot, both in memory and in time.

Memory efficiency

File reading - often you don't need to save the entire contents of a file into
memory. Consider whether you can discard some of the information while
you are reading the file.

If your program generates many copies of the same long string, consider
making a dict or list entry with the string as the value (you only need to
store it once). You will access the string via the list index or dict key.

If you are working with a long string and you want to access many segments
of it, do NOT save each segment as a string - use string indexing to get
each segment as you need it.

Future - instead of using Python lists, consider using classes in the Python
array module to store long sequences, etc.

Timing code blocks
You may want to know what part of your program is working slowly in order to
focus on improving it. This is very easy.

The time() method in the time module returns a float number that gives
the number of seconds elapsed since "the epoch" (an arbitrary reference
moment in the past) at the exact moment the time() method is executed (it
accesses your computer clock to do this). To use it, just flank the code you
want to time with two calls to time.time() and print to the screen (or save
to a log file, or whatever). If you want to time the entire program, put them
at the start and end (duh!). Typically time.time() is accurate to about 1
msec.

import time

<various code>

startTime = time.time()

<code you want to clock here>

print time.time() - startTime, 'seconds elapsed'

<various other code>

Classes

Writing and using your own classes

Use when you want:

• a data structure not conveniently fitting existing Python types
• a data structure with your own implemented methods

class <class_name>:

def __init__(self, [optional constructor args]):

<constructor code>

def myClassMethod(self, [optional args]):

<method code>

Notes - python defines several special method declarations related to
classes. They all start and end and double underscores. __init__ is a
"constructor" method used to initialize an instance of a class. The
__str__ method on the next slide is another example. The "self"
reference appears first in the arguments for every class method - it
gives Python a reference to the specific object being used.

Writing and using your own classes is very easy.

class Sequence:

def __init__(self, name, seq):

self.name = name

self.sequence = seq.replace('\n','')

def toFastaString(self):

lines = []

for i in xrange(0, len(self.sequence), 100):

lines.append(self.sequence[i:i+lineLen])

return '>' + self.name + '\n' + '\n'.join(lines)

def __str__(self):

return self.toFastaString()

def __len__(self):

return len(self.sequence)

Example of a fully implemented (though simple) class
to hold protein or nucleotide sequences

The constructor removes newlines in the sequence as a precaution, since
they are often read in a form that has embedded newlines. The
toFastaString method inserts new lines in the sequence to make easily
readable output. The __str__ method makes built-in Python print and
str functions do something sensible with a Sequence object. The __len__
method makes Python len work sensibly. It is often a good idea to
implement __str__ and __len__ for a new class if you plan to use it much.

stores the name and seq data into
class data variables.

Note: object-associated data
(self.name and self.sequence
in this case) are called many
things, including "attributes",
"fields", "data fields",
"properties", or "data
members". They all mean
essentially the same thing.
Python authors usually use
"attributes".

Using the Sequence class

>>> sname = 'mySeq'

>>> seqres = 'AGGCTATACTAGGCTA'

>>> seq1 = Sequence(sname, seqres)

>>> seq1.toFastaString()

>mySeq

AGGCTATACTAGGCTA

>>> len(seq1)

16

>>> print seq.name

mySeq

>>> print seq.sequence

AGGCTATACTAGGCTA

the '>' on this line is the start of
the fasta name, not a prompt

(assumes you have already defined the sequence class as
shown on the previous page)

creates a Sequence object

you can reference any data associated
with your object (object attributes)

using the familiar dot notation

because we defined the __len__
method, the Python built in len
function does the sensible thing

The "self" reference that appears first in the definition of every class method is NOT
used when you call the method. It is there so that when the Python method is called it
has a reference to the specific object to which the method is to be applied.

There is a whole series of special class methods that all start and end with double
underscore (e.g. __len__). These can be very handy. Another example is the __add__
method, which defines what the operator + does when you try to “add” two of your
objects.

Keep in mind namespace and variable passing when constructing an object or using an
object method. E.g. in our definition of Sequence, the pointer associated with name in
the constructor is copied to self.name. Since they both point to an immutable string,
changing name (outside the object) or self.name (inside the object) has no effect on
the other. However, if name pointed to a list or any other mutable object you COULD
change the contents in either place.

Notes on classes
The only real difference from creating a built-in Python object is that you use
the class name to construct it, rather than the special symbols that Python
interprets as a particular class type. e.g.:

myList = ['Hello', 'World']
what Python is really doing is creating a
List object using an __init__ method;

the [] is just a shorthand

Extending Classes

You can "extend" any Python class, including ones you have written or
ones that are provided with Python.

Extension formalism – much like biological classification

class Eukaryote

class Animal (extends Eukaryote)
define class method movementRate()

class Insecta (extends Animal)
define class method numberOfWings()

class Drosophila (extends Insecta)
define class method preferredFruit()

Drosophila is an Insecta so it has all the Insecta data
structures and methods.
Drosophila is also an Animal so it has all the Animal data
structures and methods (and Eukaryote, though we didn't define
any).

What methods are available for an object of type Drosophila?

Writing a new Class by extension

Writing a class:

class Date:

def __init__(self, day, month, year):

<assign arguments to class variables>

def etc. # define a whole bunch of Date methods

Extending an existing class:

class HotDate(Date):

def __init__(self, day, month, year, toothbrush):

super(day, month, year)

self.bringToothbrush = toothbrush

All of the data types and methods written for Date are also
available for a HotDate object (plus others specific for HotDate).

class to extend

super - call the con-
structor for Date

class Eukaryote

class Animal (extends Eukaryote)
add class method movementRate()

class Insecta (extends Animal)
add class method numberOfWings()

class Drosophila (extends Insecta)
add class method preferredFruit()

super is Eukaryote

super is Animal

super is Insecta

Class hierarchy

The next class up the hierarchy is the superclass (there can only be one).
Each class down one level in the hierarchy (there can be more than one)
is a subclass.

Exception handling

Using Python exceptions

When an error occurs in your program, you don't necessarily have to
live with those nasty default error messages. If you anticipate a
possible error, you can do something more sensible (usually user
feedback).

You do this by embedding the code that might cause an error in a try
clause, following by an except clause.

The try key word tells Python that it should try to execute a code
block, and the except key word tells Python what to do if it fails.

If except is followed by a specific type of exception, only that type
of exception will be caught.

If except is followed by nothing, ANY exception will be caught.

You can put try-except clauses anywhere.

Python provides several kinds of exceptions
(each of which is of course a class!). Some
common exception classes:

ZeroDivisionError # when you try to divide by zero

NameError # when a variable name can't be found

MemoryError # when program runs out of memory

ValueError # when int() or float() can't parse a value

IndexError # when a list or string index is out of range

KeyError # when a dictionary key isn't found

ImportError # when a module import fails

SyntaxError # when the code syntax is uninterpretable

(note - each of these is actually an extension of the base Exception class -
any code shared by all of them was written once for the Exception class)

class Date:

def __init__(self, day, month, year):

try:

self.day = int(day)

except ValueError:

print 'Date constructor: day must be an int value'

try:

self.month = int(month)

except ValueError:

print 'Date constructor: month must be an int value'

try:

self.year = int(year)

except ValueError:

print 'Date constructor: year must be an int value'

Example - enforcing format in the Date class

only catches this
type of exception

FYI, if there are other types of exceptions (not a ValueError), they will be reported
by the default Python exception handler, with familiar output, e.g.:
Traceback (most recent call last):

File <pathname>, line X, in <module>

<code line>

<default exception report>

Create your own Exception class

import exceptions

class DayFormatException(exceptions.Exception):

def __str__(self):

print 'Day must be parseable as an int value'

DayFormat extends the Python defined Exception class
(which is the superclass of other Exception classes as well)

Remember that the __str__ function is what print calls when
you try to print an object.

(not normally necessary, but FYI)

Using your own Exceptions

class Date:

def __init__(self, day, month, year):

try:

self.day = int(day)

except:

raise DayFormatException

raise is a new reserved key word - it raises an exception.
The DayFormatException will get returned to whenever the constructor
was called - there it can be "caught" if it in turn was embedded in a try-
catch clause like this:

try:

myDate = Date("Ides", "March", "IXIV")

except:

<do something> catch the exception raised
by the Date constructor

Exceptions - when to use

• Any software that will be given to someone else,
especially if they don't know Python.

• Private software that is complex enough to warrant.

• Just as with code comments, exceptions are a useful
way of reminding yourself of what the program expects.

• They have NO computational cost (if no exception is
thrown, nothing at all is computed).

Better command line arguments

python myprog.py 12 7 1.2 True file1 file2

avoid writing programs that are invoked like this:

(it might seem obvious while you are writing the program, but come
back to it a month later and you will have to read the code to figure
out what the hell all those arguments are for)

(how I learned to stop worrying and love the command line)

Improved command line arguments

The method we covered in class for command line arguments is very
clunky when you are writing programs that have many arguments.

No doubt you have used programs (like grep etc) that have a "-" or "--"
argument system (e.g. grep -v -x mystring myfile).

Python provides a rather handy system to do a similar thing, although
at first it will seem rather weird. (There is even a new system for doing
this that I have not bothered with and I will show the old system since
I know it and it still works just fine.)

This Python system also gives you a simple form of text help for free
(typically invoked using myProgram -h, which prints some instructions
to the screen).

The system is embodied in the OptionParser class in the optparse
module.

from optparse import OptionParser

oparser = OptionParser() # create an instance to populate with options

oparser.add_option("--maxdist", type="int", dest="maxDist", default="3000")

oparser.add_option("--score_min", type="float", dest="scoreMin", default="40")

oparser.add_option("--align", action="store_true", dest="align", default=False)

oparser.add_option("--in", type="string", dest="fileName", default=None)

when all the options have been added, put them into a tuple for easy use

(opt, args) = oparser.parse_args(sys.argv)

here are some typical uses of the options - notice their name was set by dest=

if opt.align:

<do some alignment thing>

reportAlignments(opt.scoreMin) # report some alignments with appropriate scores

etc.

It is easiest to see an example and use it as a template:

Each add_option call sets the command line option, the type expected, the
destination variable name to use inside your program, and a default value. For
booleans the "type" is replaced by an action to take.

When you use the options at the command line, all except the boolean type are
paired with a value:

>myprog.py --align --score_min 20 --in mySeqFile.fasta

The boolean options (like --align) are "flags" - typically they have a
default of False and are set to True if you include them at the command
line. The other options always are followed by their value.

The options can be given at the command line in any order. These are
identical:

>myprog.py --align --score_min 20 --in mySeqFile.fasta

>myprog.py --score_min 20 --align --in mySeqFile.fasta

If the user gives a -h or --help option at the command line some help
text is provided without your writing any new code. Try it out - it is kind
of cool.

If you want to add specific help for the user, just add to the end of
your add_option() code, something like this:

oparser.add_option("--in", type="string",

dest="fileName", default=None, help="input fasta file")

You can also use single hyphen options but only if they are one letter
long. (don't ask why, it has to do with the tangled history of Unix)

stdin, stdout, stderr, and log files

Making output to stdout and stderr and log files

Many programs make their output to what are called "standard out" and
"standard error" (the print command goes to standard out, the default
python error messages go to standard error). By default, both are written
to the screen, but you can redirect each of them (see below).

These two streams are available directly to you via the sys module:
sys.stdout and sys.stderr.

You can write to either one with file output-like statements, e.g.

sys.stdout.write("blah blah\n")

sys.stderr.write("read 6 sequences, analysis complete\n")

When you use a program with these outputs, you can direct each stream into
files as follows (stdout to fileA and stderr to fileB):
python myprog.py > fileA.txt 2> fileB.txt

Users of command line programs often expect to find these two sorts of
outputs, which roughly correspond to the main intended output of the
program (stdout) and error or progress messages (stderr).

If you have more complex output, or want to have an error output
separate from a progress report or other sorts of metadata, create a log
file and write the metadata to that file. e.g.

from optparse import OptionParser

oparser = OptionParser()

oparser.add_option("--log", type="string", dest="logFile", default="out.log")

(opt, args) = oparser.parse_args(sys.argv)

ancillary information, such as progress report, parameters used for the

analysis, files used in the analysis, time and date stamp etc. will be

written to the log file, which has a default name but can be set by the user.

These three code patterns (using stdout, stderr, and a log file) are in
common use and are very handy. I use them frequently.

A log file is especially useful to record program parameters associated with a
specific program run, but that you don't want cluttering up the main output.

For example, suppose you write a sequence aligner that makes its main output
in the form of fasta format alignment. You might want to have a log file
record things like the input file name, the score matrix, the gap penalties,
and the date and time run, and stderr to show program progress.

The log file is like a lab notebook.

Standard input

Standard in is analogous to standard out, except of course it is input
to a program. sys.stdin is a file-like stream that you can read
inside your program as if it were a file:

for line in sys.stdin:

do something with each line

Under some circumstances it is ideal to allow a user to provide input
EITHER from a file OR from stdin. e.g.

if fileName != None:

inf = open(fileName)

else:

inf = sys.stdin

after this the code is identical for either data source

Why bother with stdin?
Sometimes, writing to and reading from files is a slow step in program
execution.

Though you can treat sys.stdin as if it were a file, in fact it is sitting in
RAM (actually when you read a file you access the data from RAM too, it
is just read from the disk first and put in RAM).

Suppose I have a tree-building program (gotten from someone else) that
can take a sequence alignment from stdin or a file. I wrote a program
(or got a program) that can write a sequence alignment either to stdout
or to a file. These are equivalent:
python align_prog.py infile > outfile

tree_prog outfile > outtree

or
python align_prog.py infile | tree_prog > outtree

The difference is that the first version has to save the alignment to a file,
then read it again. The second version never writes a sequence alignment file.
That | symbol is read "pipe" and connects the two programs via stdout and
stdin (if you use unix much it is used the same way).

tree_prog < infile > outtree

By the way, the rather confusing-looking command below says to
read the contents of infile and feed them to tree_prog on
stdin.

I find this a bit confusing and I avoid it, but it is in common use.

