
Introduction to UNIX!
Genome 559: Introduction to Statistical and

Computational Genomics!
Seungsoo Kim!

What is UNIX?!
•  Unix is a family of operating systems (like Linux)!
•  The language of the command-line!

(except on PCs, until Windows 10; see http://
www.howtogeek.com/249966/how-to-install-and-
use-the-linux-bash-shell-on-windows-10/)!

•  Set of programs/commands for:!
–  Navigating file directories!
–  Manipulating text files!
–  (and much more we won’t cover)!

Why should you care about UNIX?!
•  Have you ever spent a long time systematically

renaming files one by one, only to miss some?!
•  Do you ever have to work with files too large for

your text editor?!
•  Will you have to work on a computer cluster?!

You’ve already been using UNIX!!
$ cd Documents
$ python hello.py
Hello, World!

Where are we?!
Print working directory!
$ pwd
/Users/seungsoo
(this is called a path)!
!
List files and subdirectories!
$ ls
Applications
Desktop
Documents
…

Let’s go somewhere …!
Change directory!
$ cd Documents
$ pwd
/Users/seungsoo/Documents
We’re now in a subdirectory.!
!
Go up one level!
$ cd ..
$ pwd
/Users/seungsoo

Let’s make a new folder (directory)!
Make directory!
$ mkdir GS559
!
Move into that directory!
$ cd GS559

Go back home!
$ cd

Let’s write a new file!
Write a new file called hello.txt using the (very
basic) nano text editor!
$ nano hello.txt

nano text editor!
•  Instructions are at the bottom of the screen!
•  ^X means Control-X, etc.!
•  To save: ^X, then y, then Enter!

Renaming/moving files!
Rename hello.txt to greetings.txt!
$ mv hello.txt greetings.txt
!
Move greetings.txt to the GS559 folder!
$ mv greetings.txt GS559
!
Move greetings.txt back to the current folder!
$ mv GS559/greetings.txt .

The single dot “.” is a shortcut for the current directory!

Copying and deleting files!
Make a copy of greetings.txt called greetings2.txt!
$ cp greetings.txt greetings2.txt
!
Remove (delete) greetings2.txt!
$ rm greetings2.txt

Be super careful with rm – unlike files put in the “Recycling Bin”, files
deleted with rm are permanently gone.!

Remember, you can use ls to check what files are in your current
location.!

Summary of part 1 (file navigation)!
pwd print working directory!
cd dir change directory to dir!
cd .. go up one level!
ls list directory contents!
nano file1 edit file1 using text editor nano!
mv file1 file2 move/rename file1 to file2!
cp file1 file2 copy file1 and save as file2!
rm file1 delete file1!

The wildcards: * and ?!
•  UNIX is particularly powerful because of its wildcards!

–  * indicates any string of characters (including none)!
–  ? indicates any single character!

•  ls shows all files in the directory (except for some hidden
files … check out ls -a)!

•  ls *.py shows all files in the directory that end in .py!
•  ls D* shows all files/directories that start with D (case-

sensitive)!
•  Warning: be particularly careful using wildcards with rm! A

good practice is to check which files you would delete with a
command by first using ls in place of rm

More wildcard examples!
If you had the following files in your directory:!

–  PS1.txt
–  PS1.py
–  PS2.txt
–  PS2.py
–  PS3.txt
–  PS3.py
–  Lecture1.pptx
–  Lecture1A.pptx
–  Lecture1B.pptx
–  Lecture2A.pptx
–  Lecture2B.pptx

How would you move all files ending in .txt to a new folder?!
!
!
Which files would rm Lecture1?.pptx delete?!

More wildcard examples - solutions!
If you had the following files in your directory:!

–  PS1.txt
–  PS1.py
–  PS2.txt
–  PS2.py
–  PS3.txt
–  PS3.py
–  Lecture1.pptx
–  Lecture1A.pptx
–  Lecture1B.pptx
–  Lecture2A.pptx
–  Lecture2B.pptx

How would you move all files ending in .txt to a new folder? !
mv *.txt newfolder (folder must already exist)!
!
Which files would rm Lecture1?.pptx delete? !
Lecture1A.pptx and Lecture 1B.pptx (not Lecture1.pptx)!

A couple of handy shortcuts!
•  Tab-completion!

–  if there’s only one file/directory that starts with the set of
characters you’ve typed, hitting Tab will complete it!

$ ls gree<Tab>
$ ls greetings.txt

–  if there are multiple such files, hitting Tab twice will list
them all!

•  Command history: use the up/down arrow keys to
get your previously entered commands!

Viewing/manipulating files!
•  UNIX is a text-based system – most files are flat

(not fancy like Word) text files!
•  UNIX contains a lot of useful programs for

working with text files!
•  UNIX programs read in files and write out to the

standard out (and error) stream, unless
redirected to a file!
–  In general, they do not edit files in place!

Print the beginning of the file!
Print the top (head) of the file PS3_chr21.txt (by default, first 10 lines)!
$ head PS3_chr21.txt
ctccaaagaaattgtagttttcttctggcttagaggtagatcatcttggt
ccaatcagactgaaatgccttgaggctagatttcagtctttgtggcagct
ggtgaatttctagtttgccttttcagctagggattagctttttaggggtc
ccaatgcctagggagatttctaggtcctctgttccttgctgacctccaat
tttgtctatccttttgctgagaggtctgcttaacttccttttagtcaggt
agctccattttatgctaagcttcttagttgctcaccttctgcagctaaag
aatcagaaaatgctgtgaaggaaaaacaaaatgaaattgcattgtttcta
ccggccctttatcaagccctggccaccatgatagtcatgaattccaattg
ttgtctatgcaggcctaccagatttctaacatctctgagctaccattttc
ttcttagctatctgctcagcaaatgtatccaaatgaaaggctgtggagaa
!
Print the first line in the file!
$ head –n 1 PS3_chr21.txt
ctccaaagaaattgtagttttcttctggcttagaggtagatcatcttggt

Print the beginning of the file!
Print the top (head) of the file PS3_chr21.txt (by default, first 10 lines)!
$ head PS3_chr21.txt
ctccaaagaaattgtagttttcttctggcttagaggtagatcatcttggt
ccaatcagactgaaatgccttgaggctagatttcagtctttgtggcagct
ggtgaatttctagtttgccttttcagctagggattagctttttaggggtc
ccaatgcctagggagatttctaggtcctctgttccttgctgacctccaat
tttgtctatccttttgctgagaggtctgcttaacttccttttagtcaggt
agctccattttatgctaagcttcttagttgctcaccttctgcagctaaag
aatcagaaaatgctgtgaaggaaaaacaaaatgaaattgcattgtttcta
ccggccctttatcaagccctggccaccatgatagtcatgaattccaattg
ttgtctatgcaggcctaccagatttctaacatctctgagctaccattttc
ttcttagctatctgctcagcaaatgtatccaaatgaaaggctgtggagaa
!
Print the first line in the file!
$ head –n 1 PS3_chr21.txt
ctccaaagaaattgtagttttcttctggcttagaggtagatcatcttggt

This is an option, specifying how many lines to print!

Print the end of the file!
Print the end (tail) of the file PS3_chr21.txt (by default, last 10 lines)!
$ tail PS3_chr21.txt
NN
NN
NN
NN
NN
NN
NN
NN
NN
NNN

!
Print the last line in the file!
$ tail –n 1 PS3_chr21.txt
NNN

Print an entire file (or multiple, concatenated) to
the screen!

$ cat greetings.txt
hello

$ cat greetings.txt greetings.txt
hello
hello

Redirecting to standard in, standard out, and
standard error!
prog1 < file1
means feed file1 into the standard input of the program prog1!
!
prog1 arg1 > file1
means run prog1 with argument arg1 and save the output to
file1!
!
prog1 arg1 | prog2
means run prog1 with argument arg1 and feed the output as the
standard input to program prog2!
!

Using the left arrow to replace an argument
expecting a file with the output of a program!
prog2 <(prog1 arg1)
is (mostly) equivalent to!
prog1 arg1 > file1
prog2 file1
!
You can string these together!!
prog3 <(prog1 arg1) <(prog2 arg2)
(mostly) equivalent to!
prog1 arg1 > file1
prog2 arg2 > file2
prog2 file1 file2 !

Exercises!
Create a new file twogreetings.txt that contains the
contents of greetings.txt twice in a row.!

!
Concatenate the first 10 lines of PS3_chr21.txt with
the last 10 lines of PS3_chr21.txt and print to the
screen.!

Exercises - solutions!
Create a new file twogreetings.txt that contains the
contents of greetings.txt twice in a row.!
$ cat greetings.txt greetings.txt > twogreetings.txt

!
Concatenate the first 10 lines of PS3_chr21.txt with
the last 10 lines of PS3_chr21.txt and print to the
screen.!
$ cat <(head PS3_chr21.txt) <(tail PS3_chr21.txt)

(How many lines of Python would this take?)!

How big is the file?!
wc counts the number of lines, words, and
characters (bytes) in a file!
$ wc PS3_chr21.txt
 774374 774374 40267443 PS3_chr21.txt

Just print the number of lines!
$ wc -l PS3_chr21.txt
774374

less: a better viewer for looking at big files!
less works with files one screen at a time!
Try less PS3_chr21.txt
!
You can search for strings in the file:!
type: /GATT to search “GATT” and highlight all matches!
then hit “n” to go to the next hit!
!
Hit arrow keys to navigate!
Hit Space to go a page down!
Hit “q” to exit!

How do I remember all those options?!
Every command has a manual page. Access it
with the command man
$ man less

Read through manuals !
using the less commands!!

Working with big files - grep!
Print all lines in PS3_chr21.txt that contain a string of interest, here
GATT!
$ grep GATT PS3_chr21.txt
!
Print all lines in PS3_chr21.txt that do NOT contain “N”!
$ grep –v N PS3_chr21.txt

Some options:!
-f: instead of just a string, take a file with a list of query sequences!
-w: require the match to be a word (have whitespace on either side)!

Working with big files - cut!
We often work with tables, with columns separated by
tabs (or spaces, commas, etc.)!
!
Print the 3rd, 4th, 5th, and 9th columns (fields) of file1.txt!
$cut –f 3-5,9 file1.txt !
!
some options:!
-d: specify delimiter - comma, space, tab (default)!
-c: get characters rather than fields!
!

How can we keep a record of these kinds of
complex commands, and rerun them later?!
•  Shell scripts are programs that can be run by the

UNIX interpreter, as if you had typed each line
directly on the command-line. !

•  They can run other programs (e.g. Python
programs), so they’re useful for building complex
programs (or analysis pipelines) that use programs
other people have written (like BLAST)!

•  Like Python programs, they can take arguments,
use loops and conditional statements, etc.!

•  They end in .sh and are executable pieces of text!

Shell scripts!
Suppose you had a Python program called hello-n.py (what does it
do?)!
import sys
for i in range(int(sys.argv[1])):

print “Hello!”
!
And a shell script called five.sh!
python hello.py 5
!
Then running five.sh would print “Hello!” five times by running hello-
n.py with the argument 5.!
!
!

How do we run a shell script?!
We first have to make the script executable, with the command chmod
$ chmod +x five.sh
!
Then we can enter the name of the program, five.sh, preceded by “./” (strictly
speaking, needs to be a path – e.g. could be myfolder/five.sh)!
$./five.sh
Hello!
Hello!
Hello!
Hello!
Hello!

